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Abstract

Here, we explore a new theme: Route recognition, in robot navigation. It is faced with problems of visual sensing,
spatial memory construction, and scene recognition in a global world. The strategy of this work is route descrip-
tion from experience, that is, a robot acquires a route description from route views taken in a trial move, and
then uses it to guide the navigation along the same route. In cognition phase, a new representation of scenes along
a route termed panoramic representation is proposed. This representation is obtained by scanning sideviews along
the route, which provides rich information such as 2D projections of scenes called Panoramic view and generalized
panoramic view, a path-oriented 2'2D sketch, and a path description, but only contains a small amount of data.
The continuous panoramic view (PV) and generalized panoramic view (GPV) are efficient in processing, compared
with fusing discrete views into a complete route model. In recognition phase, the robot matches the panoramic
representation memorized in the trial move and that from incoming images so that it can locate and orient itself.
We employ dynamic programming and circular dynamic programming in coarse matching of GPVs and PVs, and
employ feature matching in fine verification. The advantage of wide fields of GPV and PV brings a reliable result

to the scene recognition.

1 Introduction
1.1 Objective

Much research on vision-based navigation has been
focused on road-following and obstacle-avoidance, the
aim of which is to drive a vehicle safely within a road
in an outdoor environment [2, 3, 4, 5], as well as within
a free space in a room or in a building [6, 7, 8] based
on sensor data. For longer-distance navigation, however,
robots will also be confronted with another problem:
how to understand the route it travels. This problem
includes unexplored issues of how a robot can represent
and memorize its environment while moving around,
and how it can recognize the scenes so as to locate and
orient itself. The work described here tackles these
issues.

In the outdoor environment, two kinds of represen-
tation can be considered. One is a bird’s-eye view map
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and another is a series of route views. The robot can
determine its way from either of them [9]. Although
the bird’s-eye view such as an aerial photograph or a
city map is good for representing global relationships
of routes and is straightforward in route planning, it
is hard to transform into real route views for recogni-
tion. A robot using a terrain map to understand its en-
vironment has been proposed [10]. Another approach
is to use route views. Landmarks specified by humans
are employed in guiding the navigation [11].

We consider the robot is more intelligent if it can
acquire route information autonomously by represent-
ing and memorizing scenes along a path it has wandered
and looked around. The strategy of this work is route
description from experience. A sequence of ground-
based views are acquired when traversing routes, and
they are further analyzed to obtain a map for guidance
of the robot [12]. The scenario of the project is as fol-
lows: A robot moves along a certain route under the
guidance of a human and autonomously memorizes the
route. The robot is then commanded to pursue the same
route by itself. It keeps observing the scene and locates
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Fig. 1. A mobile robot continuously views scenes along the route
by a camera. It autonomously builds the model along the route, which
guides the autonomous navigation along the same route. A route in
the campus of Osaka University shown in this figure is used for the
experiments.

and orients itself by referring to the memorized route
description so that it can instruct the road-following
module where it should change its direction or stop.
Figure 1 illustrates a part of such a route.

1.2 Scene Representation

The first key step to bridge local scenes along a route
to a global map is, perhaps, the encoding of the numer-
ous ground-based episodic views into a sequentially
organized description that is easy to access in further
operations. In this article, a representation of scenes
called panoramic representation is introduced for mem-
orizing and retriving the visual information acquired
in the trial move [1]. It provides the major information
along the route, such as 2D projections of scenes, a
path-oriented 2%D sketch, and a path description. It
can be used not only as an intermediate representation
as Marr proposed [14], from which a more abstract and
symbolic representation of the route can be built [32],
but also as a description referred directly to in route
recognition [13].

In order to represent a wide field of view that con-
tains global information with less data amount, we
propose a panoramic view, which has the following
two types:

— Panoramic view (PV): a projection of scenes to a
cylindrical retina centered at a stationary point, used
as a visual memory of a place for determining loca-
tion and orientation of the robot.

— Generalized panoramic view (GPV): a projection of
scenes along a route to a surface of generalized
cylinder determined by a smooth camera path along
the route. It is a visual memory of the route used
for locating the robot.

Both PV and GPV are obtained from integration of
numerous fine slit views dynamically projected onto
the image frame through a vertical slit, as the camera
swirls and moves along the smooth path respectively
[15, 16]. We will see that generating the panoramic
views is equivalent to cutting a vertical slice in the
spatiotemporal volume proposed by Bolles and Heeger
[17, 18]. For linear motion, Bolles and Baker cut
epipolar-plane images in the volume along optical-flow
directions to determine image velocities [19]. Our slice
cut in the volume is, on the contrary, nonparallel to
optical flow so that it yields a projection showing 2D
shapes, rather than traces of feature points.

The 24D sketch, described by the horizontal image
velocities of features in the GPV, is extracted by meas-
uring time delays of these features moving across a pair
of parallel slits in the image frame. This is done spa-
tially on the GPVs simultaneously generated from the
double slits, because the panoramic view contains an
axis presenting time. Possessing front views of scenes
and their 22D descriptions, the panoramic representa-
tion maintains the major information in the spatiotem-
poral volume from our camera motion.

1.3 Route Recognition

In route recognition, the robot recalls route memory
constructed in its experienced move to allocate its posi-
tion and orientation so as to plan the moving distance
and direction. The objective of this work is to quanti-
tatively match two panoramic representations obtained
at different moves along the same route, assuming the
road-following process keeps the robot path within
roads. We also match two panoramic views at close
positions so that the robot can determine its orientation.

