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Abstract Quantum computing is a rapidly growing field of computing that lever-
ages the principles of quantum mechanics to significantly speed up computations
that are beyond the capabilities of classical computing. This type of computing can
revolutionize the field of trustworthy artificial intelligence, where decision-making
is data-driven, complex, and time-consuming. Different trust-based AI systems have
been proposed for different AI applications. In this paper, we have reviewed differ-
ent trust-based AI systems and summarized their alternative quantum algorithms.
This review provides an overview of quantum algorithms for three trust-based AI
applications: fake user detection in social networks, medical diagnostic system, and
finding the shortest path used in social network trust aggregation.

1 Introduction

Quantum Computing is the field that uses quantum mechanical phenomena such as
superposition and entanglement to perform operations on data much more efficiently
than classical computing. It is the intersection of physics, mathematics, and com-
puter science. Quantum computing can perform many computations simultaneously.
This computing technology is based on qubits, which can exist in multiple states si-
multaneously. It provides several advantages over the classical computing methods
because it drastically reduces the execution time and energy consumption [37].
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Quantum computing is an innovative and life-changing technology. Recently,
Google has been investing billions of dollars in building its quantum computer by
2029 [1]. IBM and Microsoft are also working on providing quantum computing
benefits to customers [25]. This technology can solve complex problems that are
difficult to solve using classical computing. Inspired by the help of quantum com-
puting, in this paper, we have reviewed the quantum algorithms for some of the
real-world trust-based artificial intelligence applications that are generally time-
consuming using classical algorithms. The trust-based AI applications are widely
used in our day-to-day lives. It is essential to make these applications safe, reliable,
and trustworthy [16] [20] by integrating AI applications with trust assessment tech-
niques [31, 33]. Different researchers have proposed trust-based methods to create
various AI applications trustworthy. Some researchers proposed a trust framework
for AI applications in Food, Energy, and Water sectors [38, 39, 40, 41, 42, 43], some
proposed for fake user detection [19][30], and some suggested for medical diagnos-
tics systems [18][17]. So, in this review, we have discussed the quantum alternatives
of some widely used algorithms for trust-based AI systems.

This paper is organized as follows. Section 2 presents the background of quantum
computing. Section 3 reviews the quantum algorithms for widely used trust-based
AI applications. And in Section 4, we conclude the paper.

2 Background

Quantum Computing is a new paradigm that leverages the concept of quantum me-
chanics to process information differently from classical computing approaches.
Quantum mechanics explains the behavior of the particles on the quantum level, i.e.,
sub-atomic and atomic levels [35]. This type of computing method is used to solve
complex problems which are challenging to solve using traditional approaches. A
quantum computer consists of various components, including:

• Qubit: Qubit is the building block of quantum computers. It is the fundamental
information-carrying unit. It is a quantum analog of classical bits and can exist
in multiple states simultaneously. More precisely, classical computers use binary
bits: 0s and 1s, whereas quantum computer uses 0s, 1s, and both a 0 and 1 si-
multaneously. The capability of having multiple states at the same time gives
quantum computers immense processing power.

• Superposition: Superposition is the ability of a qubit to exist in multiple states si-
multaneously. It refers to the linear combination of two quantum states. In quan-
tum computing, a qubit can exist as a superposition of two states( 0 and 1) and
can perform multiple computations simultaneously.

• Entanglement: Entanglement is the phenomenon in which two or more qubits
become correlated so that their states become dependent on each other. Quantum
entanglement enables qubits separated by large distances to interact with each
other instantaneously. This property type enables one to perform certain types of
computations more efficiently.
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• Quantum Gates: Quantum gates are basic building blocks for quantum circuits.
They are similar to logic gates used in classical computing. These gates operate
on qubits to manipulate their states to perform complex computations. These
gates perform operations like superposition, entanglement, and measurements.

• Quantum Memory: Quantum memory stores quantum information, which is
fragile and can be easily lost due to environmental disturbances. Several types
of quantum memory exist, including superconducting qubits, trapped ions, and
topological qubits.

• Quantum Algorithms: Quantum algorithms are a set of algorithms that take ad-
vantage of the unique properties of quantum computers to perform specific cal-
culations more efficiently than classical computers [1].

3 Review

This section provides a review of three trust-based AI applications, their widely used
classical algorithms, and the quantum alternative of those algorithms.

3.1 Fake User Detection in Social Networks

Social networks have become an integral part of people’s daily lives. However, with
the increased use of social networks also comes certain risks, such as the spread of
fake news, malicious content, and viruses by creating fake accounts [15]. It is es-
sential to detect these fake user accounts as soon as possible and take action to pre-
vent the spread of harmful content. Detecting fake user clusters in social networks
is challenging, as fake users can use various tactics to evade detection. However,
several methods can be used to detect fake user clusters in social networks. Some
researchers proposed analyzing user profiles and behavior to detect fake users [45].
Other researchers proposed methods that utilize the graphical properties of social
networks to detect fake users [6]. Another set of researchers uses trust information
between users to detect malicious and fake users [19][30].

