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Abstract13

A hierarchical Bayesian classifier is trained at pixel scale with spectral data from14

the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) imagery. Its util-15

ity in detecting rare phases is demonstrated with new geologic discoveries near the Mars-16

2020 rover landing site. Akaganeite is found in sediments on the Jezero crater floor and17

in fluvial deposits at NE Syrtis. Jarosite and silica are found on the Jezero crater floor18

while chlorite-smectite and Al phyllosilicates are found in the Jezero crater walls. These19

detections point to a multi-stage, multi-chemistry history of water in Jezero crater and20

the surrounding region and provide new information for guiding the Mars-2020 rover’s21

landed exploration. In particular, the akaganeite, silica, and jarosite in the floor deposits22

suggest either a later episode of salty, Fe-rich waters that post-date Jezero delta or ground-23

water alteration of portions of the Jezero sedimentary sequence.24

1 Introduction25

Hyperspectral data collected by the Compact Reconnaissance Imaging Spectrom-26

eter for Mars (CRISM) aboard the Mars Reconnaissance Orbiter have proven instrumen-27

tal in the discovery of a broad array of aqueous minerals on the surface of Mars since28

2006 (Pelkey et al., 2007; Murchie, Mustard, et al., 2009; Viviano-Beck et al., 2014). Al-29

though these data have revolutionized our understanding of the planet, existing geologic30

discoveries are mostly limited to common mineral phases that occur frequently and with31

relatively larger spatial extent. Secondary or accessory phases on Mars that occur in-32

frequently or at low abundances in only a few locales are important for a more complete33

and accurate interpretation of the geologic processes that formed these phases, which34

in turn is critical for resolving questions of Mars’s changing habitability. For example,35

specific minerals such as alunite and jarosite (acidic), serpentine (alkaline, reducing), anal-36

cime (alkaline, saline), prehnite (200 ◦C < temperature < 400 ◦C), and perhaps phases37

yet to be discovered, serve as direct environmental indicators of the geochemistry of wa-38

ters on the Mars surface. Moreover, the identification of rare phases, even in just a few39

pixels, enables characterization of the mineral assemblages within a geologic unit, which40

are critical for identifying the thermodynamic conditions and fluid composition during41

interactions of rocks with liquid water.42

Isolation and discovery of accessory mineral phases is challenging due to the sys-43

tematic artifacts, random noise, and other limitations of an aging instrument affecting44

more recently collected CRISM images. The most common spectral mineral-identification45

method involves finding the ratio of the average spectra from two regions along-track in46

the image, where the numerator is the spectrum from the area of interest and the de-47

nominator is the spectrum derived from a spectrally homogeneous bland region. Sum-48

mary parameters derived from key absorption bands are used to identify candidate re-49

gions for the numerator and denominator. Although summary parameters have been quite50

effective for detecting common phases with relatively larger spatial extent, distinctive51

absorption bands useful for detecting rare accessory phases cannot be reliably recovered52

by summary parameters due to two main reasons. First, rare phases span a limited num-53

ber of nearby but not necessarily contiguous pixels in an image, which makes spectral54

averaging less useful compared to common phases in eliminating random noise. Second,55

key absorption bands of rare secondary minerals can occur at wavelengths close to the56

key absorption bands of common phases in the image. The 6.55 nm increments between57

two channels in CRISM offer enough spectral resolution to differentiate between such58

primary and secondary phases in ideal conditions. However, considering the practical59

limitations of CRISM data and the occurrence of phases in mixtures, such a distinction60

may not be possible without exploiting the spectral data in its entirety and identifying61

less obvious spectral features characterizing these phases in a given locale.62
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As part of our ongoing efforts to implement machine learning methods to fully au-63

tomate mineral discovery in CRISM data, we have previously reported dozens of new64

jarosite and alunite detections across Mars (Dundar & Ehlmann, 2016; B. Ehlmann &65

Dundar, 2015) and have identified a previously unknown CRISM artifact that mimics66

the characteristics of real mineral absorption at 2.1 µm range that could have significant67

implications in the search for perchlorate (Leask et al., 2018). Here, we present techni-68

cal details of our hierarchical Bayesian model and demonstrate its utility by reporting69

new rare discoveries from the NE Syrtis area and Jezero crater. Jezero crater and the70