Utilizing the sequential and continuous characteris-
tics of the panoramic views, we employ dynamic pro-
gramming [20] and circular dynamic programming (a
modified dynamic programming for periodical scenes)
to match 1D color projections of GPVs and PVs, respec-
tively, in establishing coarse correspondence. Then
some distinct structure with various properties such as
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shape, color, and depth in the 2D projections are veri-
fied in detail. The changes in 2D shape due to the
changes in paths are adjusted by using the 2%D infor-
mation acquired in establishing the representation. The
implementation of matching is efficient to cope with
the real-time recognition in autonomous navigation.
Because of the wide field of PV and GPV, the match-
ing can start from a fairly global level to avoid failure
in changed local parts and, thus, results in a high
reliability.

Since the matching of panoramic representation is
still on iconic level, we have to deal with the influences
from changes in path and partial changes due to dy-
namic objects. We discuss several approaches to modify
the panoramic representations from different moves to
closer states.

In route pursuit, there are two ways to guide the
road-following process for the next two sitatuions. As
the robot moves along a road, its heading can be re-
stricted within a small changeable extent in the forward
direction. The route-recognition task is only to find
specified positions at which to stop or turn according
to the memorized generalized panoramic view. This
kind of route recognition is usually employed in the
situation where the destination may possibly be oc-
cluded by objects intervening. On the other hand, if
the robot enters a wider area such as a square, there

(b)

can be more movable spaces, free headings, and good
visibility. By referring to the goal object memorized
in the previous PV, the robot can find its correspondent
in the current panoramic view and approach it by ad-
justing its heading.

2 Panoramic View
2.1 Formation of Panoramic Views

A possible method in modeling a wide environment is
to direct a camera toward various parts and take a lot
of discrete images. However, the spatial relationship
between these images is not easy to obtain, except when
they share certain common fields of view. The draw-
backs of this consideration are the data redundancy and
the two-dimensional discontinuity in the overlapped
sights, because of the difference of view points and
viewing directions.

In achieving the objective that the robot can observe
scenes in a larger scope and at various locations, our
camera continuously scans scenes through a vertical
slit. Connecting these one-dimensional slit views along
the time axis results in a wide two-dimensional display
which contains only a small amount of data. Figure 2
illustrate the schemes of image formation.

Fig. 2. Schemes for generating panoramic views. (a) A panoramic view is acquired by arranging slit imagery taken by a swiveling camera.
(b) A generalized panoramic view is acquired from slit imagery taken by a camera moving along a smooth path. The optical axis is aligned
with a constant angle from the tangent of the path (direction of translation U).



58  Zheng and Tuji

Suppose a camera rotates around a vertical axis at
point O at a constant angular velocity w. It takes pic-
tures continuously through a vertical slit as figure 2(a)
shows. By pasting the slit views consecutively at the
angle of observation, we get a panoramic view which
is, in fact, a cylindrical retina on which all objects visi-
ble from point O are projected. The velocity of each
image point passing across the slit is the same because
the rotation center coincides with the camera focus.

Let us generalize it to the situation when the camera
moves along a smooth path § on the horizontal plane.
Assume that the camera has a translation U changed
by an angular velocity w on the horizontal plane. In
this case, the camera path becomes a circular curve.
We set the camera axis / so that it keeps a constant angle
with respect to the translation U. The path is defined
as either concave (—) or convex (+), if its center of
curvature is on the same side, or on the different side
of the U with the camera axis. If there exists no rotation
except translation, the camera will move on a straight
line (the center of curvature of the path is at infinity).
A smooth camera path, hence, can be divided into these
three types of segments.

Under these conditions, if the camera takes continu-
ous images of 3D scenes through a vertical slit, a gen-
eralized panoramic view can be constructed by connect-
ing the 1D slit views from successive frames along the
path, as depicted in figure 2(b). The slit is restricted
not be be coplanar with the vector of translation U. The
scenes at the sideway, therefore, are projected onto the
vertical surface of a generalized cylinder that is along
the path. It utilizes the perspective projection vertically
and an orthographic projection horizontally along a
dynamic axis which keeps a constant angle from the
tangent of the path U. The difference of GPV from the
PV is that the velocity of objects passing across the slit
line depend on their depths from the path.

2.2 Spatiotemporal Volume Interpretation

In the real situation, the panoramic view is obtained
by continuously taking 1D data at the virtual slit line
in each input image and arranging this data along the
time axis consecutively in another memory, assuming
the slit line is set nonparallel to the image flow. The
result of this process can be interpreted in terms of
spatiotemporal volume analysis [18, 19].

A spatiotemporal volume is composed of a dense
sequence of images of dynamic scenes. Filtering out

the traces of image patterns in the volume, one can find
the displacements of features in a three-dimensional
spatial way. The spatiotemporal volume retains all of
the information observable by a moving camera, but
it is too redundant for the given motions. Our analysis
is designed, as described previously, to arrange views
along the path into an easy-to-memorize representation,
rather than a 3D Euclidean model suffering from inher-
ent large errors in depth. As shown in figure 3(a), the
result of capturing data on the slit line and arranging
them along the time axis is equivalent to cutting a ver-
tical ¥ — T slice in the volume. The data amount of
panoramic view, hence, becomes a slice in the whole
volume. Figure 3(b) and (c) each show the EPI images
and a GPV in linear camera motion which is the only
motion with which the EPI can cope in acquiring 3D
structure from given camera motion [19]. As we will
see in section 3.2, the GPVs can recover most of the
3D points in our more general motion when the camera
has a translation changed with a rotation.