Combining all these approaches for clustering social network graphs is an effec-
tive way to detect clusters of fake users in social networks. The traditional clustering
algorithms on large social network graphs are computationally expensive and time-
consuming. Quantum computers and quantum clustering algorithms provide expo-
nential speed-ups to the conventional clustering approaches. Following subsections
explain the traditional clustering algorithms and their quantum alternatives.
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3.1.1 Traditional DBSCAN Clustering Approach

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an un-
supervised machine learning method to find arbitrary shape clusters and clusters
with noise. This algorithm group together the points that are close to each other in
terms of distance and density [11]. The main idea behind this clustering technique
is that if a point is close to many points from a cluster, it belongs to that cluster.
It takes two parameters as input: epsilon and minPts. Epsilon is a distance thresh-
old that defines the radius of a neighborhood around each point, and minPts is the
minimum number of points to define a cluster. The algorithm starts by selecting the
random unvisited point, and its neighborhood is determined using epsilon. If the
neighborhood has at least minPts, cluster formation starts. The algorithm expands
recursively. In the next step, the algorithm chooses another point that has not been
visited in the previous step, and the process continues until all the points have been
visited [9].

The advantages of DBSCAN include its ability to find clusters of arbitrary shapes
and sizes, its tolerance for noise points, and its ability to handle datasets with vary-
ing densities. However, the algorithm can be sensitive to the choice of epsilon and
minPts, may not perform well on datasets with different local density clusters, and
is time-consuming.

3.1.2 Quantum DBSCAN Clustering Algorithm

Inspired by the advantages of quantum computing, [46] proposed a quantum Mu-
tual MinPts-nearest Neighbor Graph (MMNG) based DBSCAN algorithm. This al-
gorithm performs better on datasets with different low-density clusters and dramat-
ically increases speed compared to the traditional approach. The proposed algo-
rithm comprises two sub-algorithms: a Quantum mutual MinPts-nearest neighbor
graph algorithm and a quantum DBSCAN algorithm. The Quantum mutual MinPts-
nearest neighbor graph algorithm divides the dataset into subsets. And on each of
the generated subsets, the quantum DBSCAN algorithm is applied to obtain clusters
and noise set. Different subsets have different epsilon for this algorithm. In the quan-
tum DBSCAN algorithm, the distance calculation needed to determine the Epsilon
neighborhood is done using quantum search. The steps of the Quantum MMNG
DBSCAN algorithm are given below:

Algorithm 1 Quantum MMNG DBSCAN
Input: Dataset, minPts
Output: Cluster and noise set
Procedure:
Step 1: Divide the dataset into subsets using the quantum - MMNG algorithm [46].
Step 2: For every subset obtained in Step 1, calculate the epsilon and get clusters and noise using
the quantum DBSCAN algorithm [46].
Step 3: Return all the clusters and noise set.
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The complexity of the proposed algorithm is O(N
√

minPts∗n), where n is the
number of data points, and minPts is the minimum number of data points required
to define the cluster.

3.1.3 Louvain Community Detection Algorithm

Louvain algorithm is an unsupervised community detection algorithm used to de-
tect communities from large networks [7]. This algorithm does not require the user
input of community size or the number of communities before execution. The algo-
rithm comprises the modularity optimization phase and the community aggregation
phase [3]. In the modularity optimization phase, each node is assigned to its com-
munity, and the algorithm iteratively evaluates the modularity gain resulting from
merging nodes with its neighbors. Only the nodes that result in the highest modular-
ity gain will be moved to the community. In the second phase, communities detected
in the first phase are aggregated, and the first phase is repeated on this new network.
This process is repeated until no further modularity gain can be achieved. Figure 1
shows different social network communities detected by the Louvain algorithm in
detecting fake users [19].

Louvain algorithm has several advantages like speed, scalability, and flexibility,
making it suitable for detecting communities in large social network graphs [3]. The
quantum variant of this algorithm provides quantum speedups to the task of com-
munity detection in large complex networks [5]. The following section discusses the
quantum variant of the Louvain community detection algorithm.

3.1.4 Quantum Variant of Louvain Algorithm

The Quantum variant of the Louvain algorithm is the EdgeQLouvain. This algorithm
utilizes a single Grover search over an ample search space (the entire set of vertices)
rather than searching over vertices and their neighbors [5] to find a good move.
Given the input graph with directed edges (u,v), this algorithm searches for the
edge that will increase the modularity if u is moved to the neighboring community.
This version of the quantum Louvain algorithm has several advantages as it does not
need nested Grover search, making it much simplified and faster than other quantum
variants [5]. Given an edge set E of the graph that contains undirected edges, a
directed graph is obtained by replacing every undirected edge {u,v} with (u,v) and
(v,u), and on this directed graph, the algorithm as described below is applied.

