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Abstract

In this paper we present a system that tracks customers in a store and

performs a number of activity analysis tasks based on the output from the

tracker. We obtain the trajectories by employing a human body tracking

system designed as a Bayesian jump-diffusion filter. The customer travel

trajectories on the floor map are extracted and post processed to remove

noise. The shoppers that belong to the same group are identified by

clustering their trajectories. The clustering is based on a distance metric

that incorporates both time and location information. Our system also

identifies “shopper groups” based on the proximity metric also presented

in this paper. Further, store employees are detected as a separate group,

based on a 2D color histogram analysis. Finally, “dwelling customers”, i.e

the customers stopping to browse for products are detected by analyzing

the behavior of the recorded trajectories.

Keywords: Tracking and Motion, Crowded Environments, Human Activity
Modeling, Background Subtraction, Camera Calibration
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1 Introduction

As marketing researchers in academia and industry seek for tools to aid their
decision making, the interest is more and more coming across computer vision
and in particular human tracking systems. Unlike other types of sensors, vision
presents an ability to observe customer experience without separating it from
the environment. By tracking the path traveled by the customer along the store,
important pieces of information, such as customer dwell time, isle penetration
and product interaction statistics can be collected [1]. In our work we have
concentrated on extracting from video, perhaps, one of the most important
customer statistics: information about the shopper groups.

Our system segments foreground regions out of each frame by using a dy-
namically adapting background model presented here. Because each foreground
region may contain multiple people, we further hypothesize about the number
of human bodies within each such region by using the head-candidate selection
algorithm. The head is chosen as the most distinguishable and pronounced part
of the human body, especially when observing the store with a highly elevated
monocular camera. As the next step, our system constructs a Bayesian infer-
ence model, based on the a priori knowledge of the human parameters and store
layout and geometry. Observations of the body appearances at each frame are
a second driving force in our probabilistic scheme. Tracked in this manner, the
individual path of each customer superimposed on the floor plan of the store
is recorded and can be further analyzed. To identify the customers which are
shopping as a group we have designed a distance metric measured on the trav-
eled trajectories. This metric, incorporating space and time deviations between
two paths we then use in a clustering system, which labels shopper groups in the
input video. We further perform histogram analysis to detect store employees
and motion dynamics analysis to detect dwelling customers.

1.1 Related Work

In videos taken with a stationary camera, background subtraction is a primary
technique used to segment out foreground pixels. Statistical background mod-
eling based on color distortion has been presented in [2], but a single mean
for each pixel is unlikely to account for the noisiness of the background in the
changing environment of the store. We have also focused on the methods that
use a mixture of Gaussians to model each pixel [3]. These methods are supe-
rior to the single-modality approaches, yet they operate on the fixed number of
modalities which fails to comprehensively accommodate the noise and artifacts
created by video compression algorithms, such as MPEG. We have developed
an adaptive background model based on the dynamic codebook approach which
compensates for these problems.

To create the initial estimates for any tracking algorithm, some form of
head position estimation has been used in related studies. In [4, 5] the vertical
projection histogram was computed to reliably establish the location of head-
candidates. Although the aforementioned approach shows promising results
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with the horizontally looking camera, in this paper we make an argument that
it will be prone to significant distortion in the case of ceiling mounted camera if
the camera extrinsic parameters are not accounted for. As a result we are using
the projection histogram that accounts for the camera and 3D scene parameters.

Significant progress has been made in detection and tracking of people. The
majority of the studies address tracking of isolated people in well controlled
environment, however there is an increasing effort in tracking specifically in
crowded environments [6, 7, 4, 8, 9, 10]. It is worth noting that many works
assume the luxury of multiple well-positioned cameras or stereo vision, which
are to a certain extent not present in most retail establishments and/or do not
have the desired overlapping fields of view. In contrast, cheap low-resolution
digital monocular color cameras are becoming more and more readily available
as well as the hardware for capturing compressed real-time streams provided by
these cameras.

The Bayesian modeling approach applied to human tracking has demon-
strated potential in resolving ambiguities while dealing with the crowded en-
vironments [11, 5]. Working under the Bayesian framework it has been shown
that particle filters can efficiently infer both the number of objects and their
parameters. Another advantage is that in dealing with distributions of mostly
unknown nature, particle filters do not make Gaussianity assumptions, unlike
Kalman filters [12, 13].