Bolles’ technique utilizes the linear motion of a
camera. They cut epipolar-plane image (EPI) along the
optical-flow directions in the spatiotemporal volume [17,
19], which gives both traces of feature points and spati-
otemporal events such as occlusion. It is used to achieve
a precise estimation of image velocity through redun-
dant computation. The panoramic view cut in the vol-
ume is, on the contrary, nonparallel to the optical flow
so that it yields a projection showing 2D shapes of
scenes [16]. Because the camera notion is on the hori-
zontal plane, we understand that the vertical slit inter-
sects the optical flow (detailed in section 3.2). The
traces of objects pass through the vertical slice of PV
at the same horizontal angle in the spatiotemporal
volume, and pass through the slice of GPV at different
horizontal angles according to the object depth.

3 Panoramic Representation
3.1 2D Display of Route Scenes

Because panoramic views are created by connecting
numerous local slit views, either in finely divided orien-
tations at a point or at densely distributed positions
along a path, they maintain the 2D continuity of the
views. Let us first see what mathematical properties
the panoramic views have for different camera move-
ments. Linear and circular paths are considered, be-
cause we can approximate a smooth path by their



Panoramic Representation for Route Recognition by a Mobile Robot 59

T

s B

Spatiotemporal Volume

X

(b)

Panoramic View

Point

-X

(c)

Fig. 3. Spatiotemporal volume interpretation of the panoramic views. (a) The panoramic view is corresponding to a slice in the volume non-
parallel to the optical flow. (b) Panoramic views and epipolar-plane images in linear motion. The camera axis is perpendicular to the transla-
tion. X — T'slices are EPIs and Y — T slices are panoramic views. (c) A free camera direction. Slices plassing through the vanishing point
are EPIs and slices not passing through the vanishing point are generalized panoramic views in the volume.

segments. For simplicity of description and computa-
tion, the following analyses assume that the camera axis
is aligned with path normals (perpendicular to transla-
tion) and its motions are ideal and known in generat-
ing GPV.

A common property of PV and GPVs for linear and
circular paths is that vertical lines in the 3D world
appear also as vertical lines in the panoramic views,
because of the assumption that the vertical slit moves
on a horizontal plane.

3.1.1 Panoramic View. For the basic scheme of pano-
ramic viewing illustrated in figure 2(a), the camera mo-
tion is pure rotation. The image formation is modeled

by a cylindrical projection shown in figure 4. Let us
represent the 3D space using a cylindrical coordinate
system (O — pfY), so that the origin O is at the camera
focus and the Y axis is aligned with the rotation axis.
The 6 represents a swiveling angle from a reference
direction. Projection of a point P(p, 6, Y) to the O
yields an image point at (s, y) on the cylindrical retina
whose radius is the focal length of camera f. Without
losing generality, we set f = 1 and get

Yo ()

The projection of a nonvertical line L onto the cylindri-
cal retina is determined by the plane through O and
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Fig. 4. Model of generating panoramic view from pure rotation.

L, which results in an elliptic arc on the. retina and
appears as a sinusoidal segment in the opened pano-
ramic view. For a simple case of horizontal line, we
select the reference direction of 6 as being orthogonal to
the line. The line is projected on a sinusoidal curve as

-5<s<3 =H——°°DS(S) @)
where D is the distance of the line from the ¥ axis and
H is the height of the line.

Figure 5 displays a panoramic view of an outdoor
environment taken by a camera on a robot, showing
that 2D patterns appear distorted in the image. It is con-
sidered as the minimum two-dimensional data set of
scenes around, because the input image taken at any
angle is easily recovered from it.

3.1.2 Generalized Panoramic View from Circular
Paths. If the camera path is circular, each point in a
3D space maps to a moving focus on a circle of radius
R. The corresponding cylindrical retina has radius
R + ffor a convex path and R — ffor a concave path,
as shown in figure 6. The direction of the camera axis
is inward for the convex and outward for the concave
path. A point P(p, 8, Y) is projected onto p(s, y), where
p is the distance from the center of the paths. If we
assume the focus length of camera f = 1, the general-
ized panoramic view along a convex circular path (if
p > R) has,

_ ¥
p — R

s=R+ DO y 3)
For a concave circular path, P appears at p(s, y) such
that

Y

S=@®R-18 y=p——

“)

if p < R, which means the point is closer to the camera
than the center of the path. It also appears at p’(s’, y')
such that

Y
s"=(R - DO + 7 y = R—‘FP (5)

if p > R, which means the point is more distant than
the center of the path.

The projection of a line in the 3D space is no more
than an elliptic arc on the cylindrical retina. By select-
ing the same reference direction of 6 as for panoramic
view, a horizontal line is mapped onto a curve as
follows:

For a convex circular path, the line is projected to
one of the following ranges

ifD>R - <8<g (62)

T
2

Fig. 5. Panoramic view taken by a camera on a robot turning at a corner.
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Fig. 6. Panoramic viewing from a convex circular path (left) and a concave circular path when the object is farther from (middle) and nearer

to (right) the camera than the center of the circular path.

- ~X —
if D < R, 2<6< cos R
D T
I:2e 24
and cos R <0< > (6b)
as
H cos @

Y= D —Rcos 8 (6c)
where 0 = s/(R + 1).

For a concave circular path, the line appears in the
range

m™ ™
—§<6<§ (7a)
as
_ Hcos @
Y= D -—Rcos b (7b)

and if D < R, the line is projected also to another
range,

il D
T — COS R<6<1r+cos R (8a)
as
_ Hcost (8b)

Y~ D+ Rcos 0

3.1.3 Generalized Panoramic View from a Linear
Path. Suppose the camera moves along a linear path
as figure 7 shows. We set a Cartesian coordinate system
XYZ, with its origin O at the camera focus and the X
and Z axes pointed along the motion direction and the
camera axis, respectively. The scenes, therefore, are

P (X Y. Z)

Fig. 7. Panoramic viewing from a linear path.

projected onto the GPV by an orthogonal projection
horizontally and a perspective projection vertically. A
point P(X, Y, Z) is projected onto p(s, y) in the gener-
alized panoramic view such that
Y

s=X y= 7 )
assuming f = 1. Then a 3D line specified by the follow-
ing equations

X-X _Y-Y, Z-12
4 B ~~C (10)

appears in the GPV as
AL AYO + B(S == Xu)

Y= AZ, + C — Xy an
If the line is horizontal (B = 0)
A (12)

YT Xy + CG — X
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where H = AY;;. Most horizontal lines in the space are
thus mapped as curves while those parallel to the path
(C = 0 in equation (12)) or at the same elevation
(H = 0 in (12)) appear as lines.