Syrtis are of high interest as regions where the Mars-2020 rover will conduct its in situ71

exploration and as some of the most dust-free and ancient areas where strata are well-72

exposed for study of Mars geologic history. Prior studies of Jezero crater and its water-73

shed have focused primarily on the Fe/Mg smectite clays and carbonates that make up74

deltaic and crater floor deposits (B. L. Ehlmann et al., 2008, 2009; Goudge et al., 2015).75

Here, we focus on identification of small, rare phases to inform the geologic history of76

the crater in both the crater floor lake sediments, wallrock of Jezero, and surrounding77

region. The region is a well-suited proving ground for the proposed Bayesian model be-78

cause of its mineral diversity, excellent image availability, and high relevance for Mars79

exploration.80

2 Methods81

2.1 Image datasets82

I/F data are used as the primary source of data in this study. I/F data are derived83

by dividing surface radiance by solar irradiance. Radiance data are only used for ruling84

out certain artifacts during verification process. Simple atmospheric and photometric85

corrections are applied to all images using CRISM Analysis Toolkit (Morgan et al., 2009;86

Murchie, Seelos, et al., 2009). Only spectral channels that cover the spectral region from87

1.0 to 2.6µm (248 channels) are used in this study.88

Geographically projected CRISM data were co-registered with high resolution Con-89

text Imager (CTX) (Malin et al., 2007) and HiRISE (McEwen et al., 2007) image data.90

The CTX global mosaic was used as the basemap for examination of morphology (Dickson91

et al., 2018), and standard pipelines for producing local digital elevation models were pro-92

duced using Caltechs Murray Laboratory pipeline, which utilizes the Ames stereo pipeline93

(Beyer et al., 2018). Our methods have been developed in multiple phases as described94

in the following sections.95

2.2 Creating a training library of spectral patterns by unsupervised learn-96

ing and visual classification97

Over fifty CRISM images from the Nili Fossae and Mawrth Vallis regions were pro-98

cessed by a nonparametric Bayesian clustering technique (Yerebakan et al., 2014). This99

method generates a few hundred spectra per image processed, which are visually inspected100

and classified to create a spectral training library. This unsupervised learning approach101

is not only very computational but also requires a tedious task of manually assigning ex-102

tracted spectra to classes. Nonetheless, this step is needed toward fully automating min-103

eral discovery. In the second phase, the training library collected in this phase is used104

to implement two models: a bland pixel scoring function for column-wise ratioing and105

a classifier model that operates on the ratioed data to render mineral classification. Both106

the scoring function and the classifier uses our two-layer Bayesian Gaussian mixture model.107

2.3 Two-layer Bayesian Gaussian Mixture Model108

Note that true distributions of spectral patterns in the training library are not known.
Different instances of the same pattern detected across different images exhibit varying
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spectral properties due to differences in atmospheric effects and viewing geometry as well
as inherent differences in surface material spectral properties. Our two-layer Gaussian
mixture model uses one mixture model for each spectral pattern in the lower layer. Herein,
a spectral pattern might represent a mineral phase, a known artifact, a bland pixel cat-
egory, a common mixed phase, or an unidentified pattern. The number of components
in a mixture model for a given pattern is determined by the number of images in which
that pattern occurs as the model introduces one Gaussian component for every image
the pattern is detected. For example, out of 330 images available in our current train-
ing library jarosite exists in 44 of them, which implies that there are 44 observed instances
of the jarosite pattern (“instance” refers to an occurrence in an image, which can be one
or several pixels). The model introduces a Gaussian component for each instance to spec-
trally model the jarosite pixels corresponding to that instance. Gaussian components cor-
responding to the same spectral pattern are regulated by a shared local prior and local
priors associated with each pattern are in turn modeled by a global prior. In this con-
text the local prior can be thought of as the estimate for the true distribution of the cor-
responding pattern and the global prior can be interpreted as a template for all viable
spectral patterns. This two-layer hierarchical model (illustrated in Figure 1) offers ex-
treme flexibility and robustness for modeling pattern distributions. The lower layer mod-
els spectral variations of the same pattern across images whereas the upper layer mod-
els spectral variations across patterns. More specifically, we use the following generative
model to fit spectral data available in our training library.

