
Batch-Mode Active Learning for

Technology-Assisted Review*

Tanay Kumar Saha, Mohammad Al Hasan

Department of Computer Science

Indiana University Purdue University Indianapolis, IN

Email: {tksaha, alhasan}@cs.iupui.edu

Chandler Burgess, Md Ahsan Habib, Jeff Johnson

iControlESI®, 16479 N. Dallas Parkway

Addison, TX, 75001

Email: {cburgess, mhabib, jjohnson}@icontrolesi.com

Abstract—In recent years, technology-assisted review (TAR)
has become an increasingly important component of the docu-
ment review process in litigation discovery. This is fueled largely
by dramatic growth in data volumes that may be associated with
many matters and investigations. Potential review populations
frequently exceed several hundred thousands documents, and
document counts in the millions are not uncommon. Budgetary
and/or time constraints often make a once traditional linear
review of these populations impractical, if not impossible—which
made “predictive coding” the most discussed TAR approach in
recent years. A key challenge in any predictive coding approach
is striking the appropriate balance in training the system. The
goal is to minimize the time that Subject Matter Experts spend
in training the system, while making sure that they perform
enough training to achieve acceptable classification performance
over the entire review population. Recent research demonstrates
that Support Vector Machines (SVM) perform very well in
finding a compact, yet effective, training dataset in an iterative
fashion using batch-mode active learning. However, this research
is limited. Additionally, these efforts have not led to a principled
approach for determining the stabilization of the active learning
process. In this paper, we propose and compare several batch-
mode active learning methods which are integrated within SVM
learning algorithm. We also propose methods for determining the
stabilization of the active learning method. Experimental results
on a set of large-scale, real-life legal document collections validate
the superiority of our method over the existing methods for this
task.

I. INTRODUCTION

The sheer size of electronically stored documents, and

the cost, in money and time, of their review in connection

with litigation and regulatory proceedings drive the need for

technology-assisted review (TAR) and the development of

“predictive coding” software. In a traditional linear review, an

attorney who is expert in the subject matter trains a group of

contract attorneys or junior associates so that they can churn

through the documents for the weeks or months that it may

take to complete the review. This process is lengthy and inef-

ficient because a significant portion (generally a majority) of

the attorneys’ time is spent reviewing non-relevant documents.

The objective of predictive coding is to design a machine-

learning based system that labels documents as relevant or

non-relevant to a specific issue or issues, and hence, minimizes

the review-cost and time by maximizing the focus on the

*Mohammad Hasan’s research is supported by NSF CAREER Award: IIS-
1149851

relevant documents. The system still requires expert human

review, but it significantly reduces the time (and money)

required to complete the review process. Initially, predictive

coding software and processes were met with reluctance and

suspicion around their accuracy, result reproducibility, and

defensibility. In recent years, the courts have become more

supportive of predictive coding and often advocate for its

use in the legal discovery processes. In one specific and

frequently referenced case, Global Aerospace, Inc. vs. Landow

Aviation, L.P., the court agreed with the defendant that a

predictive coding methodology was appropriate, even though

that methodology was estimated to achieve 75% recall [1]. For

years to come, predictive coding, and TAR in general, will be

a mainstay in litigation-driven document review.

By definition, the document review task is akin to a

supervised classification task in machine learning—given a

huge collection of documents, the primary objective of pre-

dictive coding is to use a sub-collection of human-labeled

documents to build a classification model to discriminate the

remaining documents in the collection as relevant (also known

as, “responsive” in the legal domain) or non-relevant (non-

responsive). However, another key objective of predictive cod-

ing is to maximize the discovered relevant documents as mea-

sured by recall while minimizing the human labeling efforts

as measured by the number of documents which are labeled

by the attorneys. A principled machine learning approach

for fulfilling this objective is active learning, in which the

classification model is updated through an iterative process—

the prevailing learning model of an iteration is utilized for

selecting an unlabeled training instance to query its label, and

then the selected instance becomes part of the training set

of the subsequent iterations [2]–[4]. A more practical variant

of active learning is batch-mode active learning [5], which

extends the training set by adding a fixed-size batch of train-

ing instances instead of only one instance in each iteration.

Numerous research articles in the machine-learning domain

have shown that, for achieving a given performance, an active

learning approach requires a much smaller number of training

instances in comparison to its non-active variants, resulting in

reduced labeling effort. This is the reason batch-mode active

learning is becoming the most popular learning paradigm for

the document review task in the litigation discovery domain.

A significant challenge in predictive coding is the selec-

tion of a learning algorithm which works well for highly

imbalanced distributions of responsive and non-responsive

documents in a document collection. This is important because

in real-world document review populations, the number of

responsive documents is typically a very small percentage

(typically between 1 and 10%) of the total documents in

the collection. Recent publications on document review [6]

report SVM as a robust learning algorithm that works well

for highly imbalanced legal datasets. It is also one of the

best learning algorithms for large-scale text categorization.

Additionally, SVM provides easily computable metrics which

can be used for choosing a new batch of training instances

in a batch-mode active learning setup. However, in existing

machine learning literature, batch-mode active learning using

SVM has not received much attention. Also, large-scale studies

of the performance of batch-mode active learning on real-life

high-dimensional legal data is not currently available.

Another challenge which applies to active learning-based

document review is in identifying whether the learning model

has stabilized such that no further training is necessary. This

is important from the standpoint of real-world usability of

predictive coding. A premature learning model almost cer-

tainly requires the inclusion of an overly inflated portion of the

document population in order to achieve an acceptable level

of recall of relevant documents. On the other hand, excessive

training beyond stabilization wastes attorney time during the

training phase. So, a model stabilization criterion is required

for signaling the potential termination of the learning stage. To

the best of our knowledge, none of the existing publications

on batch-mode active learning have studied the stabilization

behavior of the models on real-world litigation discovery data.

Finally, the computation of labeling effort of active learning

in litigation-driven predictive coding is different than that of

other domains, which makes it challenging to use existing

active learning methodologies for predictive coding projects.

