DDoS and IP Traceback

Dr. Arjan Durresi
Louisiana State University, Baton Rouge, LA
70803
durresi@csc.lsu.edu

Overview

- Distributed Denial of Service (DDoS)
- Proposed solutions
- Autonomous System (AS) based solution
- Conclusions
Security

- People can justifiably rely on computer-based systems to perform critical functions
 - national scale infrastructures: water, power, communication, transportation, ...
 - localized systems: cars, homes, workplaces, ...
- People can justifiably rely on systems processing sensitive information about them to conform to public policy
 - health, banking, libraries, e-commerce, government records, ...
- Without fear of sudden disruption by cyber attacks

Denial Of Service

- The goal of a denial of service attack is to deny legitimate users access to a particular resource.
- An incident is considered an attack if a malicious user intentionally disrupts service to a computer or network resource.
- Resource exhaustion
Resource Exhaustion

- Disk Space
- CPU Cycles
- Memory
- Network Bandwidth
- Application Resources
 - TCP Stack
 - Web Connections

What’s the Harm?

- Financial loss can be difficult to estimate
 - Lost business
 - Bad publicity and damaged reputation
- 2002 CSI/FBI Survey
 - 40% of reported attacks are DOS
 - Average cost per attack is >$1 million
- Distributed DOS attacks (February 2000)
 - Amazon, CNN, E-Trade, eBay, etc...
 - Estimated losses were “several millions to billions of dollars”
- DOS can also be used to cover-up “real” attacks
- Nations critical infrastructure is also at risk
Denial of Service Attacks

- Most involve either resource exhaustion or corruption of the operating system runtime environment.
- UDP bombing
- tcp SYN flooding
- ping of death
- smurf attack

Distributed Denial of Service Attacks (DDoS)

- Attacker logs into Master and signals slaves to launch an attack on a specific target address (victim).
- Slaves then respond by initiating TCP, UDP, ICMP or Smurf attack on victim.
Denial of Service in pervasive networks
- Power-draining attacks
- Bandwidth-usage attacks
- CPU-usage attack
Why are DOS attacks possible?

- IP employs an open architecture
 - No authentication of sender’s IP address
 - Easy to forge any address, hard to detect offender
 - IP traceback, ingress/egress filters (later)
- No resource regulation in the network
 - Employ QOS techniques to mitigate impact (later)

Security Mechanisms

- Normally, not a single silver bullet
- Develop multiple layers of defense
- Employ as many layers of defense as needed - risk, resource profiles
- Castle, moat, drawbridge, mountain-top lookout, perimeter wall, inner wall, ruler decoy etc.
- Firewall, resource managers, app. Level security, logging, antivirus, remote backups, egress filters...
Security Analogy

Two Security Philosophies

Super Protection – very expensive, could be broken

Prevention Power of punishment
DOS attacks

- All DOS attacks consume resources
 - Bandwidth in UDP floods
 - Processing power in CGI bin attacks
 - Memory in fragmentation attacks
- Can we detect and contain attacks if we kept good accounting of resources?

Resource Accounting

- Monitor network bandwidth, processor time and memory usage per process at server
- Regulate processes exceeding preset thresholds
- Problems: Hard to identify the process to whom resource usage needs to be charged
 - Interrupts, context-switches
 - A packet arrives at network interface
Ingress filtering

- Campus
- Internet
- Victims
- Core router
- Ingress router
- Egress router

DOS attacks

- Ingress filtering is not widely employed
 - Can be expensive in transit and backbone networks
- How to effectively trace back the source of the attack?
- If successful, may be able to throttle attack traffic at the network ingress
ICMP traceback (Bellovin, IETF)

- Generate ICMP packets with packet header, router and its neighbors ids
- Do this with low probability 1/20,000
- These ICMP packets can be used to trace the source
- More likely to get packets from routers closer to destination, rather than source

IP Traceback

What is IP Traceback?
Getting back to the attacker, by identifying the attack path.
IP Traceback

- Probabilistic Packet Marking (PPM)
 - No of attack packets required is 1000s
 - Difficult to handle DDoS attacks (too complex to construct attack path).
- ICMP Traceback or iTrace - Overhead
- Controlled Flooding - a form of DoS itself
- Hash-Based IP traceback
 - Less space needed and No eavesdropping
- IP Traceback with IPSec
 - Poor scalability
 - ISP need to update topology to all end users
 - End users need to know network topology

- Not practical to assume that all routers in the Internet will participate in marking scheme
- When some routers don’t participate in marking, not sure if the last router in the constructed path is the true origin
- To be protected against single attacker that insert false information into the path the marking probability should be more than 0.5
 - Very high number (thousands) of packet to be analyzed by the victim
IP traceback
(Savage...Sigcomm00)

- Exact Traceback
 - R_6, R_3, R_2, R_1
- Approximate Traceback
 - Valid path suffix
 - R_5, R_6, R_3, R_2, R_1

- Attacker can generate any packet
- Attackers may conspire
- Aware of the tracing mechanism
- Attackers send lots of packets
- Packets may be lost, reordered
- Routes are pretty stable
- Routers are memory, CPU limited
IP traceback - Node Append

- Attach each router’s IP address to the packet
 - Like IP record route option
- Every packet will have path info
- Too expensive
- Could lead to fragmentation problems