This algorithm shows polynomial speedup as compared to the traditional Louvain
algorithm. The query complexity of this algorithm for every step k is O(1/

√
hk)

where hk is the fraction of the edges.
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Fig. 1 Communities detected by the Louvain algorithm for different
social networks. a) Facebook ego network. b) Karate friends network.
c) Fake user network 1 and d) Fake User Network 2

Algorithm 2 Edge Quantum Louvain Algorithm
Input: Graph edge set
Output: Cluster set
Procedure:
Step 1: Initially, assign every vertex to its community.
Step 2: Utilize the quantum algorithm QSearch [4] to search all over the edges(u,v) to find one that
yields a good move.
Step 3: Find the best neighboring community of u using the quantum maximum finding algo-
rithm [8].
Step 4: Repeat steps 2 and 3 until there is no modularity increase.
Step 5: Aggregate communities to make a new graph and repeat steps 2-4 until there is no more
change.

3.2 AI system for Medical Diagnostics

Artificial intelligence and machine learning systems have completely changed our
lives. Many high stake applications like medical diagnostics are widely adopting
these systems. With the vast amount of data and computing power available, these
algorithms have become very good at predicting diagnostic results and saving time
and money [36]. These algorithms are helping doctors with a cancer diagnosis by
analyzing the image dataset of old cancer cases by detecting, measuring, and ex-
ploring the tumor cells [18][17].

The widely used machine learning algorithms in medical diagnostics are classi-
fication algorithms. The classification algorithms are the supervised algorithms that
take training data as the input to predict the likelihood or probability of the new
data to belong into the predetermined categories. To speed up the classical machine
learning classification algorithms, quantum machine learning is introduced, inte-
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grating the quantum algorithms with the classification algorithms [2]. The follow-
ing subsection discusses the traditional classification algorithms and their quantum
alternatives.

3.2.1 Traditional Support Vector Machine

Support vector machine (SVM) is a supervised machine learning algorithm for clas-
sification and regression tasks. This algorithm is widely used in biological applica-
tions as it learns to assign labels by learning from examples [27]. SVM works by
finding the best possible boundary or hyperplane that distinctly classifies the data
points of different classes in the high dimensional space. This algorithm aims to
find a hyperplane that maximizes the margin, that is, the distance between the hy-
perplane and the closest data points from each class. This algorithm is helpful in
high-dimensional spaces as it uses kernel functions to transform the input data into
high-dimensional space where it is easier to find a separating hyperplane.

This algorithm has several advantages, including its robustness to the outliers
and effectiveness in cases where the number of samples is lesser than the number of
features. However, this algorithm can be computationally intensive and not suitable
for large data sets [44].

3.2.2 Quantum Support Vector Machine

The quantum support vector machine algorithm performs the least square-SVM us-
ing a quantum computer [29]. This quantum algorithm uses phase estimation and
a quantum matrix inversion algorithm to maximize the algorithm’s speed. Consid-
ering there are N data points (xi,yi): i = 1, 2.....N ), where xi is the feature vector,
and yi is the binary label of the data, the goal of the SVM is to find the hyper-
plane w.x+b = 0 that divides the data points into two categories. The quantum least
square SVM algorithm calculates the kernel matrix using the quantum random ac-
cess memory [10] and solves the linear equation using the quantum algorithm for
solving linear equations and then performs classification using the trained qubits.
Following are the steps of the quantum support vector machine algorithm.

Algorithm 3 Quantum Support Vector Machine
Input: Training Data and Test Data
Output: Classification: +1 or -1
Procedure:
Step 1: Calculate the kernel metrics using the quantum inner product algorithm [24].
Step 2: Solve the linear equation using the quantum algorithm for linear equations [10].
Step 3: Classify the test data using the training results, using a quantum algorithm [29].
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The complexity of the quantum SVM algorithm is O(logNM) as compared to
the traditional SVM, which has the complexity of O(M2(M +N)). Here N is the
N-dimensional feature vector, and M is the number of data points.

3.2.3 Traditional Logistic Regression

Logistic regression is a supervised machine learning algorithm widely used for clas-
sification tasks. This algorithm classifies observations into a discrete set of classes.
Logistic regression predicts the probability of an event occurring based on a set of
independent variables or predictors. The algorithm models the relationship between
the dependent variable and one or more independent variables using a logistic func-
tion, which produces an S-shaped curve [21]. This logistic function transforms the
linear combination of input variables and coefficients into a probability value of 0
and 1. The logistic regression algorithm minimizes the difference between the pre-
dicted probabilities and the actual output in the training data by finding the optimal
values for the coefficients.