For instance, in many (but not all) real-world document review

projects, the attorney review team conducts a “second pass”

review, after the calibration and application of the model to the

entire population. During this additional review, the attorneys

examine each of the “predicted responsive” documents, prior

to any production of those documents to a receiving party.

Again, none of the existing publications on active learning

present the model efficiency considering the complex dual

phase labeling effort of the users.

In this paper, we propose two novel methods for batch-

mode active learning using SVM. The novelty of the proposed

methods is manifested in the way they choose the new batch

of unlabeled instances for extending the prevailing training

dataset. We compare the performance of the proposed methods

with the best of the existing methods by implementing them

in a commercial system which is deployed in iControlESI®’s

e-discovery platform, Recenseo®. For comparison, we use

multiple real-world large case datasets, which fall within the

category of big data in any reasonable categorization. Our ex-

periments over the deployed active learning system use a setup

that is identical to the setup implemented by iControlESI®, and

successfully utilized by the company’s clients. These experi-

ments validate that the active learning methods that we propose

in this publication achieve a higher recall than that of the

existing counterparts. We also study the stabilization behavior

of proposed batch-mode active learning methods on these real-

world discovery datasets and discuss our recommendation for

choosing the stabilization point of the learning model in a

deployed system. In addition, we present the performance

of the system considering the two-phase review effort of

attorneys. Finally, we provide an in-depth discussion of various

design choices that we have made in our deployed system

during different stages of the predictive coding process—

no such insight on real data is yet available in the existing

literature.

The remainder of this paper is organized as follows. In Sec-

tion II, we discuss related works. In Section III, we present the

proposed batch-mode active learning methodologies. Section

IV presents detailed experimental results. Finally, a discussion

of various design choices for commercial deployment of

predictive coding is given in Section V.

II. RELATED WORK

A. Active Learning

There are two paradigms of active learning, which differ

in the concept by which they choose a new instance to

label. They are (1) relevance feedback sampling [7] and (2)

uncertainty sampling [8]. Relevance feedback-based methods

use keyword search or random sampling for selecting the

initial set of responsive documents, and they build a learning

model that is updated iteratively after a fraction of the top-

scoring documents in each iteration are labeled as relevant.

The process stops after a sufficient number of documents are

coded as relevant. Due to the positive feedback in favor of

responsiveness, such methods yield high recall, but their learn-

ing models more often suffer from the self-fulfilling prophecy

and the performance of such methods depends strongly on

the initial batch of instances. On the other hand, uncertainty

sampling-based methods select the instance for which the

prevailing learning model is the most uncertain. Such a method

does not suffer from the problem of relevance feedback-based

methods because the decision to add an instance to the training

sample depends on an instance’s feature values rather than the

label, which is predicted by the existing learning model.

Within the uncertainty sampling-based methodologies, a

large number of uncertainty metrics have been proposed;

examples include entropy [9], smallest-margin [10], least

confidence [11], committee disagreement [12], and version

space reduction [2], [13]. Different metrics are a good fit

for different learning algorithms. For instance, the authors in

[11] use conditional random field as the learning method and

least confidence as the uncertainty metric for active learning,

whereas the authors in [2], [3] use SVM as the learning

algorithm with version space reduction as the uncertainty

metric. Tong et al. [3] prove that version space reduction

provides the optimal solution for active learning under some

optimality criterion. They further show that the distance of an

instance from the SVM hyperplane approximates the version

space reduction metric, and hence, the instance that is the

closest to the hyperplane should be chosen in an active learning

iteration. Batch-mode active learning methods that we propose

in this work use SVM as the learning algorithm, and distance

from the hyperplane as the uncertainty metric.

B. Batch-Mode Active Learning

Initial theoretical works on active learning were limited to

a batch size of one (one sample at a time) [2], [14], [15]. But,

due to practical consideration, it is unreasonable to retrain the

classifier at every iteration with only one additional training

sample. So, a larger batch size (typically between 20 to 100) is

considered in all real-life systems. The majority of the existing

works on batch-mode active learning simply apply the single-

instance uncertainty metric over the unlabeled instances and

choose a batch of k instances with the best metric values.

For instance, Tong et al. [3] proposes SVMactive, in which

they construct the batch with the set of instances that are the

closest to the hyperplane. Note that such a method is sub-

optimal because it chooses the batch instances by considering

the metric value of a single instance independently instead

of designing a metric for a group of instances. Brinker [5]

attempts to overcome the limitation by proposing an approach

that constructs a batch of new training examples by ensur-

ing that selected samples are nearest to the hyperplane and

also maximally diverse (through cosine angle) from all other

samples that are selected in the current batch. There are other

methods [13], [16], [17] that are based on Generalized Binary

Search [16] and submodular optimization [18]–[20]. But, they

are generally costly, and their applicability in the legal domain

where the dimension of the feature space is substantially large

(several million) is unpromising.

C. Active Learning Stopping Criteria

The objective of a stopping criterion is to determine when

an active learning based classification model reaches the point

of maximum effectiveness [8]. Designing such a criterion is

a difficult task. A number of heuristic methods have been

proposed for stopping active learning. The learning process

stops: (1) when all of the remaining unlabeled examples are

outside of margin of existing model’s hyperplane [14]; (2)

when the number of support vectors saturates [21], [22]; (3)

when the max confidence, min-error, overall uncertainty, or a

combination of these three reaches a certain threshold [23]–

[25]; (4) when the entropy of each selected sample or error

on prediction is less than a threshold [26]; and (5) when the

variance of the confidence score reaches the global peak [27].

In [28], the authors have shown that most of the stopping

methods tend to behave too conservatively (taking a large

number of samples) except inter-model Kappa agreement [29]

method, which although stops early, does not lose performance

in terms of F-measure. Subsequently, the authors of [30]

analyze how the F-measure changes if the Kappa agreement

between two models exceeds a certain threshold. For predictive

coding, we have been looking for methods that will stop early

-10.00

-6.00

-2.00

2.00

6.00

10.00

-5 -3 -1 1 3 5

Y

X

Fig. 1: Separating hyperplane and the margins for a linear

soft-margin SVM

without sacrificing performance. Kappa agreement [29] seems

quite suitable for our purpose as it measures the model stability

and gives us a reasonable stopping point. To the best of our

knowledge, we are the first to apply stopping criterion for

analyzing active learning models in the legal domain.