3.2 Path-Oriented 22D Sketch

We acquire a path-oriented 22D sketch from the gen-
eralized panoramic view for understanding depth of ob-
jects on the side of the routes. This is done by measur-
ing the horizontal image velocities of features when they
pass through the vertical slit, and attaching them to the
corresponding parts in the 2D projection.

3.2.1 Image Velocities Along Different Paths. We ex-
plore the relationship between the image velocities of
features through the slit and different paths. Let U and
w be linear and angular velocities of the camera, respec-
tively, with the camera axis perpendicular to the transla-
tion. Let P(X, ¥, Z) denote a point in a camera-centered
coordinates system. The horizontal and vertical image
velocities u and v of its projection p(x', y') along dif-
ferent paths can be easily deduced as follows [21]:

1. Linear path
u=— — v=20 (13a)

2. Convex circular path

e agd 40 B 2y U
u= 7 (1 +x)w = 7 (I+x)R
v=—xyw = —x'y’% (13b)

3. Concave circular path

== g r2 e £_; 12 g
u = Z+(l+x)w— z+(1+x)R
v=x"ve =x"y g (13c)

R
assuming the focus length of camera f = I.

For any vertical slit at coordinate x’ on the frame,
the horizontal image velocity u will not be zero on it
(13), except for the feature on a 3D vertical cylinder
described by Z = (1 + x'?)R when the camera moves
along a concave path (13c). This means the vertical slit
intersects the optical flow in the frame.

If the vertical slit line is set at the center of the image
(x" = 01in (13)), the nonzero horizontal image velocities
at the slit can be simply described as follows:

1. Linear path:
u=—-- (14a)

2. Convex circular path:

e L =
u p—Rw

Nl

L

R (14b)
where p = R + Z.

3. Concave circular path: If the object point is nearer
from the camera than the center of the circular path,

U
Z

p
u= - = —
R—,o("J

(14c)

=le

where p = R — Z.
If the object point is farther than the center to
the path,

o
R+ p

(14d)

Nl

_P
“ =R

where p = Z — R.

Object velocities in the image are inversely pro-
portional to their depths, as shown by (14). The
image velocity increases by a factor of p/R more than
that in the linear camera motion, if the path is con-
vex. For a concave path, the velocity decreases by
the same factor. As illustrated intuitively in figure
8, the points nearer to the center O1 have different
moving direction from the camera motion, while the
points more distant from the center O1 have the
same direction as the camera motion.

3.2.2 Acquiring Image Velocities at the Center Line.
Now that we have generated a nonredundant represen-
tation of scenes, it is beneficial to estimate the image
velocity from the generalized panoramic views. Let us
assume a stable robot motion such that both motion
class and velocity are invariant, at least for a short
period. The horizontal image velocity of a feature on
the slit line is estimated as its average velocity between
two vertical slits placed symmetrically to the slit line.
If we generate two GPVs from the double slits simul-
taneously, we can find two projections of the feature
point on them with different ¢ coordinates along the time
axes in the GPVs. The time for the point to pass through
the given distance between the double slits can be
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Fig. 9 Trace of a point in the field of view when GPVs from linear, concave, and convex paths are generated.

obtained in a spatial way by looking at the time delay
between two projections of the point in the generated
GPVs. The problem becomes one of matching feature
points in two GPVs generated from the double slits. For-
tunately, we find that setting two sampling lines sym-
metric to the central line provides an important con-
straint for matching feature points in two generated
GPVs in order to compute the image velocity at the cen-
tral line.

Figure 9 intuitively shows the basic traces of a point
P in the image frames for different paths. Since the
camera axis is directed or inversely directed to the
center of the circular or linear paths (aligned with the
normal of the path), the point P moves on circles or
a line relative to camera-centered coordinate system.
It has traces as ellipses or a line symmetric to the cen-

tral line in the image. Therefore, it passes across the
double slits at the same height. We have the following
constraint for matching feature points in GPVs from
linear or circular paths.

CI: If we generate rtwo GPV5 from a pair of parallel
slits symmetric to the central vertical line, the pro-
Jections of a point P in the two GPVs have the same
¥ coordinates.

This also can be noticed from (13), since the absolute
value of v and the value of u are symmetric to the center
line (x’ = 0), and v is zero on it.

In principle, we can recover depth of a feature point
from two view points. The GPVs taken with the camera
slits pointed in different directions really are ortho-
graphic stereo.
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3.3 Route Description

Image formation parameters such as robot speed U, and
the angular velocity w are recorded with the GPV. They
influence the panoramic representation as the scale
changes but do not influence the route geometry. The
intrinsic parameters of the route geometry are:

— Distance S along the route from the start point or
selected landmarks.

— Curvature of the path described by radius of curva-
ture R. These can be estimated from U and w as

S=fUa’r R=g (15)

In the analyses so far, we have assumed ideally that
the GPV has the same length with S. However, in a
real situation, the panoramic view generalized from
dynamic sampling on a slit line has a length ¢ scaled,
after a sampling time of image 7 and a robot speed U
are selected. For time invariant U and 7, we simply have

S=Unt ' (16)

The length ¢, which gives the image resolution of a
GPV, is determined from the spatial frequencies of the
patterns of interest, after which U and 7 are determined
from the resolution of the GPV. The robot can arrive
at the same destination along slightly different paths—
which yield different S and R; they are therefore used
only as referential parameters.