Data model: xijk ∼ N(µjk,Σk) (1)

Local prior: µjk ∼ N(µk,Σkκ
−1
1 ) (2)

Global prior: µk ∼ N(µ0,Σjκ
−1
0 ),Σk ∼W−1(Σ0,m) (3)

where k, j, and i are indices used to indicate true patterns, their observed instances, and110

individual pixels, respectively. W−1(Σ0,m) denotes the inverse Wishart distribution with111

scale matrix Σ0 and degrees of freedom m. This model assumes that pixels xijk are dis-112

tributed according to a Gaussian distribution with mean µjk and covariance matrix Σk.113

Each true pattern is characterized by the parameters µk and Σk. The parameter µ0 is114

the mean of the Gaussian prior defined over the mean vectors of true patterns, κ0 is a115

scaling constant that adjusts the dispersion of the centers of true patterns around µ0.116

A smaller value for κ0 suggests that pattern means are expected to be farther apart from117

each other whereas a larger value suggests they are expected to be closer. On the other118

hand, Σ0 and m dictate the expected shape of the pattern covariance matrices, as un-119

der the inverse Wishart distribution assumption the expected covariance is E(Σ|Σ0,m) =120

Σ0

m−d−1 , where d denotes the number of channels used. The minimum feasible value of121

m is equal to d+2, and the larger the m is the less individual covariance matrices will122

deviate from the expected shape. The κ1 is a scaling constant that adjusts the disper-123

sion of the means of observed pattern instances around the centers of their correspond-124

ing true patterns. A larger κ1 leads to smaller variations in instance means with respect125

to the means of their corresponding true pattern, suggesting small variations among ob-126

served instances of the pattern. On the other hand, a smaller κ1 dictates larger varia-127

tions among instances. In Bayesian statistics the likelihood of a pixel x originating from128

pattern k is obtained by evaluating the posterior predictive distribution (PPD) for pat-129

tern k. For our two-layer Gaussian mixture architecture PPDs are derived in the form130

of student-t distributions by integrating out unknown mean vectors and covariance ma-131

trices of the true pattern distributions and their observed instances. This directly links132

observed pattern data with the hyperparameters of the model (κ0,κ1,m,µ0, Σ0). Opti-133

mizing hyperparameters with pixel data from the training library encodes information134

about observed pattern variations into the model. Technical details of the derivation of135

PPD for the proposed two-layer GMM are described in the supplementary material.136

–4–



manuscript submitted to Geophysical Research Letters

2.4 Bland pixel scoring and ratioing137

To compute the likelihood of individual pixels originating from the bland pattern138

categories described in Section 2.2 an ensemble version of the model discussed in Sec-139

tion 2.3 is used. Multiple different submodels each with different subset of channels are140

included in the ensemble. Ensemble models are proven to offer better generalizability141

and are known to be more robust with respect to noise compared to a single model (Breiman,142

2001).143

These likelihood scores are then used to identify denominator regions during column-144

wise ratioing. For a given pixel the denominator is obtained as the average spectrum of145

a small number of pixels with the highest bland pixel scores sharing the same column146

as the given pixel but lies only within 2w row neighborhood of that pixel, where w de-147

fines the size of row neighborhood. For robust denominator-insensitive ratioing a range148

of w values are considered to obtain multiple denominators and their corresponding ra-149

tioed spectra are averaged to obtain a single ratioed spectrum for that pixel. Once all150

pixels in each I/F image are ratioed this way the ratioed data are used by the pattern151

classifier for pixel-scale classification.152

2.5 Automated pattern classification153

Ratioed I/F data are further processed using a cascaded set of one-dimensional me-154

dian filters with decreasing window sizes to gradually eliminate spikes of arbitrary heights155