D. Predictive Coding in the Legal Domain

A number of studies [1], [31], [32], [32]–[34] have been

conducted to show the challenges and promises of “predictive

coding”. A study conducted by [34] shows that TAR methods

can be more effective and efficient than traditional e-discovery

practice, which typically consists of a keyword or Boolean

searching, followed by manual review of the search results.

According to [6], the TAR tools referred to as “predictive cod-

ing” in legal marketplace follow one of the three protocols: (1)

Simple Active Learning (“SAL”), (2) Simple Passive Learning

(“SPL”), and (3) Continuous Active Learning (“CAL”). Note

that SAL includes uncertainty sampling-based active learn-

ing methodologies, SPL covers non-active supervised learn-

ing methodologies, and CAL includes relevance sampling.

[6] simply compares CAL and SAL methodologies without

proposing any novel active learning method. Existing works on

the legal domain also discuss the need of stabilization metrics;

typically, some statistical evaluation metrics are proposed [35].

However, these are offline metrics that are not integrated

within the learning framework.

III. METHODS

Given a collection of n documents D = {Di}1≤i≤n, which

are potentially related to a legal issue, the objective of a review

task is to discover the responsive documents with the least

amount of effort from the expert attorneys. In TAR, this task

is modeled as a 2-class classification problem where each

document Di is represented as a tuple 〈xi, yi〉; xi is a d-

dimensional feature vector representation of document Di,

and yi ∈ {+1,−1} is a binary label denoting whether the

document Di is responsive (+1) or non-responsive (−1).
For the collection of documents, the feature vectors, xi’s can

be built using standard IR methodologies that convert each

document to a d-dimensional vector by considering it as a

bag of words/phrases and then selecting an appropriate weight

(such as tf-idf) for each word/phrase. On the other hand, yi
is initially unknown for all of the documents but an expert

attorney with the knowledge of the legal issue can review the

document Di and assign yi manually. For a dataset D, we

use the matrix XD to represent all of the feature vectors xi’s;

similarly, we use yD to represent all the labels, yi’s. TAR

methods use a supervised classification model to predict the

label of each document with the least amount of labeling effort

by the attorneys.

In this work, we use soft-margin SVM for the classification

task. SVM is a supervised classification algorithm which uses

a set of labeled data instances and learns a maximum-margin

separating hyperplane h(x) = wTx + b = 0 by solving a

quadratic optimization problem. w controls the orientation of

the hyperplane and b is the bias which fixes the offset of the

hyperplane in d dimensional space. Separating hyperplanes of

SVM are linear, but by using non-linear kernels, SVM can

also learn a non-linear hyperplane, if necessary. Hyperplane

h(x) splits the original d-dimensional space into two half-

spaces such that if a test instance xi falls on the positive side

of the hyperplane (i.e., h(xi) ≥ 0), xi is predicted as +1,

and otherwise, it is predicted as −1. In Figure 1, we show a

separating hyperplane obtained using a linear SVM; the solid

line represents the decision boundary and the dashed lines

represent the margin.

For batch-mode active learning using SVM, given an un-

labeled document-set D, and a batch size k, we uniformly

sample k instances from D to construct the first batch for

which attorneys provide the label. Using this as the training

data for SVM, we construct the initial hyperplane hc(x).
In every subsequent iteration of active learning, we use the

current hyperplane hc(x) to actively select a new batch of

unlabeled instances Bc. The instances of this batch become

part of the training data once their labels are obtained. Using

the extended training data, we update the current hyperplane.

The process continues until a stopping criterion is met. We

formally describe the active learning process in Algorithm 1.

In Line 1, we obtain the initial hyperplane hc using a randomly

selected size-k batch of training instances. The while loop in

Line 2-7 is one iteration of active learning where a new batch

of training instances is added and an updated hyperplane is

obtained using the extended training dataset.

A. Proposed Active Learning Methods

We propose two novel methods, namely Diversity Sampler

(DS) and Biased Probabilistic Sampler (BPS), for selecting a

batch of k documents at each iteration using the prevailing

SVM hyperplane, hc. Like the existing SVM-based active

learning methods, both DS and BPS use an uncertainty metric,

which selects the instances closest to the separating hyperplane

of SVM. But unlike existing works, we introduce the concept

of exploration and exploitation of reinforcement learning in

our methodologies, which we discuss in the following para-

graphs.

In an active learning setup, the existing hyperplane repre-

sents the current knowledge regarding the decision boundary

between the two classes. However, this hyperplane is obtained

by training over the existing training set Dc, and hence, it can

Algorithm 1: Batch Mode Active Learning Algorithm

using SVM

Input : D, unlabeled dataset; k, batch size

Output: Learned hypothesis, h

1 hc ← ObtainInitialHyperplane (D, k)

2 while Stopping Criteria not met do

3 Bc ← SelectABatch (D, hc, k)

4 yBc
← QueryLabels (Bc)

5 D ← D \ Bc
6 Dc ← Dc ∪ Bc
7 hc ← Train (Dc)

8 h ← hc

9 return h

be substantially different than the optimal hyperplane the entire

dataset D. Many of the existing active learning methods, such

as SVMactive, select a batch of k instances that are nearest

to the current hyperplane hc. Such an action is similar to the

concept of full exploitation as the selection of instances are

made entirely based on the existing knowledge of the environ-

ment. Such methods fail to shift the initial hyperplane towards

the ideal hyperplane because every iteration selects instances

that are closest to the prevailing hyperplane without any

exploration. Thus, they perform poorly if the initial hyperplane

is far-off from the ideal hyperplane. Specifically, for TAR

datasets that have very small prevalence (the proportion of

relevant documents is very small), a uniform random selection

at initialization most often returns a hyperplane which is far-

off from the optimal hyperplane. So, such methods perform

poorly on such datasets.