Tracking followed by analysis of customer behavior in stores is becoming
an increasingly active subject in computer vision publications [4, 8, 9, 5]. The
novelty of this paper is that it brings the marketing applications perspective
as well as implements one such application - detection and tracking of shopper
groups based on the paths traveled by customers. Several approaches based
on DFT and Dynamic Time Warping exist for comparing time series. Most
recently a longest common subsequence based method for comparing trajectories
has been implemented by Buzan et al. in [14]. The specificity of our task is
that it requires a relative time component — as opposed to comparing just the
shapes of the trajectories, yet is must not account for time warps — as it is
done in speech recognition.

2 Method Overview

The methods presented in this paper are aimed at obtaining a tool for retailers
to analyze patterns of behaviors by shoppers in stores and using the results of
this analysis to make various marketing decisions. The system consists of layers
ranging from low-level image processing operations, to tracking the positions of
individuals in the store videos, to the higher level analysis of their movements
and activities in the store. Figure 2 shows the various layers of the system and
the individual modules that make up these layers. The first layer consists of four
major steps (figure 1): (i) background modeling and subtraction, (ii) camera
modeling, (iii) head candidates detection, and (iv) human height measurement.
The output from the background subtraction is the binary foreground map as
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well as an array of foreground blobs, each represented as a 2D contour. Camera
calibration provides next stage of the system with the location of vanishing
points VX , VY and VZ as well as the scale factor.

Figure 1: Low-level processing components of the system

This is accomplished by a background subtraction scheme which uses knowl-
edge about the background model which is learned from the scene. In addition,
knowledge about the camera model and the rough shape of shoppers is also used
to map the position of the tracked person on a floor map of the store and to ob-
tain rough estimates of the positions of their heads in order to resolve multiple
shoppers possibly occluding each other. The details of this layer are described
in Section 3. The next layer uses a Bayesian particle-filter model to track the
segmented individuals and also keep track of their identities (e.g., when shop-
pers cross each other). It dynamically assigns identities when new shoppers
enter the scene. The results of this analysis is also fed back to the background
subtraction layer. The details of this layer are described in Section 4. Finally,
the third layer uses the tracking results from the first two layers to analyze the
behavior of shoppers. As part of this analysis, the paths of the shoppers on the
store floor are extracted. This information is then used to determine if some of
the shoppers belong to the same group based on their pattern of movements in
the store. The details of this layer are described in Section 5.
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Figure 2: Major components of our system

3 Background and Camera Modeling

3.1 Camera Model

While building realistic human body models during the higher-level tracking
stages of the system, it is important to work in 3D scene space. To accomplish
this, intrinsic and extrinsic camera parameters must be obtained in order to to
go from image space to scene space. Many man-made environments contain rec-
tilinear structures in the scene. We have used algorithms that extract vanishing
points from the images of parallel lines in such rectilinear scene structures.

All parallel lines in the image converge in the so-called vanishing point [15].
We are interested in finding the vertical vanishing point VZ as the center of
intersection of the lines which point in the vertical direction. Two lines are
sufficient to find VZ , but in a noisy environment it is beneficial to consider
more lines to achieve higher accuracy in the location of the vertical vanishing
point VZ . This is computed as the centroid of the intersection points of the
images of all the 3D vertical lines. In our application environment there is an
abundance of man-made rectilinear structures with vertical lines that can be
used for that purpose (isles, boxes, markings on the floor, doors and windows).

In the calibration phase, a number of lines, parallel in space are designated
manually with a help of a simple point and click interface (figure 3). Each line
is represented as two endpoints e1 = [x1, y1] and e2 = [x2, y2]

Prior to computing the vanishing point all line endpoints are converted into
the homogeneous coordinates with the origin in the center of the image [w

2
; h

2
],

where w and h are the width and height of the image in pixels, respectively. The
scaling factor is set to the average of image half-width and half-height (w+h)/4
for better numerical conditioning.

e′1 = [x1 ×
w

2
, y1 ×

w

2
, (w + h)/2]
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e′2 = [x2 ×
w

2
, y2 ×

w

2
, (w + h)/2]

Then in homogeneous coordinates each line can be computed as a cross-
product of its endpoints l = e′1 × e′2.