4 Acquiring Stable Panoramic Representations

4.1 Acquiring Panoramic Representation from the Real
World

Experiments were made on the route shown in figure
1, using a mobile robot (an automatic guided vehicle
for factory automation). A color TV camera on the
robot can be swiveled on a rotating table for the pano-
ramic view. An on-board microcomputer, which con-
trols the robot and camera motion, communicates with
a Sun4 workstation with an image processor.

Figure 10 (see color section, page 65) shows an ex-
ample of a generalized panoramic view of size 2048 X
128 pixels acquired while the robot moved about 100 m.
The camera axis is set simply perpendicular to the for-
ward direction of the robot. The sampling rate was con-
stant and the robot consists of an almost linear path

followed by a concave and then a convex path. The
robot stopped midway for a little while, waiting for
passage of an obstacle in figure 10, which yields an area
in the GPV covered with horizontal stripes. Unevenness
of the road causes variations in the camera pitch, which
results in much zigzag in horizontal lines in the GPV.

By setting two vertical slits L1, and L2 at —Ax /2,
and Ax'/2 in the image frame symmetrically to the cen-
tral line, we generate two GPVs. Only vertical lines are
analyzed in the GPVs because they will not break due
to the unevenness of road even their heights are influ-
enced. Figure 11 shows matched pairs of vertical lines
in the GPVs; for each pair we have another line con-
necting ends of them. The method for matching will
be described in the next section. By finding the dura-
tion Ar between each matched pair in the GPVs, we
obtain the time interval needed for the line in penetrat-
ing L1, L2. The horizontal image velocity u at the center
line is computed from Ax'/At. Figure 12 shows the ver-
tical lines matched and their 242D information. The
duration of a line Af similar to the “disparity” in stereo
vision for obtaining depth, is presented by the length
of a horizontal segment attached on it. If the precise
motion parameters U and R are used, the depth can
be computed as

Z=—

U
P (17)

and in other cases have the relation with depth as
1. Convex circular path

. |/
‘T TR+ U e
2. Point nearer than the center of concave circular path
(u < 0)
cehy 5l treBiivst
2=~ o (18b)
3. Point farther than the center of concave circular path
u >0

_RU
T uR -U

z (18¢)

We do not intend to use the robot speed U and w
to estimate the position of arrival because of the error
accumulation. Our attempt is, practically, to build a
more flexible route model in which approximate geom-
etry is described. The robot locates itself by referring
to the scenes on the route, assuming it can move along
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Fig. 10. Panoramic view obtained along the route shown in figure 1.
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Fig. 19. Matching spaces of the PVs 1-2, 2-3, 3-4, and 4-1 in which the closed curves represent the optimal correspondences.
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Fig. ll. Matching vertical line segments between the GPVs generated from the same images.

an almost identical path. The following are defined for
instructing a road-following process to pursue the mem-
orized route.

1. Break point, where the curvature of the path exceeds
a certain threshold and is considered as a corner to
turn; it is attached to the GPV. A qualitative direc-
tion such as leftward or rightward is assigned. The
entire route is thus divided into subroutes connected
at these break points.

2. Complex break point, where an open area or more
than three branches of road are ahead, to which a
panoramic view with the notation of continued
branch is attached for determining direction in fur-
ther move.

4.2 Shape Change in PV at Different Positions

In order to explore the matching of scenes observed
in different navigations, we study the changes of pano-
ramic views caused by small changes in the path.
As the robot autonomously arrives at some specific
site where the PV was registered, it builds a new PV

for selecting route. However, the positions of the two
PVs are usually not coincident. Given two PVs gener-
ated at positions O and O’ apart from each other by
a distance D, we can analyze the displacements of 3D
points in PVs. Points P, i = 1, ..., n in the 3D space
are denoted as P(p;, 0;, Y;) and P'(p/, 0/, ¥}) in the two
coordinate systems centered at O and O, with the line
linking the centers of the systems being used as the ref-
erence axis. Their projections in both PVs are denoted
as p(6;, y) and p(6;, y') as will be shown in figure 14.
We have

_ oy Yi_Pi _ sin 0;

K Y‘ yi p,—' sin (A&i + 9!) (19)
Overlapping the coordinates systems O on O', we notice
that the distribution of point displacements Af; = 6,
— 6/ has the following properties (see figure 13):

1. The points in the direction close to the D have
smaller displacements than that perpendicular to the
D (zero in the D direction), if their distances from
the O are equal.
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Fig. 12. Generalized panoramic view and vertical lines with depth information. The horizontal lines attached to the vertical lines in GPV
indicate their delays between the two generalized panoramic views in figure 11.

Fig. 13. Displacements of points between two PVs at different
positions.

2. Distant points have smaller displacements (zero for
points at infinity) than close ones in the same
direction.

3. Displacements for points at different sides of D have
different directions.

The y displacement of a point is on a sinusoidal
curve in the PV as section 3.1.1 indicates.

In PVs, the depth p;, p/, the distances D between
any two positions, are unknown and the robot orienta-
tions considered as the beginning positions of PVs may
be different.