An alternative to full exploration can be a mix of exploration

and exploitation, where instances are not only selected by

their distance from the hyperplane, but also by a diversity

criterion. Based on our observations of a large number of

real-life TAR datasets, we found that many documents are

substantially similar to each other, so we enforce diversity

among the instances selected in a batch. Both DS and BPS

facilitate diversity, but they differ in the way they select an

instance—the selection of DS is deterministic, whereas the

selection of BPS is probabilistic. For the DS method, we

first sort all of the available documents in a non-decreasing

order of their distance from the current hyperplane hc and

filter all of the documents (we do not select them in the

current batch) that are similar to the last instance selected

in the current batch. For BPS, we construct a probability

vector and use it to select a document in inverse proportion to

its distance from the current hyperplane. Using probabilistic

selection, BPS uses an idea that is similar to the concept of

the randomized weighted majority (RWM) algorithm [36] used

for no-regret online learning. Considering the documents in

increasing order of their distance from the hyperplane ensures

exploitation, and filtering similar documents thus enables the

selection of documents which otherwise would not have been

selected, ensuring exploration.

Algorithm 2: SelectABatch

Input : hc, current hyperplane; D, available instances;

k, batch size; and similarity threshold, t
Output: A batch of k documents to be included in

training

1 if Strategy is DS then

2 Bc ← EmptySet()

3 I ← ArgSort (Distance(hc,D), order = increase)
4 while Size (Bc) < k do

5 Insert(Bc, I[1])
6 S ← GetSimilar(I[1], I,D, t, similarity =

cosine)
7 I ← Remove(I, S)

8 else if Strategy is BPS then

9 w← 1.0/(Distance(hc,D)
2

10 w← Normalize(w)
11 I ← List(D)
12 while Size (Bc) < k do

13 c← Choose(I, prob = w, num = 1)
14 Insert(Bc, c)
15 S ← GetSimilar(c, I,D, t, similarity = cosine)
16 I ← Remove(I, S)
17 w← Normalize(w[I])

18 return Bc

In Algorithm 2, we formally describe both of our batch

selection algorithms. In addition to the current hyperplane hc

and available dataset D, both of these methods also have a

user-defined parameter t ∈ [0, 1], which denotes a cosine

similarity threshold. Lines 2-7 describe the DS method and

Lines 9-17 describe the BPS method. For DS, in Line 2, we

first sort the documents in increasing order based on their

absolute distance from the prevailing hyperplane hc and get

the sorted indices of the available documents, D in I . In Line

5, we choose the nearest one deterministically and insert it

into the current batch set, Bc. We then get the indices of

the documents that have cosine angle ≥ t with the currently

selected document, I[1] (including I[1]). We then remove

all of those indices from the I and repeat Lines 5, 6 and

7 until Bc = k. For the probabilistic sampler, distance is

calculated over the unlabeled documents. For some documents,

the distance value can be 0 (falling over the hyperplane);

in those cases, we set a minimum absolute distance as the

distance of those documents from the hyperplane. We need to

do this as in Line 9, we have an inverse operation. In Line 10,

we normalize the weight vector to convert it into probability.

In Line 13, we choose one document, c, using the weight, w,

calculated in Line 10. We then perform the same operations we

did in Lines 5, 6 and 7. Finally, we re-normalize the weight,

w as some of the documents have been removed from index

list, I in Line 16.

Note that our proposed method DS is somewhat similar to

Brinker’s method [5], but the latter has a trade-off parameter

that determines the importance between the distance from

hyperplane and diversification of the instances. Such a

parameter is hard to choose. We will show experimental

results which validate that both DS and BPS perform better

than Brinker’s method on real-life legal datasets.

Computational Complexity In this section, we analyze the

computational complexity of our proposed methods as de-

scribed in Algorithm 2. For DS, sorting in Line 3 takes

O(|D| log |D|) time after the O(|D|) distance calculation oper-

ation. For a small batch size, k (in our case, k = 64), the insert

operation takes a constant time, O(1). Line 6 takes O(k · |I|)
time. We actually do not remove any elements from I; we just

unset (not available for choosing) a flag for those documents,

and when we choose in Line 4, we keep a pointer to the first

document where the flag is set (available for choosing). Also,

when we get similar documents in Line 6, we do it in the

order of I . So, in Line 7, we just unset |S| flags which takes

O(|S|) time. Hence, the computational complexity of DS is

O(|D| log |D|) as O(k · |I|) is much less than O(|D| log |D|).
For the probabilistic sampler, initial distance computation and

normalization takes O(|D|) operations. The main cost incurs

from k “choose” operations which take O(k · |I| · log |I|) time.

B. Stopping Condition

The primary motivation for having a stopping condition is to

stop training as early as possible (training is costly). However,

we also want to confirm that the final hyperplane h is stable

(i.e., the prediction model will not change considerably if we

add more training documents). For tracking stability, we use

Cohen’s Kappa agreement [29], which is a metric used in

computational linguistics for measuring inter-coder agreement.

Let’s say that, after the batch update operation in Line 8

of Algorithm 1, the hyperplane is h and before the update,

it was h′. Kappa agreement measures how much these two

hyperplanes agree on their prediction of labels on a carefully

chosen test set. If h and h′ agree on a instances out of n
instances, the fraction a

n
represents the observed agreement,

Ao. However, the observed agreement needs to be scaled with

respect to the chance agreement, Ae, which measures the

agreement that is expected between h and h′ purely by chance.

For calculating Ae, Cohen’s Kappa computes the likelihood by

which the hyperplanes h and h′ agree with each other even if

they are independent. Mathematically,

Ae = P (+1|h)P (+1|h′) + P (−1|h)P (−1|h′)

where P (+1|h) is the probability that hyperplane h labels

an instance as being +1, which is estimated based on the

proportion of observed instances that h labels as +1. Similarly,

the proportion of observed instances that h labels as −1
provides P (−1|h). The same pair of expressions can also

be obtained for h′ and can be used in the above equation

to measure Ae. Once we have Ao and Ae, Cohen’s Kappa, κ

is computed as follows:

κ =
Ao −Ae

1−Ae

(1)

The value Ao − Ae quantifies the agreement between h and

h′ that is found beyond chance which is normalized by the

maximum possible quantity for this value (1 − Ae). Even

though the ratio in the range [0.8, 1.0] is considered good,

we want a much stronger guarantee for a legal dataset. For all

datasets, we stop training when κ reaches ≥ 0.991 for several

consecutive iterations.