The 3× 3 “second moment” matrix M is built from an array of lines li and
VZ is computed from the solution of M by singular value decomposition as the
eigenvector that corresponds to the smallest eigenvalue [16].

Figure 3: VZ can be found by man-
ually marking two or more vertical
straight lines

Figure 4: Marking the objects of
known height to determine the scale

3.2 Background Modeling and Subtraction

Video sequences from the in-store surveillance cameras are frequently com-
pressed with MPEG-like algorithms, which normally create a periodic noise
on the level of a single pixel. We have incorporated a multi-modal statistical
background model based on the codebook approach implemented in [17] with a
number of improvements.

Each pixel in the image is modeled as a dynamically growing vector of code-
words, a so-called codebook. A codeword is represented by: the average pixel
RGB value and by the luminance range Ilow and Ihi allowed for this particular
codeword. If an incoming pixel is within the luminance range and within some
proximity of RGB of the codeword it is considered to belong to the background.
During the model acquisition stage the values are added to the background
model at each new frame if there is no match found in the already existing
vector. Otherwise the matching codeword is updated to account for the in-
formation from the new pixel. Empirically, we have established that there is
seldom an overlap between the codewords. However if this is the case, i.e more
than one match has been established for the new pixel, we merge the overlap-
ping codewords. We assume that the background noise due to compression is
of periodical nature. Therefore, at the end of training we clean up the values
(“stale” codewords) that have not appeared for periods of time greater than
some predefined percentage frames of in the learning stage as not belonging to
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the background. For this as outlined in [17], we keep in each codeword a so-
called “maximum negative run-length (MNRL)” which is the longest interval
during the period that the codeword has not occurred. One additional benefit
of this modeling approach is that, given a significant learning period, it is not
essential that the frames be free of moving foreground object. The background
model can be learned on the fly, which is important in the in-store setting.

As a further enhancement we eliminated the background learning stage as
such to enable our system to operate dynamically. This was done by adding
the age parameter to each codeword as the count of all the frames in which
the codeword has appeared. Now, we can start background subtraction as soon
as the majority of the codewords contain “old-enough” modalities. Typically,
around 100 frames in our test sequences presented in section 6 were enough for
reliable detection of the foreground objects. This improvement also allows us
to perform the removal of “stale” codewords periodically and not as a one-time
event. Now, to determine the “staleness” of a codeword we consider the ratio
between its MNRL and it overall age. We have found that when employing
“stale” pixel cleanup for the heavily compressed sequences the length of the
codebook required to encapsulate the background complexity within one pixel
is usually under 20 codewords.

Additionally, we store the number of the last frame number flast in which the
codeword was activated (i.e. it matched a pixel). To make our model dynamic,
we discard the codewords that have not appeared for long periods of time, which
can be computed as the difference between the current frame and flast for any
given codeword. Such instances are indicating that the interior has change, due
to possibly a stationary object placed or removed from the scene, thus causing
our model to restructure dynamically.

The binary mask after background subtraction is filtered with morphological
operators to remove standalone noise pixels and to bridge the small gaps that
may exist in otherwise connected blobs. This results in an array of blobs created
where each blob b is represented as an array of vertices bi, i = 1, . . . , n in two-
dimensional image space. The vertices describe the contour of b in which each
adjacent pair of vertices bj and bi is connected by a straight line.

3.3 Finding Head Candidates

The surveillance cameras are typically mounted on the ceiling, more than ten
feet above the ground. This can be advantageous in discriminating separate
humans within a crowd. The head of a human will have the lowest chance to
be occluded, therefore we pursued the goal of finding head candidates - points
that represent the tops of the heads in the blob. In this section, we describe our
approach in more detail.

To generate human hypotheses within a blob detected in the scene we have
used a principle similar to that of the vertical projection histogram of the blob.
Our novel method utilizes information about the vanishing point location we
obtain from the camera during the calibration stage. The projection of the blob
is done along rays going through the vanishing point instead of the parallel lines
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projecting onto the horizontal axis of the image.

Figure 5: Vanishing point projec-
tion histogram

Figure 6: Vanishing point projec-
tion histogram

In our implementation each foreground blob is represented as an array of
contour vertices Ti (see figure 6), converted to homogeneous coordinates as
described in section 3.1. For each i our method starts at Ti and counts the
number of pixels hi along the line ri = Ti × VZ coming through the vanishing
point, obtained earlier as part of camera calibration process.