(Liu et al., 2004). These ratioed and despiked data are used to train the two-layer Bayesian156

classifier. This training process involves estimating the parameters of the PPD correspond-157

ing to each pattern. Unlike bland pixel scoring, which uses only bland pattern categories,158

the pattern classifier is implemented with spectral data from all patterns available in the159

training library. An image is classified at the pixel-scale by evaluating the likelihood of160

each of its pixel originating from one of the patterns in the training library and then as-161

signing it to the pattern that maximizes this likelihood.162

2.6 Active machine learning163

The initial training library consisted of patterns detected from a limited number164

of CRISM images. To obtain a more representative training library, while classifying new165

images, an active learning scheme is adopted. After each image is classified all detected166

patterns are visually inspected to confirm automated detections and training library is167

updated accordingly. More specifically, if a new pattern is misclassified into one of the168

existing patterns a new pattern class is created for this pattern in the training library.169

If a new spectral variant of an existing pattern is detected, the training data for that pat-170

tern is augmented with pixels from the new variant. The classifier is retrained, i.e., PPDs171

are updated, every time the training data is updated. Using this active learning frame-172

work we processed over five hundred images. Our current spectral training library con-173

tains 160 patterns represented by over 400,000 spectra from 330 images.174

3 Results175

3.1 Diverse wallrock minerals at Jezero crater176

Mapping of wallrock previously revealed low-Ca pyroxenes (B. L. Ehlmann et al.,177

2008, 2009; Goudge et al., 2015). Here we show also Al phyllosilicates and Fe/Mg phyl-178

losilicates in the western wall of Jezero crater (Figure 2). The aluminum phyllosilicates179

are found on the western crater rim (FRT00005850, HRL000040FF) and the southern180

crater rim (FRT0001C558) at a similar elevation. The observed Al phyllosilicate spec-181

tra have an absorption centered between 2.19-2.20 µm as well as absorptions at 1.4 and182

1.9 µm. The slight asymmetry in many of the spectra suggests the presence of kaolin-183
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ite or another aluminum phase (Figure 2d). Fe/Mg phyllosilicate detections are uncom-184

mon in the walls (in contrast to other craters in the region (Ehlmann et al., 2009) but185

are best isolated right on the rim in FRT0005850 with 1.4, 1.9, and 2.3 µm absorptions.186

The long wavelength absorption is between 2.32-2.34 µm, longer than the Mg carbon-187

ates and Fe/Mg smectites that are common in Jezero sediments and basin floor deposits,188

and this location lacks a 2.5 µm absorption. The spectra are consistent with chlorite or189

mixed layer Fe/Mg smectite-chlorite phyllosilicates. Longer 2.32-2.34 µm absorptions are190

also found in some materials on the crater floor (e.g. in FRT0005C5E). These may be191

similar to the wall materials, mixed with Mg carbonates or may indicate Fe/Ca carbon-192

ates (Figure 2c).193

3.2 Silica and Jarosite at Jezero crater201

As also reported by (Tarnas et al., 2019), we find exposures of hydrated silica within202

the Jezero basin (Figure 2). A number of small exposures <500m2 are found scattered203

in the heavily degraded northern delta (FRT000047A3). A small exposure is also found204

on the southernmost lobe of the western delta (HRL000040FF, FRT00005C5E). The ex-205

posures have 1.4, 1.9, and 2.2 µm absorptions; the 2.2-µm absorption is substantially wider206

than in the Al-phyllosilicates (Figure 2b).207

In two images (HRL000040FF, FRT00005C5E) another exposure with an absorp-208

tion of similar width to the hydrated silica is found, but here the band minimum is at209

2.26 µm (Figure 2b). This suggests the presence of jarosite, separate or intermixed with210

the silica although at the signal to noise of the dataset, mixtures of silica with another211

mineral cannot be completely excluded. The location and spectral characteristics are the212

same in both images.213

3.3 Akaganeite at Jezero crater and NE Syrtis221

A new type of hydrated mineral deposit in Jezero crater was discovered by iden-222

tifying a cluster of spatially co-located but not always adjacent similar pixels by the hi-223

erarchical Bayesian model and then confirmed with traditional ratio techniques (Figure224

3). The hydrated phase has a 1.9-µm absorption that indicates H2O and a 2.45-µm ab-225

sorption (Figure 3f). Relative to nearby spectrally ”bland” materials there is also a red226

slope from shorter to longer wavelengths that indicates electronic transitions related to227