4.3 Shape Changes in GPV from Different Paths

4.3.1 Change of Radius of Circular Path. From (1)-
(5) and (13), we can deduce that a point p(s, y) in a
GPV from a circular path of radius R can be mapped
onto p'(s’, y') in a GPV created from another circular
path of radius R’, but with the same center. The rela-
tion between them can be given

_ SR+ 1)
R+ 1

’

(20a)

. Rwy
Y " R'w + u) — Ru (20b)
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for convex paths, and

,_SR'—1)
=R-1 (ela)
' Ry 21b)

Y =R'(w—u)+Ru

for convex paths.
A panoramic view (R’ = 0) can be given by the fol-
lowing transformation:

=9 y =-< (22)

This implies that we can normalize a 2D GPV from
a circular path of radius R by transforming it into
another GPV of a reference radius R’ (or PV) by using
the image velocities « and the motion parameters U, w.

4.3.2 Change of Center of a Circular Path. After
modifying two GPVs to PVs at their path centers, we
get two sections of PV separated by D as described in
section 4.2, with the difference that the depth p of each
point is known here. Let points P;, i = 1, ..., nin
all directions be P(p;, 6;, ¥;) and P'(p/, 6/, Y/) in both
of the the GPVs. Using elementary trigonometry, we
have

pi =N p? + D* —2p,D cos 6, (23a)

— P !
cot Af; D sin 0; csc 6; (23b)
where A0; = 6/ — 6,.
If i > D,
|ag;| = 2 (24)

[

which means that # and 6 of a distant feature are almost
the same. Any distant point matched in both GPVs gives
information about the directon from one center of path
to another.

4.3.3 Change of Position of a Linear Path. If the linear
path of the camera is shifted to the Z direction by D,
the point p(s, y) in the original GPV appears in the new
GPV at p'(s, ¥') such that

3 Uy

Y= TP Dy (25)

This means that change of PV occurs in the y scale.
If an object is distant, a small shift of path within the

road will not bring a great change in the y scale because
from (9), we have

dy _ _ 2
37 = (Y/Z7) (26)
4.34 Change of Direction of a Linear Path. If the
direction of the linear path is changed by ¢, a point
P(X, Y, Z) that projects to p(s, y) in the original GPV
appears at p'(s’, ¥') in the new GPV such that

s'=5cos¢ — Zsin ¢ (27a)

yl = y
(s/Z) sin ¢ + cos ¢

(27b)

Displacements of distant objects along the s direction
due to the change of the motion direction are large, as
(27a) indicates.

5 Matching Two Panoramic Representations
5.1 Coarse Matching Using Dynamic Programming

In real navigation, it is difficult for a robot to pursue
the exact same path in different moves. The panoramic
representations are arrived at in a path-oriented fashion.
The matching, as a result, must be robust for small
changes in the parameters. Fortunately, we can assume
that the paths will not be too far apart so that we can
match the two representations. Otherwise, the robot will
conclude that it has gone on a different route. This sec-
tion describes matching of two generalized panoramic
views obtained from two different moves.

The matching process is coarse-to-fine. Because the
2D patterns change in the r-scale due to the different
robot speeds, and also because large patterns in the
GPVs will keep the same order of appearance if the
camera pursues close paths along the route, DP (dy-
namic programming) methods, which have been exten-
sively used in speech analysis for matching words
spoken at different rates, can cope with the coarse
matching of two sequential GPVs. The robot first mat-
ches the color projection A(r) and h'(¢) of two GPVs
by dynamic programming, and, then, precisely matches
detail structures (vertical lines I(i),i = 1, ..., n and
I'(j), j = 1, ..., m) by searching narrow regions
around the locations determined by the color matching.

The color projection A(t) = [R(t), G(f), B(?)] of a
GPV,
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128

R(1) =, 11, ),

y=0

128

G@t) =, 8t ¥, (28)

y=0

128

B(t) =), b(t, )

y=0

represents the consecutive average color in each verti-
cal pixel line. It maintains the dominant color in a pano-
ramic view along the routes, in which structures are
ignored, for the robot to “impressively” review the
route it passes. Also, a long vertical line /(i) in the GPV,
which is good for determining precise position of the
robot, appears as an explicit “edge’ (an abrupt change
in the value of h(1)). After the projection h(z) is com-
puted, we smooth it so as to maintain the most remark-
able color changes in it. The edges E(i) and E'(j) in
the projections are used as elements of correspondents,
and the color values between them are used in comput-
ing an evaluation function.

Now we can explain the DP matching of the projec-
tions at edge sequences [E(iy), E'(ji)].

Let the ¢ coordinates of edges E(i), E'(j) be t;, 1;.
The matching space of DP is a grid with the horizontal
and vertical lines at #; and #; respectively. Suppose we
have obtained a number of path candidates searched
by the step k — 1, which represent possible matching
between two sets of edges by that step. For each possi-
ble matching pair [E(i), E'(j)] at the next step k, the
process compares all of the paths expanded to this node
in the path candidates. Among them, a path extended
from a node [E(f), E, E’(f)] that minimizes an accu-
mulative value (i, j) is registered as the optimal path
reaching the current node. The accumulative evalua-
tion f(i, j) is

fG, j) = min;j{f(i, j) + pk = 1, K]  (29)

with the local evaluation function p(k — 1, k) defined as

i
pk = 1,k) =2, [|h@t) — k')l + [|EG) — E'G)l
=5 (29b)

The ¢’ is the linear mapping from 7 in the small dura-
tion (t;, t;) as

(fj = 1)

=G

(29¢)

and
la@) — h'@)Il = [R@® — R'@")|
+ |G@) — G'(t")| (29d)
+ |B(r) — B'(t")|

and || E(i)) — E'(j)|| is the difference of the strengths
of two color edges E(i), E'(j). For all of the possible
nodes expanded at step k, the optimal paths reaching
them are computed. Among then, the one with the min-
imum evaluation value f'is considered as the edge cor-
respondent by step k. The expansion of path candidates
from the searched nodes to possible matching is not
restricted to only their direct neighbors, but also can
jump forward several nodes so that it allows the reversed
order of detailed patterns in small ranges. The process
performs this incremental matching when a new GPV
is being created in autonomous navigation.