Then ri is rasterized by Bresenham’s algorithm. Notice that VZ is an ideal
point which can sometimes fall out of the image boundary or even be situated
at an infinity (in the case that the 3D parallel lines are also parallel to the
image plane). Therefore we needed to modify the rasterization algorithm to
stop as soon as it reaches the image boundary or VZ , whichever comes first.
Note that there is no risk of the process spreading to adjacent blobs, because
the foreground mask is rendered for each blob from its contour independently.

The process continues even after the end of the foreground region is reached,
which can be defined as the first non-foreground pixel, to allow for important
contour concavities, such as arms as well as gaps that are due to camera noise
(e.g. see the line originating from P1 in 6). The last foreground pixel reached in
such a manner is considered a bottom candidate Bi and the count of foreground
pixels between Ti and Bi is recorded into the histogram bin i. The rays where
Ti = Bi are discarded as coming from the “underside” of the contour.

Resulting from this is our vanishing point projection histogram H = [hi].
We attempt to isolate local maxima in the histogram in two steps. First, the
value hi is considered a local maximum within a window if it is greater or equal
of M of its neighbors on either side (figure 5 shows as an example the window
of size M = 5).

hi ≥ hj ,∀j = i ±
M − 1

2

Because this may result in a number of neighboring vertices of with equal values
of h selected as local maxima, we merge all such peaks within their window
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M and use their average as a candidate. Notice that to represent the cyclic
nature of the contour for the leftmost and rightmost bins the neighbors are
wrapped around from the end or the beginning of the histogram correspondingly.
Typically the window size can be determined as the total number of bins in the
histogram divided by the maximum amount of candidates allowed with one
blob. This number is set normally from 3 to 10 depending on the average
complexity or “crowdedness” of the scene. After this stage all the local peaks
hi < maxn(hn)/2 are further removed to ensure that we are only considering
the vertices from that correspond to the upper parts of the body.

3.4 Human height detection

Utilizing the same interactive approach used to obtain VZ (figure 6) we also
have found VX and VY (see section 3.1 for more details). Note that for a
stationary camera this calibration procedure has to be performed only once
for the entire video sequence, assuming the environment does not change. In
the same manner (figure 4), the user can designate a number of vertical linear
segments of known height (e.g. isles, shelves or boxes). Using the heights of the
reference objects to compute the projection scale and knowing the positions in
the image of head candidates with their corresponding floor locations we have
employed the approach from [18, 19] to find human heights in centimeters.

4 Bayesian Tracking

As we outlined in section 2 after creating camera and background models we
have sufficient information to build a tracking system. The components of our
tracking system are described below.

4.1 Bayesian model: observations and states

We formulate the tracking problem as the maximization of posteriori probability
of the Markov chain state. To implement Bayesian inference process efficiently
we model our system as a Markov chain M = {x, z, x0} and employ a variant
of Metropolis-Hastings particle filtering algorithm [20]. The state of the system
at each frame is an aggregate of the state of each body xt = {b1, . . . , bn}. Each
body, in order, is parametrically characterized as bi = {x, y, h, w, c}, where x, y
are coordinates of the body on the floor map, h,w its width and height measured
in centimeters and c is a 2D color histogram, represented as 32 by 32 bins in
hue-saturation space. The body is modeled by the ellipsoid with the axes h and
w. An additional implicit variable of the model state is the number of tracked
bodies n.

4.2 Computing Posterior Probability

The goal of our tracking system is to find the candidate state x′ (a set of bodies
along with their parameters) which, given the last known state x, will best fit
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the current observation z. Therefore, at each frame we aim to maximize the
posterior probability

P (z|x, x′) = P (z|x) · P (x|x′) (1)

The right hand side of equation (1) is comprised of the observation likelihood
and the state prior probability. They are computed as joint likelihoods for all
bodies present in the scene as described below.

4.2.1 Priors

The first type of priors imposes physical constraints on the body parameters.
Namely, body width and height are weighted N(hµ, h2

σ) and N(wµ, w2
σ), with

the corresponding means and variances reflecting the dimensions of a normal
human body.

Body coordinates x, y are weighted uniformly within the rectangular region
R of the floor map. Since we track bodies which are partially out of the image
boundaries R slightly exceeds the size of what corresponds to the visible part
of the image to account for such cases.