Fe mineralogy different from those of other floor materials. The spectra are most sim-228

ilar to akaganeite Fe3+
8 (OH,O)16Cl1.25nH2O, and the spectral properties as well as ge-229

ologic setting near a basin margin are similar to akaganeite reported in Sharp crater (Carter230

et al., 2015). Importantly, the phase is detected in the same locality with the same spec-231

tral characteristics in four different images (Figure 3b-3e). The largest deposits are lo-232

cated near eroded remnants of deltas on the Jezero floor on the margins of a local to-233

pographic low (Figure 3g). The area with akaganeite appears rougher and more rubbly234

than surrounding floor but is otherwise geomorphologically unremarkable.235

Sizeable deposits (>0.5 km2) with an akaganeite spectral signature are also found236

at NE Syrtis. In CRISM image FRT00019DAA, the signature occurs in basin fill deposits237

that are incised by a channel that flows west to east over the Syrtis lava flows and is just238

upstream from late-Hesperian or early Amazonian fill deposits that host Fe/Mg phyl-239

losilicate clay minerals (Figure 4; described in (Quinn & Ehlmann, 2018)). The phase240

is spatially restricted to a specific deposit on the upstream end of the basin that has coarse241

layering in CRISM image FRT00019DAA (Figure 4c). The phase is spectrally similar242

to the akaganeite in Jezero but is distinct from nearby polyhydrated sulfate and jarosite243

spectral signatures (Figure 4d; e.g., (B. L. Ehlmann & Mustard, 2012; Quinn & Ehlmann,244

2018). In addition, another deposit of akaganeite in NE Syrtis has been located using245

the same approach in CRISM image FRT00019538, also within basin fill deposits.246
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4 Discussion261

4.1 Two-layer Bayesian Gaussian Mixture Modeling Performance262

The proposed hierarchical Bayesian classifier improves mineral mapping in Jezero263

crater beyond that attained from by-hand work of previous investigators. Small expo-264

sures of uncommon phases were identified, testifying to the utility of this approach, which265

may lead to additional new discoveries elsewhere on Mars and offers new information for266

interpretation of geologic history.267

4.2 Wallrock and Jezero Floor deposits268

The wallrock of Jezero crater shares some spectral characteristics with Noachian269

basement materials mapped elsewhere in the regions with Fe/Mg phyllosilicates, includ-270

ing chlorite and smectites (B. L. Ehlmann et al., 2009; Viviano et al., 2013). The Al phyl-271

losilicate found in Jezero walls is not as typical regionally and is found at nearly the same272

elevation in the western and southern walls. It may be a layer of excavated basement ma-273

terials, locally recording enhanced alteration, or later-formed Al phyllosilicates along the274

margins of the wall. The geologic context is unclear in current high resolution image data,275

but the signal is not associated with the most resistant wall rock.276

Our finding of silica on Jezero crater floor units expands on similar small exposures277

reported previously by (Tarnas et al., 2019). These may record changes in lake chem-278

istry over time; however, their fairly limited spatial extent, which is not obviously con-279

fined to layers, may instead indicate focused zones of groundwater flow and upwelling.280

Sub-meter scale analysis of rock textures with Mars-2020 will differentiate between these281

hypotheses.282

4.3 Environmental History Implied by Akaganeite283

This is the first report of akaganeite in the greater Nili Fossae area. Akaganeite is284

the best candidate to explain the observed spectral properties of this new phase discov-285

ered by the hierarchical Bayesian classifier. Longward of 1.7 µm, the properties best, and286

apparently uniquely, match akaganeite. Shortward, the interpretation of Fe-related fea-287

tures is complicated by the fact that mafic units, which have Fe-related absorptions, serve288

as a denominators in ratioing to reduce artifacts.289

In both Jezero crater and NE Syrtis, the akaganeite-bearing deposits are associ-290

ated with eroded, basin-filling materials formed by fluvio-lacustrine processes. This is291

consistent with a geologic setting where salty, Cl-bearing, Fe-bearing and possibly acidic292

Martian waters flowed over the southern Nili Fossae area forming a set of local lake basins,293

perhaps dammed by ice, which then evaporated [Skok et al., 2016; Quinn and Ehlmann,294

2019]. The fluvial activity is constrained to occur in the late Hesperian or Amazonian295

by superposition on the Syrtis lavas. The akaganeite setting in local topographic lows296

is similar to that of the first orbitally-detected akaganeite in Sharp crater, also inferred297

to result from Fe-rich, salty waters (Carter et al., 2015).298

4.4 Implications for landed rover exploration299

At Jezero and NE Syrtis, small detections of rare phases are crucial for guiding the300