Logistic regression is widely used in many fields, including healthcare, finance,
and social sciences. It has many advantages: it can handle categorical and contin-
uous variables as input features. However, this algorithm does not perform well if
there is a non-linear relationship between the input and output variables and is time-
consuming when applied to big datasets.

3.2.4 Quantum Logistic Regression

Logistic regression is an important algorithm used for classification tasks. But this
algorithm can be slow for large data sets as it involves a gradient descent method
at each iteration which is quite time-consuming. To overcome this, [23] proposed a
quantum logistic regression algorithm that implements the critical task of the gra-
dient descent at each iteration, making the algorithm exponentially faster than the
classical logistic regression. The quantum algorithm is divided into two steps: the
first is to generate the quantum state using the amplitude estimation [4], and the
second step is using the swap test [34] to obtain a gradient in the classical form.
To ensure the new data can be classified by this algorithm directly, it outputs the
model parameters in classical form. Following are the steps for the quantum logistic
regression algorithm.

The quantum logistic regression algorithm provides exponential speed compared
to the traditional algorithm. The complexity of this algorithm is O(polylogN) for
every iteration, where N is the number of data points.
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Algorithm 4 Quantum Logistic Regression
Input: Training Data and Test Data
Output: Classification: +1 or -1
Procedure:
Step 1: Initialize all parameters.
Step 2: Calculate the dependent variable.
Step 3: Calculate the cost function.
Step 4: Calculate the gradient of the cost function using a quantum algorithm that consists of
amplitude estimation [4] and swap test [34].
Step 5:Update all parameters.
Step 6: Repeat steps 2-5.

3.3 Finding Shortest Path

Shortest path algorithms are used to find the shortest path between points. Given a
graph, these algorithms find the shortest path from one point to another or from one
point to all other points [26]. These algorithms have many applications. In traffic
information systems, these algorithms are used to find the optimal path from one
point to another point. In networking, these algorithms are used in routing protocols
to find the optimal path to transmit data packets. These algorithms are also used
in social network analysis and autonomous vehicle route planning. For example,
the highest confidence path can be used to speed up calculations in stock market
prediction using Twitter trust networks [32].

To make the process of finding the shortest path faster, quantum algorithms for
finding the shortest path are proposed as they are capable of performing several
operations simultaneously [22]. The following subsections discuss the widely used
traditional shortest path algorithm and its quantum alternative.

3.3.1 Traditional Dijkstra Algorithm

Dijkstra algorithm is a popular algorithm for solving the single source shortest path
search in the weighted graphs with non-negative weights [13]. This algorithm finds
the shortest path from the source node to all other nodes. This algorithm is handy in
the traffic information system to find the shortest path between the current location
and the destination and also in modeling networks.

The algorithm keeps track of visited and non-visited nodes. Initially, it starts
with the source node, whose distance is zero. Then for each non-visited neighbor of
the current node, the algorithm calculates the distance from the source node to that
neighbor by using the weights of the edges connecting them. If the distance is less
than the current distance, it updates it. This process is repeated until all the nodes
have been visited [12]. This way, the algorithm finds the shortest path between the
source and any other node in the graph.
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3.3.2 Quantum Dijkstra Algorithm

Researchers [28] have proposed the quantum version of the Dijkstra algorithm that
utilizes the principles of quantum superposition and inference to find the shortest
path in the graph. This algorithm proves to be better in terms of time complexity
than the traditional Dijkstra algorithm. This algorithm utilizes the quantum search
algorithm and phase estimation to speed up the search operation. The following
steps explain the quantum Dijkstra algorithm:

Algorithm 5 Quantum Dijkstra Algorithm
Input:Set of nodes, source node.
Output: The shortest path from the source node to all the other nodes.
Procedure:
Step 1: Initialize the distance to the source node to zero, and all other nodes to infinity.
Step 2: Create a set of visited and unvisited nodes.
Step 3: While there are unvisited nodes:
Select the smallest distance unvisited neighbor and find the minimum distance path from the source
node to the neighbor using Grover’s algorithm [14] and quantum minimum searching algorithm [8].
Step 4: Output the best path from the source to all the nodes.

The complexity of this algorithm is O(
√

NMlog2N) as compared to the tradi-
tional Dijkstra algorithm, which has the complexity of O(M +NlogN). Here N is
the number of vertexes, and M is the number of edges.

4 Conclusion

Quantum computing provides several benefits as compared to classical computing.
Different researchers have proposed different quantum algorithms that offer signif-
icant benefits. However, there was a lack of mapping between the quantum algo-
rithms and the real-life applications. This review summarizes quantum algorithms
for trust-based AI applications for fake user detection, medical diagnostics, and find-
ing the shortest path in trust networks.
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