The second type of priors sets the dependency between the candidate state
at time t and the accepted state at time t − 1. Firstly, the difference between
wt, ht and wt−1, ht−1 lowers the prior probability. As another factor, we use
the distance between proposed body position (xt, yt) and (x̂t−1, ŷt−1) — the
prediction from the constant velocity Kalman filter. The state of Kalman filter
consists of the location of the body on the floor and its velocity. Although
tracking the head seems like a first reasonable solution, we have established
empirically that the perceived human body height varies as a result of walking,
thus the position of the feet on the floor was chosen as a more stable reference
point.

When new body is created it does not have a correspondence, this is when we
use a normally distributed prior N(d0, σ), where d0 is the location of the closest
door (designated on the floor plan) and σ is chosen empirically to account for
image noise. The same process is taking place when one of the existing bodies
is being deleted.

4.2.2 Likelihoods

The second component in forming proposal probability relates the observation
to the model state. First, color histogram c is formed by the process of weighted
accumulation, with more recent realizations of c given more weight. We then
compare Bhattacharya distance between proposed c′t and corresponding ct−1

Two more components that we use in computing the likelihood are: the
amount of blob pixels not matching any body pixels and the amount of body
pixels not matching blob pixels. Note that we use a Z-buffer for these as well as
for computing the color histogram of the current observation in order to detect
occlusions. In this buffer all the body pixels are marked according to their
distance from the camera, which we obtain during the calibration process (see
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section 3.1). This way only the visible pixels are considered when computing
the likelihood.

4.3 Jump-diffusion Dynamics

In essence, the approach of particle filtering is a non-deterministic multivariate
optimization method. As such it inherits the problems to which other, classical
optimization methods can be prone [20]. Here we present a way to overcome one
such problem — traversing valleys in the optimization space by utilizing task
specific information. On the other hand, particle filtering methods are robust
because they do not require any assumptions about the probability distributions
of the data.

4.3.1 Accepting or rejecting the state

Our joint distribution is not known explicitly, so we have chosen to use Metropolis-
Hastings sampling algorithm.

α(x, x′) = min

(

1,
P (x′)

P (xt)
·
mt(x|x

′)

mt(x′|x)

)

. (2)

Where x′ is the candidate state, P (x) is the stationary distribution of our
Markov chain, mt is the proposal distribution. In equation (2), the first part
is the likelihood ratio between the proposed sample x′ and the previous sample
xt. The second part is the ratio of the proposal density in both directions (1 if
the proposal density is symmetric).

This proposal density would generate samples centered around the current
state. We draw a new proposal state x′ with probability mt(x

′|x) and then
accept it with the probability α(x, x′). Notice that the proposal distribution
is a time function, that is at each frame it will be formed based on the rules
outlined below.

To form the proposal distribution we have implemented a number of re-
versible operators. There are two types of jump transitions and five types of
diffuse transitions implemented in our system:

Add body: Draws a random head candidate and adds a new body using its
head and foot coordinates. At this point the actual height and floor coordinates
of the body are estimated (see Section 3.1).

Delete body: Removes a random body. Body is excluded from further track-
ing, the path is terminated and saved.

Change height: Similar to height, changes the width of a random body.
Body width is stored in the system as a percentage of the height and, thus, does
not influence the actual location of the body.
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Change width: Similar to height changes the width of a random body. Body
width is stored in the system as the percentage of the height and this way does
not influence the actual location of the body.

Mean shift: Move one of the existing bodies by applying the mean-shift op-
erator with weighted anisotropic Gaussian kernel. The kernel is formed as a
Gaussian, elliptically-shaped mask, where the weights increase with increased
Mahalanobis distance. Additionally, if a pixel value of the foreground mask
(corresponding to the background) is zero or the same pixel value from the Z-
buffer is greater (i.e located further from the camera) than the current body,
the weight in the kernel is effectively zeroed out. This, in essence, performs a
standard color-based mean shift, but accounts only for the pixels belonging to
the hypothesized body model.

Move: Second type of position shift is moving the body to a random “ini-
tial head candidate” drawn from a pool of head candidates contained in some
proximity from the current body position. It allows for the head candidates,
not initially revealed (possibly due to image noise), to be considered in the
subsequent frames.

Switch IDs: Select two random neighboring bodies and exchange their IDs.
The unique body ID stays the same throughout the visible life of the body, that
is why switching IDs is in essence performing two “move” diffusions.