Mars-2020 rover and for contextualizing its discoveries. Here we are conservative in our301

reporting of detections, detailing only those that we were able to verify via traditional302

techniques, once recognized by the two-layer Bayesian approach. These encompass phases303

of significance for interpreting the environmental history. However, additional power for304

operational decision-making about the rover path could come from incorporating all de-305

tections and their probabilities into a systematic map of the crater, a potential sub-306

ject for our future work.307
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4.5 The importance of machine learning for planetary hyperspectral data308

analysis309

Our study demonstrates that machine learning can be highly effective in exposing310

tiny outcrops of rare phases in CRISM data on Mars that are not uncovered in tradi-311

tional approaches to image spectroscopy data analysis. Some of these detections may of-312

fer new clues toward a more accurate and complete geologic mapping of Mars paving the313

way for future discoveries. Although we reported results only from select locales owing314

to their significance, similar outcrops of rare phases have been detected across Mars along315

with several interesting patterns currently being considered as candidates for new phases.316

Similar techniques can be applied to other imaging spectrometer data analyses for data317

from imaging spectrometers from other planetary bodies.318
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sures of Al phyllosilicates, Fe/Mg phyllosilicates (e.g. corrensite), hydrated silica, and jarosite.

(a) CRISM false color images (R: 2.5 µm, G: 1.5 µm, B: 1.1 µm) overlain on a CTX mosaic.

The regions of interest with colors corresponding to the spectra in (b-d) are shown, with dashed

circles to flag the locations. (b-d) ratioed CRISM spectra identified by the hierarchical Bayesian

algorithm. (e) library spectra from USGS (Clark et al., 2017) and KECK/NASA reflectance

experiment laboratory (RELAB).

194

195

196

197

198

199

200

–11–



manuscript submitted to Geophysical Research Letters

5
Kilometers

66A4

40FF 5C5E

a.

b. c.

d.
e.

f.

066A4

040FF

047A3

05C5E

1.5 2.0 2.51.0
wavelength (micrometers)

ra
tio

ed
 C

RI
SM

 a
nd

 la
b 

re
fle

ct
an

ce
 (o

ffs
et

 a
nd

 s
ca

le
d)

47A3

g.

zone with 
akaganeite

akaganeite
(c1jb48)

akaganeite
(c1jb212)

LAB

Figure 3. (a) CRISM images covering the floor of Jezero crater show akaganeite. Basemap
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in multiple images. (b)-(e) zoom on segments of the CRISM images with the akaganeite sub-km

exposures. (f) ratioed CRISM spectra from each of the images compared to laboratory spectra of

akaganeite. (g) HiRISE digital elevation model (ESP 023379 1985 ESP 023524 1985) on HiRISE

showing the portion of the more rubbly floor materials with akaganeite. Elevations range from

Xm to Xm.
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Ehlmann (2019), showing Syrtis lavas and basin-filling deposits, incised by Late Hesperian/Early

Amazonian fluvial channels (white arrow). (b) CRISM FRT00019DAA false color image (R: 2.5

µm, G: 1.5 µm, B: 1.1 µm) overlain on the CTX mosaic with pixels of akaganeite detected by a

conservative threshold application of the 2-layer Gaussian Bayesian model shown in red. Arrows

indicate the approximate locations of the color spectra in panel (d). (c) CTX and HiRISE im-

ages of the incised basin-filling deposits, which have the distinctive signature of akaganeite. (d)

spectra of previously identified polyhydrated sulfates (blue) and jarosite (magenta) from Quinn

and Ehlmann (2019) along with the new phase we identify as akaganeite (shown in comparison

to library spectra in from the RELAB spectral library). The arrows in (B) signify the locations

of centers of regions of interest for the spectra. The spectra from the center column obtained via

the traiditional method were ratioed to the same spectral demoninator. A blue arrow to the left

signifies the location of the sulfate from the Bayesian classifier. Red and magenta arrows are the

sites of both traditional and Bayesian classifer-derived akaganeite and jarosite.
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