IV. EXPERIMENTS

We implement our proposed methods, Diversity Sampler

(DS) and Biased Probabilistic Sampler (BPS) in a commer-

cial system which is deployed in iControlESI®’s e-discovery

platform, Recenseo®. Under the same platform, we also

implement two of the existing methods, SVMactive [3] and

Brinker [5]. For SVM, we use LibLinear, an open-source

linear SVM implementation which is well-known for its good

performance with large-scale text classification. We perform

a set of experiments for evaluating the performance of the

proposed methods, DS and BPS, on a number of legal system

datasets and publicly available datasets. Experimental results

also include comparison between the proposed methods with

SVMactive and Brinker’s method. Our method has only one

user-defined parameter and that is a similarity threshold value.

Our experiments on a large number of datasets show that

a reasonable value for similarity is between 0.50 and 0.95,

and within this range, the performance of the model differs

only marginally. For all of our experiments, we fix this value

to be 0.85. Brinker’s method also has a parameter which

is the relative importance between hyperplane distance and

diversity; we use 0.85 for this parameter also. We run all of the

experiments on a computer with a quad-core Intel XEON E5-

2665, 2.4Ghz processor running CentOS 6.6 operating system.

For the largest dataset that we use, the time to run each

iteration of batch-mode active learning is about 1 minute for

SVMactive, and approximately 5 minutes for the remaining

three methods.

A. Datasets

We use seven matters for our experiments. For each of

these matters, we present the statistics of the corresponding

dataset in Table I. For each matter, we partition the dataset into

Train and Test; the active learning is performed over the Train

partition, and the Test partition is only used for evaluation.

The first two matters, ACQ and MONEY-FX, are from the

publicly available Reuters Dataset1. This dataset has a total of

21, 578 documents. Matters D1-D4 correspond to documents

that a review team examined for responsiveness in two distinct

product liability lawsuits. The team consisted of approximately

50 attorneys, and they conducted the review in a traditional

linear fashion over the course of several months, in 2013 and

1http://archive.ics.uci.edu/ml/machine-learning-databases/
reuters21578-mld/reuters21578.tar.gz

2014. The reviewers designated each document as responsive

to lawsuit 1 only (D1), lawsuit 2 only (D2), lawsuit 3 only (D3)

and lawsuit 1, 2, and 3 (D4). There are 788, 875 documents

in D1-D4, after filtering out files without extractable text.

Matter C comes from another dataset of 366, 999 documents

which was reviewed by 30 attorneys for a particular lawsuit.

This dataset has a higher prevalence (25.98%) than the other

datasets because we ran a keyword search on the documents

and filtered out a larger number of non-responsive documents

(initially, the prevalence was around 3%). From Table I, it is

evident that our collection is rich in terms of prevalences—we

have a collection with low (1.20), medium (6.20, 11.24) and

high prevalence (25.98) scores. Finally, the prevalence score

for test documents reveals that they are a true representative

of the training documents.

B. Performance Metrics

We use recall for measuring an algorithm’s performance

because this is used in real-life TAR tasks in the legal domain.

Note that recall is computed over the held-back test dataset

using the final model, which is learned using active learning.

If on a test dataset, Rp is the number of documents that

are marked as responsive by a prediction method and Rt is

the number of true responsive documents, recall is defined as
Rp

Rt
. However, recall does not provide any indication of the

attorneys’ effort for labeling the train dataset. To determine

this, a different approach is used, which we discuss below.

In active learning-based training in the legal domain, there

are two phases of review by the attorneys. The first phase

goes along with the active learning process, in which attorneys

provide feedback on the batches of documents that are selected

by the active selection strategy. However, when the model

stabilizes and the final model is obtained, the “Second Pass”

review of the remaining part of the training data (which has

not been used for training the model) begins. Let’s call this

set of instances Dr. To minimize reviewers’ efforts, the goal

of the second pass is to choose a small subset of documents

from Dr, of which the majority will be responsive. For this,

the documents in Dr are ranked based on their likelihood

to be responsive. When using linear SVM, this ranking can

easily be done by finding the signed distance of a document

from the separating hyperplane returned by the final model.

The more positive the distance, the more likely it is that the

document is responsive. So, the documents in Dr are sorted

in the non-increasing order of their signed distance, and a

fraction of documents from the beginning of this sorted list are

considered for the second pass review. The yield curve shows

the relationship between recall and the minimum fraction of

documents that must be reviewed to achieve that recall value.

The steeper the yield curve, the better the model, and the

fewer number of documents are needed for the second pass

review. Also note that, in real-life TAR, yield curve is used

to determine the required bias of the classifier for obtaining a

desired recall metric (aka model calibration). We will also use

yield curve to show the reviewers’ efforts using our proposed

model.

TABLE I: Dataset Statistics

Train Documents Test Documents

Matter Total no. of features Total Positive Prevalence (%) Total Positive Prevalence (%)

ACQ
∼ 41k 14, 668

1650 11.24
6, 910

798 11.54

MONEY-FX 539 3.67 262 3.70

C ∼ 2.6 millions 358, 903 93, 256 25.98 8, 096 2, 094 25.88

D1

∼ 6.7 millions 772, 491

14, 726 1.20

16, 384

364 2.22

D2 48, 355 6.20 1, 142 6.97

D3 95, 857 12.40 2, 199 13.42

D4 158, 938 20.75 3, 284 20.04

0.07

0.20

0.32

0.43

0.55

 100 1280 2460 3640 4820

R
e

c
a

ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(a) Recall (D1)

0.06

0.12

0.19

0.26

0.32

 100 1280 2460 3640 4820

R
e

c
a

ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(b) Recall (D2)

0.11

0.19

0.27

0.35

0.42

 100 1280 2460 3640 4820

R
e

c
a

ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(c) Recall (D3)

0.18

0.24

0.30

0.35

0.41

 100 1280 2460 3640 4820

R
e

c
a

ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(d) Recall (D4)

Fig. 2: Classification assessment results for Matters D1-D4

(Batch size = 64)

C. Performance Comparison of DS and BPS with the Existing

Methods

For each of the matters in this experiment, we train four

distinct linear SVM models using the following four active

learning methods: DS, BPS, SVMactive, and Brinker. We

compare the performance of these methods by tracking the

recall of their trained model over test data across all training

stage iterations until the model stabilizes. In Figures 2 and 3,

we show seven plots, one for each of the matters. In each plot,

we show the number of training instances along the x-axis of

the plot, and the recall value along the y-axis. Within each

plot there are 4 curves, one for each of the active learning

methods. The method for which the recall value is the highest

for a given number of training instances is the best.