The Z-buffer is updated after each transition to reflect the new occlusion
map. Notice that we use a set of controllable weight probabilities to add more
emphasis to one or another transition type. In our application normally around
100 jump-diffuse iterations are required for each frame to reach convergence.

5 Activity Recognition

5.1 Obtaining Shopper Trajectories

As each accepted body candidate progresses along the floor map, we record at
each step the x, y coordinates along with the unique body ID and append it to
a separate data structure Ai = {x, y, ID}, where i is the path number. Even
when the body exits the scene, Ai is not deleted. This way at each time moment
the array A represents a complete trajectory history for all the bodies traveled
in the scene since the start of a sequence. Equipped with this information we
can proceed to shopper groups detection.
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5.2 Determining Shopper Groups by Clustering Motion

Trajectories

We assume that people who shop together can be identified by the following
criteria: they enter the scene together, leave the scene together, have a small
mean intra-group distance, have a small mean difference between paths.

When comparing two trajectories as signals, there are two important aspects:
shift time between two signals and signal shape. To elegantly incorporate both
of these considerations and to account for all empirically established criteria
we have created the proximity metric based on Euclidean distance and the
correlation of two signals.

fij(T ) =

∫
[

(

xi(t) − xj(t + T )
)2

+
(

yi(t) − yj(t + T )
)2

]

dt (3)

dij =

∫

fij(T ) × N(0, σ2)dT (4)

If the time t is discrete, as it is in our case with each measurement corre-
sponding to a single video frame, the equations above can be rewritten as:

dij =
∆
∑

T=−∆

(

t=t2−T
∑

t=t1+T

[(xi(t) − xj(t + T )]
2

+ [yi(t) − yj(t + T )]
2

)

N(0, σ2)

t2 − t1
(5)

Thus the distance between two trajectories dij is the weighted sum of tra-
jectory proximities at each time moment. The interval [−∆ : ∆] is a time cutoff
that can optimize the computation.

The standard deviation of normally distributed weights σ can be increased
to account for higher time spread between people in the same group. We have
chosen ∆ = 3σ.

We start the integration at time t1 when is the first time that both objects
are visible in the scene and end it at time t2, when at least one object has
left the scene. The interval [t1; t2] is sometimes referred to as longest common

subsequence in the literature. Note that since there must be no favoring shorter
or longer paths, the distance measure is normalized by the length of the traveled
segment t2 − t1.

Since people in a shopping group are not guaranteed to appear as well as
leave the scene at the same time, we propose to compute the trajectory similarity
measure on piecewise uninterrupted segments — i.e., the intervals of time where
both bodies in question were present and successfully tracked in the scene.

Naturally, we do not compute the distance for the pairs with a very small
longest common sub-trajectory, because these will not render a statistically
significant metric. The cutoff for the common subsequence length was chosen
empirically at 3 seconds, or 45 frames (at 15 fps).

Furthermore, for computational efficiency, and considering the fact that
physical location of one person does not change significantly within a time in-
terval of 10 frames (< 1 sec), we can sub-sample the trajectories and reduce the
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computational load. Once the pairwise distances for all trajectories are known,
as our next step we cluster the paths based on this measure.

We apply agglomerative hierarchical clustering, where each object is initially
placed into its own cluster C. Therefore, if we have N objects to cluster, we
start with N singleton groups.

Before we start the clustering, we need to decide on a threshold distance.
Once this is done, the procedure is as follows:

1. Compare all pairs of groups and mark the pair that is closest.

2. The distance between this closest pair of groups is compared to the thresh-
old value.

(a) If the distance between this closest pair is less than the threshold
distance, these groups become linked and are merged into a single
group. Return to Step 1 to continue the clustering.

(b) If the distance between the closest pair is greater than the threshold,
the clustering stops.

If the threshold value is too small, there will still be many groups present
at the end, and many of them will be singletons. Conversely, if the threshold is
too large, objects that are not very similar may end up in the same cluster. We
optimized the threshold value during a trial and error process on video sequences
of varying complexity.

When merging two clusters, the center point of the new cluster at each frame
C ′ is determined as a weighted average of two paths corresponding to the centers
of the merged clusters

C ′

t = C1
t · |C1| + C2

t · |C2| (6)

where Ct is the location along the path of the group C at time t and |C| is
the number of the trajectories belonging to the cluster with center in C.