Figure 14 shows the optimal matching result of both
dominant regions and edges between two generalized
panoramic views while finding the final destination.
The value in each local range evaluated from the func-
tion p(k — 1, k) of the optimal path is displayed as well.
Each position where a pair of “edges” is matched is
connected by a line. Figure 15 shows the searched paths
in the matching space of dynamic programming, in
which the profiles of the R components of () and h'(t)
are displayed on the left and top margins. The grid is
drawn at the positions where edges E(i) and E’(j) exist.
The beginning positions of the GPVs are given and the
matching starts from the top-left corner. The green paths
in figure 15 indicate the search of possible candidates,
and the blue path indicates the optimal correspondents.

Because the GPV provides a wide field of view along
the route, matching different GPVs by dynamic pro-
gramming can be done with a coarse-to-fine approach
from a very coarse level. The result is reliable com-
pared with the matching using local correlation without
considering any context of patterns in the GPVs.

5.2 Feature Matching by Attributes

Given two sequences of data, dynamic programming
can find the optimal correspondents between them. The
question of whether the results fit the real scenes in
the generalized panoramic views has to be checked fur-
ther. After the approximate positions of patterns are
obtained, detail structures wihin a small area deter-
mined by the coarse matching are easily matched if the
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Fig. 14. Matching of color projections of two GPVs provides a coarse correspondence of GPV from different moves. The local evaluation

of the optimal corresponding is displayed at the bottom.

coarse matching is correct. We match vertical lines by
comparing their attributes such as length, strength,
color on both sides, etc. [8].

Since the viewing distances of an object probably
changes due to the separation of the paths in different
moves, y-scale of 2D shapes in two GPVs may also be
inconsistent. However, we can adjust feature candidates
for matching to the same depth according to their ac-
quired 2'2D information, in order to check the consis-
tency in 2D size. Besides color, average edge strength,
etc. used in line base matching of GP'Vs, two additional
constraints available are described as follows:

Let Y1, ¥2 denote the Y coordinates of two end
points of an almost vertical line in 3D space. Their y
coordinates in a GPV are yl, y2 and the distance from
the camera is Z. We have

1 2
- Bt o
and therefore,
o ¥l
v 7] (30b)

Since Y1/¥2 is a constant while the camera axis is hori-
zontal, we have a second constraint:
C2: The ratio of heights of two end points yl/y2 for
an almost vertical line is invariant in GPVs of dif-
Sferent moves.

Let L = Y1 — Y2 denote the length of a vertical
line observed from distances Z and Z' in different
moves, and its projected lengths in the two GPVs are
[ and ['. The ratio I/’ gives another constraint.
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Fig. 15. Searching for the optimal path in dynamic programming space. Profiles of R(r) and R'(t") are displayed at the left and top margins.
The grid is drawn at edge positions. Green paths incidate the possible matching and the blue one indicates the optimal correspondence.

C3: For a vertical line, the lengths of its pro;ect:ons
in two GPVs have the relation:

1z

=7 (31a)
From (I18) we have the relation
! _URWR' + U) (31b)

I UR'(uR + U)
for a circular path. If the path is linear, it is even more
simple:

[ _u'lU

T Gle)

Thus, 2%D information is used in adjusting the
shape changes in y scale in matching the scenes viewed
from different moves. Two lines {(i), /'(j) are matched
if the most similar candidate of /(i) is /'(j), and vice
versa. Figure 16 displays the matched pairs of lines.

5.3 Matching Panoramic Views

Matching of two panoramic views obtained by swiveling
the camera at two locations is slightly different from
the matching described in section 5.1. First, no initial
position in the PVs where the dynamic programming
can start is given, and we have to consider all the possi-
ble combinations of features in both PVs as initial posi-
tion. Secondly, because of the circular structure of the

PVs, a stable results can be achieved through iterative
mathcing. We thus introduce a circular dynamic pro-
gramming algorithm, for matching two periodic pattern
sequences. After the color projections of the PVs are
matched, vertical lines are checked to verify the corre-
spondents in detailed parts. The method used is similar
to GPVs line matching except the constraint C3 is not
satisfied, since no range data can be extracted from pure
rotation.

If two positions where PVs are created are far away
from each other and complex objects are near the view
points at the same time, a distinct change in shape and
a serious occlusion in the PVs may occur. The failure
in matching of such PVs means that the robot is too
far away from the position the other PV has taken, and
the next step is to approach it.

5.4 Circular Dynamic Programming

A matching approach applicable to general periodic dis-
tributions is presented here. We describe it using the
panoramic view. Figure 17 depicts the basic idea of this
approach termed circular dynamic programming. Sup-
pose two edge sets E = [E(@), i = 1, ..., n] and
E'=[E'(j),j =1, ..., m] in two projections are ob-
tained from the corresponding panoramic views. The
optimal matching should draw a closed path in the
searching space of dynamic programming. The circular
programming works as follows.
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Fig. I7. Circular dynamic programming. (a) Intuitive illustration for matching two periodic PVs. (b) Searching for the optimal closed path
of corresponding.
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1. The search starts with all the possible combinations
[EM), E'(D],j =1, ..., min the edge sequences.

2. In order to save memory and computation, only a
selected set of nodes (say 50 nodes) is expanded,
and the expanded path is substituted by a sustained
path if its cumulative evaluation value is inferior.

3. After a path arrives at the end E’'(m) of the edge
set E', it continues to search from the beginning edge
E'(1) so that a circular search is realized.

4. When a search path arrives at the end E(n) of the
edge set E, it extends its search to the starting edge
E(1), which brings a reliable matching selection back
to the beginning where the combinations taken into
consideration in step 1 may be uncertain.