Node Sampling

- Reserve a node field
- Routers write their IP address with probability p
- Prob. Of receiving id from d hops
 - $p(1-p)^{d-1}$
- $p > 0.5$, robust against attacker spoofing
- Routers far away from victim don’t send many packets
 - $d=15$, $p=0.51$, expectation = 42,000 packets
Edge Sampling

- Encode edges of path
 - Rather than single nodes
- Employ three fields
 - Start, end, distance
- With probability p, write Router IP address in start, make distance = 0
- Else, (a) if start already marked, distance=0, put your id in end and
 - (b) increment distance

- Tree construction starting from victim (distance =0, 1,...)
- Time for convergence
 - furthest router: \(p(1-p)^{d-1} \)
- Can use any p, spoofed attacker packets distance field longer
- Robust against multiple attackers
 - Edges are different, linear complexity
- Takes many bits \(-32+32+8? = 72\)
Edge Sampling --encoding

- Use XOR of addresses
- R1, 0
- R1 XOR R2, 1
- R1 XOR R2 XOR R3, 2
- Uses roughly half the space

Edge Sampling—Fragment Sampling

- Address
- Hash(Address)
- BitInterleave
- Send k fragments into network
Fragment Sampling

- Can compress information into 16 bits
- Use IP fragment identifier space
- Expensive to compute
- Nor robust against large DDOS
Advanced Marking Scheme
Song & Perrig, Infocom01

AMS

- Use two hash functions \(h \) and \(h' \)
- Encode \(h(\text{start}) \) XOR \(h'(\text{end}) \)
- Use 11-bits for hash, 5bits for length
- If you know upstream routers, few choices for \(h(s) \), when we know \(h'(e) \)
- Tolerate multiple attackers
 - Upto 60
 - Main limitation: hash collisions

Figure 2: Encoding in Advanced Marking Scheme I
Use two sets of hash functions

Main intuition:
- Probability of collision with 11 bits $1/2^{11}$
- Probability of collision with m hashes of 11 bits $= 1/(2^{11})^m$
- Multiple hash functions reduce Collisions

Where did we see that before?
AMS-II

- Tries to work within the space of 11 bits
 - While identifying the hash function
- Easier than FSM
- Much more robust than FSM

FMS False positives
AMS & AMS-II

Figure 7: False Positives for Advanced Marking Scheme

Figure 8: False Positives for Advanced Marking Scheme II

FMS Path reconstruction time

Reconstruction Time (Seconds)

Number of Attackers

Fragment Marking Scheme
Traceback is an interesting idea
- Allows us to trace the origin of the attack
- Threat of Identification leads to reduction in attacks
- What about the viruses?
 - Innocent attackers
Autonomous System - Traceback

Autonomous System Boarder Router

Autonomous Systems - AS

- AS is a group of IP networks managed by one network operator
- AS - set of routers using the same external routing policy
- Number of AS - 14,000, number of hosts - 200M
- In 99.5% of cases, a packet passes less than AS before reaching destination
- Network Operators may not always like to disclose their network details
- AS number is 16 bits compared to IP address 32 bits (IPv6 - 128 bits)
Autonomous System Marking

- Marking by ASBR
- Marking scheme similar to node sampling scheme
- 16 bits for ASN and 3 bits for AS_distance
- A packet is marked only if it leaves the AS
- A packet is marked with a probability \(p \) and the distance is set to zero
- If the ASBR chose not to mark, it increments the distance field

Marking procedure at router \(R \) with AS Number \(R_{AS} \):

for each packet \(w \)

let \(x \) be a random number from \([0, 1)\)
if \(x < p \) then,
- write \(R_{AS} \) into \(w\.AS \)
- set \(w\.AS_distance = 0 \)
else
increment \(w\.AS_distance \)
Number of Marked Packets

- If $p = \frac{1}{d_{AS}}$ => 25 packets needed
- $d_{AS} = 7, p=0.51$ => 141 packets needed

Authenticated Marking Scheme

- We assume the presence of a symmetric key infrastructure within each AS
- Each ASBR that belongs to the AS or connected to the AS know the secret key K_i
- Use one-way hash chains to generate session keys
 - h_0, h_1, \ldots, h_n where $h_i = H(h_{i-1})$
 - Initially distribute h_0
 - Each ASBR computes the chain
 - Use the keys starting from the right to left
Authenticated AS Marking Algorithm

Marking procedure at router R with ASN R_{AS}:

- K_{AS} is the symmetric key of R_{AS}
- K'_{AS} is the symmetric key of the next AS in the path.

for each packet w

 Compute D(AS Marking, K_{AS})

 if (Redundancy Predicate is not fulfilled)

 Set AS Marking to $E($ASN || RP $,$ $K'_{AS})$

 else

 let x be a random number from $[0, 1)$

 if $x < p$ then,

 Set AS marking to $E($ASN || RP $,$ $K'_{AS})$

 else

 Set AS marking to E(AS Marking, K'_{AS})

Authenticated AS Traceback

- Victim obtains the AS symmetric key of the current session and computes AS marking
- Victim can reconstruct the path
- Victim can use the symmetric key to compute the keys of previous sessions but not any future sessions
 - A compromised victim doesn't affect the security of the mechanism
Summary

- Presented two schemes:
 - Autonomous System based Traceback
 - Authenticated Marking Scheme
- Only ASBR participate in marking
- Low marking overhead
- Enables to reconstruct the AS attack graph in real time
- Authenticated scheme prevents compromised routers from forging ASBR marking

Thank You!