As we observe from these plots, for all of the methods

and all of the datasets, as we increase the training data, the

recall of the model improves, which is expected. For most

datasets, BPS has a higher recall than the remaining three

methods at all stages of training. One exception is the ACQ

dataset (Figure 3 (b)) for which the DS is the best during the

initial part of the training but as the model stabilizes, BPS

comes back to the best position and retains that position by a

good margin from the remaining methods. Another exception

is the D4 dataset, for which both BPS and DS have the best

performance with a marginally higher recall for DS. Overall,

DS is the second best method, and its performance is almost

the same as BPS for the D2, D3, and D4 datasets. Both our

proposed methods have a higher slope in their curves at the

beginning part of the training. This proves their ability on

selecting good instances early when the prevailing hyperplane

may not be close to the ideal one. Except for the D1 dataset,

Brinker’s method generally performed the worst for all our

proprietary datasets. For some datasets (D3, D4, and C), the

performance of Brinker’s method is worse than all of the our

proposed methods by a good margin across the entire training

period. The performance of SVMactive is somewhat between

Brinker and our proposed methods. In summary, the plots

in these figures clearly demonstrate that our active learning

methods are substantially superior to the existing methods.

D. Yield Curve Results on BPS

We also study the yield curves for both of our DS and BPS

methods across all the datasets. But, due to space limitations,

in Figure 4, we show these curves only for the BPS method for

six datasets. The trend is similar for the remaining dataset and

also for the DS method. Remember that the yield curve is built

from the ranking of unused training data obtained from the

stabilized model; and using the yield curve, we can determine

the percentage of documents that is required for the second

pass review for achieving a specific recall value for a particular

dataset. For all of our experiments, we use κ = 0.991 for

deciding the stabilization of the model. For all of the yield

curves in Figure 4, we show along x-axis, the percentage

of remaining training documents as are considered from the

rank order built by the final model; and along the y-axis, we

show the corresponding recall. Similar to an ROC curve, the

steeper the curve, the better the performance. Also, as we

consider all of the documents, the recall value becomes 1.0.

So, what is interesting is to see the percentage of documents

that the attorneys need to review for achieving an acceptable

recall in real life (usually 0.75). As we can see, for the least

prevalent dataset (D1), the second pass review only needs to

consider 3.38% of the documents for achieving 0.75 recall,

which is a 96.62% savings in terms of attorney effort. For

datasets that have high prevalence, these values are naturally

larger; for instance, for dataset D2-D4, 0.75 recall is reached

by reviewing roughly one-third of the documents, resulting in

0.26

0.31

0.35

0.40

0.45

 100 2080 4060 6040 8020

R
e
c
a
ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(a) Recall (C)

0.70

0.73

0.76

0.79

 700 1100 1500 1900

R
e
c
a
ll

Number of training documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(b) Recall (ACQ)

0.69

0.72

0.75

 800 1200 1600 2000

R
e
c
a
ll

Number of training Documents

Brinker[0.85]
BPS[0.85]

DS[0.85]
SVMActive

(c) Recall (MONEY-FX)

Fig. 3: Classification assessment results for C, ACQ, and MONEX-FX matters (Batch size = 64)

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

O
b
ta

in
e
d

%Documents for second pass review

 6

 11

 16

 21

 26

 400 4400 8400 12400

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(a) Yield (D1)

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

o
b
ta

in
e
d

%Documents for second pass review

 36

 41

 46

 51

 400 4400 8400 12400

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(b) Yield (D2)

0.00

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

o
b
ta

in
e
d

%Documents for second pass review

 36

 41

 46

 400 4400 8400 12400

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(c) Yield (D3)

0.00

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

o
b
ta

in
e
d

%Documents for second pass review

 41

 46

 51

 56

 61

 400 4400 8400 12400

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(d) Yield (D4)

0.00

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

o
b
ta

in
e
d

%Documents for second pass review

48.00

51.00

54.00

57.00

60.00

 400 9400 18400 27400

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(e) Yield (C)

0.20

0.40

0.60

0.80

1.00

 0 20 40 60 80 100

R
e
c
a
ll

o
b
ta

in
e
d

%Documents for second pass review

 11

 12

 13

 400 800 1200 1600

S
e
c
o
n
d
 p

a
s
s
 %

D
o
c
s

Number of training documents

(f) Yield (ACQ)

Fig. 4: Yield curve

TABLE II: Statistics of Review to Achieve 75% Recall

Matter %Docs to review %Docs used
to achieve 75% Recall for training

ACQ 10.89 12.66
MONEY-FX 4.51 14.84

C 46.30 8.62

D1 3.38 1.76
D2 33.40 1.80
D3 33.40 1.71
D4 36.76 1.73

a 67% savings.

In the inset of each of the plots in Figure 4, we show how the

number of training documents improves the learning model,

which in turn decreases the percentage of documents that are

needed for achieving 75% recall in second pass review. The

downward trend in the inset plots confirms that as the learning

progresses and the Kappa value stabilizes, the percentage

of documents for second pass review decreases for all the

datasets.