1.5m 6m

5. The searched paths expand iteratively across the
matching space until the optimal path by that step
forms a closed curve in one period.

The circular iterative matching modifies the optimal
path to pass through more correct positions (step 4),
which yields a stable result on the coarse level. Figure
18 displays four PVs taken at positions separated by
1.5m, 6 m, and 10 m and their matching results. Fig-
ure 19 (see color section, page 66) shows the searched
paths of possible matching and the obtained closed
curves representing the optimal matchings. Matched
results are also shown by lines drawn between the
panoramic views.

(@

(4)

(1)

10m

Fig. 18 Matching PVs at four positions by circular dynamic programming. Matching results 1-2, 2-3, 3-4, and 4-1 are depicted by lines

connecting them.
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6 Route Recognition
6.1 Route Pursuit

We have two kinds of route guidance for road following.
As the robot moves along a street, the road-following
process keeps the robot within the road and stops it
if there is a moving object ahead. The heading of the
robot is restricted within a small changeable range. The
destination is possibly invisible for the reason of being
occluded by objects intervening. The direction to move
can be given qualitatively as forward and turn left, right,
at a coming branch. The route-recognition task only
needs to notify the road-following process at specific
positions of stop or turn, by matching the current GPV
with the memorized GPV.

On the other hand, if the robot enters a wide area
such as a square, there are more movable spaces, free
headings, and good visibility. The robot can mark the
memorized destination in the new PV, by comparing
with the PV generated in the experienced move. Then,
the robot approaches it by adjusting its heading.
Moreover, it judges its own locations from time to time,
seeing whether it has arrived at the desired position
by comparing with the memorized PV at that position.
By matching the current PVs with the memorized PV
taken in its trial move instructed by a human, the robot
can figure out the spatial relation of two positions [1].

In the case of using the first approach, how accu-
rately the estimated position corresponds to the true
position depends mainly on the depth of a pattern that
notifies the break point in GPV, as well as on the
changeable extent of the robot heading along the road.
Generating GPVs from both sides of the road may im-
prove the accuracy of the robot position.

In the cognition phase, there is no partciular demand
on processing time, since the entire model establish-
ment can be done off-line after scenes are recorded.
In automatic navigation, however, a quick response to
the incoming scenes is necessary. Because of the small
amount of data in a GPV, realizing the real-time recog-
nition is promising.

Basically, the two-dimensional panoramic view is
obtained in a sequential way, by which we reduce the
processing of a whole frame to one line in each in-
stance. In our system, the panoramic view is generated
at the video rate. If a pipe-line processing is designed
for the data sequence from a slit, it will reach real-time
processing of panoramic view from gray level to line
segment. Further, parallel processing is well suitable

for the simultaneously generated panoramic views from
double slits to estimate 2 %D information, since they
can be generated independently.

Dynamic programming is thought to be time con-
suming; it is performed only on the color projection
and requires little time in each local path increment.
In the example shown in figure 14, dynamic program-
ming runs in 30 seconds (involving early processing) as
does the vertical-line matching. The route-recognition
task can inform the road-following task from time to
time without stopping the robot.

6.2 Dealing with Temporal Objects in Panoramic Views

Since the matching of panoramic views is implemented
by comparing patterns along a route, we have to con-
sider the influences from some kinds of partial changes
between the memorized panoramic view and the one
being created in the autonomous move. Temporary ob-
jects such as parked cars may appear in one panoramic
view but disappear in the others. Occlusion may also
bring inconsistency between the two panoramic views.
The robot should be able to neglect partial inconsistency
so that it can continue the correct matching.

If the scale of a changed part is small, one method
to detect the change can be to match the unchanged
parts from a very “coarse” level to a fine level, since
the wide field of panoramic view along the route allows
us to smooth it to a coarse level. Local changes will
not alter the correct mathcing of long GPVs on a coarse
level, because the dynamic programming evaluates the
optimal correspondents according to the context on the
whole range, instead of the value in a specific part.

If a changed part has a large scale, both DP and the
matching of line may fail. The robot will get lost in
this situation. It starts multiple matching processes
again at several suggested positions. If the process with
the minimum accumulative evaluation among them is
survived after a period of move and verification, the
robot can continue its way.

7 Conclusion

We have proposed a dynamically generated panoramic
representation for route recognition by an autonomous
mobile robot. The described issues are dynamic sensing,
visual memory, and route recognition in navigation.

The panoramic representation introduced is estab-
lished from continuous input images through a slit that
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is nonparallel to the optical flow in the image frame.
It displays the essential information about shape and
the time in a continuous 2D representation, with a min-
imum amount of data for a class of motion. The projec-
tion is expandable under the conditions of a moving
camera. It has the attractive property that it can display
a series of orientation-different or position-different
views on a single 2D dynamic projection image. Multi-
ple panoramic views can yield a 24D sketch by com-
puting the horizontal image velocity through the double
slits. Therefore, panoramic representation contains the
major information on the spatiotemporal volume. Since
the GPVs can be created simultaneously from the image
frame in real time, parallel processing can provide even
higher speed in feature extraction.

In route recognition, we studied the matching of two
GPVs (also PVs) generated from slightly different paths
or positions such that it can guide the road-following
process of a mobile robot. Since the panoramic view
covers a wide field of view and maintains two-
dimensional continuity as well, the matching can
achieve a reliable result using a coarse-to-fine method,
starting from a very coarse level. To solve the problem
of shape change due to different paths of view, we
employ the 2'4D information in matching structures.
The panoramic view can be acquired in real time; the
matching allows the robot to speed up to 5 km/h in
autonomous tracking of the routes, and perhaps even
more for routes having simple and distant scenes.
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