In table II, we summarize the percentage of documents

that are needed to achieve 75% recall for the second pass

review. We also show the percentage of documents that are

used for training the model when it is stabilized. These are

the documents for which attorneys provide labels. For matter

D1, only 5% of the documents need to be reviewed (95%

savings), but for matter C, this value is around 55% (45%

savings). The reason for the higher value in matter C is due to

the high prevalence of matter C (which is 26%). Note that, for

TAR tasks, attorneys are expected to review all of the relevant

documents, so for matter C, they are required to review 26%

of the documents, but using our model, they need to review

55% of the documents to yield a 0.473 precision, which is

considered excellent in the TAR domain.

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 400 4400 8400 12400
0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74
C

o
h

e
n

’s
 K

a
p

p
a

F
1

-S
c
o

re

Number of training docs

(a) Cohen’s Kappa (D1)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 400 4400 8400 12400
0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

C
o

h
e

n
’s

 K
a

p
p

a

F
1

-S
c
o

re

Number of training documents

(b) Cohen’s Kappa (D2)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 400 4400 8400 12400
0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

C
o

h
e

n
’s

 K
a

p
p

a

F
1

-S
c
o

re

Number of training documents

(c) Cohen’s Kappa (D3)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 400 4400 8400 12400
0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

C
o

h
e

n
’s

 K
a

p
p

a

F
1

-S
c
o

re

Number of training documents

(d) Cohen’s Kappa (D4)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 400 9400 18400 27400
0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

C
o

h
e

n
’s

 K
a

p
p

a

F
1

-S
c
o

re

Number of training documents

(e) Cohen’s Kappa (C)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 100 500 900 1300 1700
0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

C
o

h
e

n
’s

 K
a

p
p

a

F
1

-S
c
o

re

Number of training documents

(f) Cohen’s Kappa (ACQ)

Fig. 5: Stabilization assessment results

E. Stabilization Behavior Study on BPS

In this experiment, we show that Cohen Kappa (κ) is an

excellent metric for determining the stabilization point of an

active learning method. Again, we show results for the BPS

dataset only, as the results for the DS method are almost

identical. In Figure 5, each plot shows two curves; one shows

the relationship between the Kappa value and the number

of training documents, and the other shows the relationship

between the F1-score (harmonic mean of precision and recall)

of the model and the number of training documents. For all

of the datasets, both the Kappa value and the F1-score of the

model increase as we increase the number of training samples.

However, as we can see in Figure 5, when the Kappa value

converges (the curve becomes horizontal), the F1-score also

becomes horizontal indicating the model’s stabilization. In all

previous experiments, we used recall metric, but for tracking

stabilization, we use the F1-score because the recall metric in

isolation cannot indicate model stabilization. This is due to

the fact that a training model can always improve its recall

by sacrificing the precision, and this can be done simply by

biasing the hyperplane. The F1-score considers both precision

and recall together and hence, it is a neutral metric that can

be used for the model stabilization purposes. For our entire

study, we use a Kappa value of 0.991 for deciding model

stabilization.

V. DISCUSSION AND LESSON LEARNED

Choice of Learning Algorithm. As mentioned previously,

existing research has shown SVM to be one of the best

methods for text classification. In addition to SVM, we have

experimented with a number of other algorithms including

Naive Bayes, Nearest Neighbor, Logistic Regression, Percep-

tron, and various ensemble approaches on real-life datasets.

In all cases, SVM performed better than, or at least as good

as, every other method attempted. SVM also easily lend itself

to active learning approaches, and is computationally efficient

even for very large numbers of features and examples.

Feature Selection and Representation. In most real-life legal

datasets, the document collection contains several difficulties

that impact the performance of any classification algorithm.

There are exact duplicate documents, near duplicate docu-

ments, OCR’ed documents with significant amounts of noisy

text, spreadsheets with significant numerical data, binary files,

etc. Without any preprocessing, these files cause computation

times and storage volumes that exceed acceptable levels. We

have found that it is absolutely necessary to clean the data

before the learning task to achieve the best performance. For

our task, first we have removed document types that contain

little or no usable text from the predictive coding collection,

and we classify documents from those types through other

means. Second, we have implemented several algorithms for

identifying and removing noisy tokens from the collection.

This includes identifying OCR errors and other noisy tokens

through a variety of heuristics, filtering stop words, and

filtering words that are uncommon in the collection.

Another significant challenge with real-life legal datasets

that is unaddressed in the existing literature is that document

collections are rarely fixed. Over the course of litigation,

new documents can be added to the collection and other

documents removed. However, existing literature assumes that

the document collection is fixed before the learning task

begins, and stays fixed throughout. This has major implications

on the selected feature representation. Specifically, any term

weighting scheme with a global weighting component (TF-

IDF, for example) could result in feature vectors changing

over the course of the learning task with unstudied effects

on the active learning process. So, global weighting scheme

should be avoided as much as possible. For a large collec-

tion of real-life litigation datasets, we at iControlESI® have

performed experiments with TF-IDF, LSA, LDA, and Log-

Entropy based feature weighting schemes and found them to

perform no better than the standard bag-of-words model. One

other potential feature selection scheme is the hashing trick,

which would be suitable since it has no global component,

but it was also found to perform worse than the bag-of-words

model.

VI. CONCLUSION

In this paper, we present two active learning-based methods

for “predictive coding” in the legal domain. Experimental

results show that both of our proposed methods achieve

better recall than the existing methods that are used in

TAR processes. We also show experimental results on the

stabilization behavior of our methods and discuss practical

recommendations for the various design choices.

REFERENCES

[1] D. W. Henry, “Predictive coding: Explanation and analysis of ju-
dicial impact and acceptance compared to established e-commerce
methodology,” http://www.dwhenry.com/files/Predictive%20Coding.pdf,
[Online;Accessed 23-June-2015].

[2] S. Tong and D. Koller, “Support vector machine active learning with
application to text classification,” vol. 2, 2001, pp. 45–66.

[3] S. Tong and E. Chang, “Support vector machine active learning for im-
age retrieval,” in Proceedings of the ninth ACM international conference

on Multimedia. ACM, 2001, pp. 107–118.
[4] S. Dasgupta, “Coarse sample complexity bounds for active learning,” in

NIPS, 2005, pp. 235–242.
[5] K. Brinker, “Incorporating diversity in active learning with support

vector machines,” in ICML, vol. 3, 2003, pp. 59–66.
[6] G. V. Cormack and M. R. Grossman, “Evaluation of machine-learning

protocols for technology-assisted review in electronic discovery,” in Pro-

ceedings of the 37th international ACM SIGIR conference on Research

& development in information retrieval. ACM, 2014, pp. 153–162.
[7] G. Salton and C. Buckley, “Improving retrieval performance by rele-

vance feedback,” Readings in information retrieval, vol. 24, no. 5, pp.
355–363, 1997.

[8] D. D. Lewis and W. A. Gale, “A sequential algorithm for training
text classifiers,” in Proceedings of the 17th annual international ACM

SIGIR conference on Research and development in information retrieval.
Springer-Verlag New York, Inc., 1994, pp. 3–12.

[9] I. Dagan and S. P. Engelson, “Committee-based sampling for training
probabilistic classifiers,” in Proceedings of the Twelfth International

Conference on Machine Learning, 1995, pp. 150–157.
[10] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden markov models

for information extraction,” in Advances in Intelligent Data Analysis.
Springer, 2001, pp. 309–318.

[11] A. Culotta and A. McCallum, “Reducing labeling effort for structured
prediction tasks,” in AAAI, 2005, pp. 746–751.

[12] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
in Proceedings of the fifth annual workshop on Computational learning

theory. ACM, 1992, pp. 287–294.
[13] R. Nowak, “Noisy generalized binary search,” in Advances in neural

information processing systems, 2009, pp. 1366–1374.

[14] G. Schohn and D. Cohn, “Less is more: Active learning with support
vector machines,” in ICML. Citeseer, 2000, pp. 839–846.

[15] M. K. Warmuth, J. Liao, G. Rätsch, M. Mathieson, S. Putta, and
C. Lemmen, “Active learning with support vector machines in the drug
discovery process,” Journal of Chemical Information and Computer

Sciences, vol. 43, no. 2, pp. 667–673, 2003.
[16] S. Dasgupta, “Analysis of a greedy active learning strategy,” in NIPS,

2004, pp. 337–344.
[17] Y. Chen and A. Krause, “Near-optimal batch mode active learning

and adaptive submodular optimization,” in Proceedings of The 30th

International Conference on Machine Learning, 2013, pp. 160–168.
[18] A. Guillory and J. A. Bilmes, “Active semi-supervised learning using

submodular functions,” in UAI, 2011, pp. 274–282.
[19] D. Golovin and A. Krause, “Adaptive submodularity: A new approach

to active learning and stochastic optimization.” in COLT, 2010, pp. 333–
345.

[20] A. Asadpour, H. Nazerzadeh, and A. Saberi, “Stochastic submodular
maximization,” in Internet and Network Economics. Springer, 2008,
pp. 477–489.

[21] S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border:
active learning in imbalanced data classification,” in Proc. of ACM Int.

Conf. on Knowledge Management, 2007, pp. 127–136.
[22] S. Ertekin, J. Huang, and C. L. Giles, “Active learning for class

imbalance problem,” in SIGIR, 2007, pp. 823–824.
[23] J. Zhu and E. H. Hovy, “Active learning for word sense disambiguation

with methods for addressing the class imbalance problem.” in EMNLP-

CoNLL, vol. 7, 2007, pp. 783–790.
[24] J. Z. H. Wang and E. Hovy, “Learning a stopping criterion for active

learning for word sense disambiguation and text classification,” in Third

International Joint Conf. on Natural Language Processing, 2008, p. 366.
[25] J. Zhu, H. Wang, and E. Hovy, “Multi-criteria-based strategy to stop

active learning for data annotation,” in Proceedings of the 22nd Interna-

tional Conference on Computational Linguistics-Volume 1. Association
for Computational Linguistics, 2008, pp. 1129–1136.

[26] F. Laws and H. Schätze, “Stopping criteria for active learning of named
entity recognition,” in Proceedings of the 22nd International Conference

on Computational Linguistics-Volume 1. Association for Computational
Linguistics, 2008, pp. 465–472.

[27] M. Ghayoomi, “Using variance as a stopping criterion for active learning
of frame assignment,” in Proceedings of the NAACL HLT 2010 Workshop

on Active Learning for Natural Language Processing. Association for
Computational Linguistics, 2010, pp. 1–9.

[28] M. Bloodgood and K. Vijay-Shanker, “A method for stopping active
learning based on stabilizing predictions and the need for user-adjustable
stopping,” in Proceedings of the Thirteenth Conference on Computa-

tional Natural Language Learning. Association for Computational
Linguistics, 2009, pp. 39–47.

[29] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.
[30] M. Bloodgood and J. Grothendieck, “Analysis of stopping active learning

based on stabilizing predictions,” arXiv preprint arXiv:1504.06329,
2015.

[31] H. L. Roitblat, A. Kershaw, and P. Oot, “Document categorization in
legal electronic discovery: computer classification vs. manual review,”
Journal of the American Society for Information Science and Technol-

ogy, vol. 61, no. 1, pp. 70–80, 2010.
[32] M. Gabriel, C. Paskach, and D. Sharpe, “The challenge and promise

of predictive coding for privilege,” in ICAIL 2013 DESI V Workshop,
2013.

[33] M. R. Grossman and G. V. Cormak, “Inconsistent responsiveness deter-
mination in document review: Difference of opinion or human error,”
Pace L. Rev., vol. 32, p. 267, 2012.

[34] M. R. Grossman and G. V. Cormack, “Technology-assisted review in
e-discovery can be more effective and more efficient than exhaustive
manual review,” Rich. JL & Tech., vol. 17, p. 1, 2010.

[35] J. Halskov and H. Takeda, “When to stop reviewing documents in edis-
covery cases: The lit i view quality monitor and endpoint detector,” in
Proc of the Fifth International Conference on Management of Emergent

Digital EcoSystems, ser. MEDES ’13, 2013, pp. 227–232.
[36] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”

Information and Computation, vol. 108, pp. 212–261, 1994.