6 Results and Discussion

We have tested low-level parts of our system on a number video sequences from
two different cameras (figure 8 (a)-(f)) mounted in a retail store chain and on the
publicly available CAVIAR dataset [21] (figure 8 (g)-(l)). Some sample frames
and results of the head candidates detection as well as height estimation from
the test video sequences are presented in figure 8.

One of the most frequent cases of detecting false positives was occurring when
there was not enough frames allotted for the background acquisition and there-
fore some people standing were interpreted as part of the background. When
these people later moved, not only the moving person but the pixels where she
used to stand are detected as a foreground objects. The background subtraction
approach has given good results even under extreme lighting conditions (see (i)
and (j) in figure 8).
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Analyzing falsely detected head locations, we see that these are primarily
due to the video compression artifacts influencing the background subtraction
process. Nevertheless, the algorithm has shown robust performance with the
significant levels of illumination noise, under the low-quality, real-life capturing
conditions.

The false negative head candidates were primarily due to two reasons. First,
parts of the foreground region become separated from the body or sometimes
a part of the shadow is considered as a separate body, and this causes a false
candidate to be detected (see (k) in figure 8). We believe that human shape
modeling may help solve this problem. A second factor that badly influences
the detection is when the heads are not pronounced enough to create a local
maximum in the histogram (see (l) in figure 8). This problem can be attended
in the future by color and texture analysis within the blob.
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Figure 7: Algorithm performance evaluation. This graph shows the number of
frames when 1, 2, or 3 heads were detected. The true number of heads is 2.

To partially evaluate the quality of the results we have analyzed a number of
detected head candidates in the sequences with two people, that were detected
as a single blob (Figure 7). The evaluation shows that the outputs from our
methods can be used at the initialization stage of tracking algorithm. To further
evaluate the quality of our method candidate hit/miss and average error analysis
based on their coordinates may be required.

We performed preliminary evaluation of our tracking system for the presence
of three major types of inconsistencies: misses, false hits and identity switches.
A miss is when the body is not detected or detected but tracked for an insignif-
icant portion of its path (< 30%). A false hit is when a new body is created
where there is now actual person present. Most of the false hits are a result
of more than one body in the model being assigned to a single body in the
scene. An identity switch is when two or more bodies exchange their IDs once
within the close proximity from each other. By visually counting the number of
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Figure 8: (a) - (l) Head candidates from test frames. Left image is the original
frame. On the right image red represents foreground mask, small black dots
indicate the locations of Ti and Bi; blue ellipses are fitted with TiBi as the
major axis; (m) and (n) Height detection: brown plates contain height mean
and variance for each ellipse
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each of types of errors on a number of sequences of overall 6000 frames we have
obtained results summarized in table 1.

Sequence Total frames Total people Misses False hits Identity switches
1 3181 19 0 2 3
2 1287 18 0 8 4
3 1510 17 2 8 6

ALL 5978 54 2 18 13
%% 100 100 3.7 33.3 24.1

Table 1: Tracking results (based on the manually observed ground truth)

The most common mistakes made by the tracker, were false hits. We have
observed that the majority of false hits (more than 50%) are short lived, i.e.
typically last for only several frames. These cases can be further post-processed
by temporal filtering to remove insignificatly short paths. Sometimes, however,
false detections are accompanied by ID switches, when the body tracked for a
long time is substituted for a false hit. This presents a more complicated case
and deserves further study.

Overall performance of the tracker is promising, primarily because it pro-
duces satisfactory detection and prolonged tracking in the crowded scenes. The
output from our tracking module serves as a reliable base for obtaining customer
paths (Figure 9) and the detection of shopper groups (Figure 10).

Shopper groups determined by clustering motion trajectories coincide with
the results of visual observation. The metric becomes more reliable as the length
of the largest common subsequence increases for trajectories under comparison.

The video sequences that we used were real recordings from a large retail
store, performed with 4 monocular digital cameras placed at different locations
and angles of view. The processing was done on a dual core Pentium processor
at around 7 fps, with the actual recording done at 15 fps. With a number of
optimizations and slightly increased processing power we estimate the system
to perform tracking and customer grouping at the real-time speeds.

Figure 9: Select frames showing customer path marked on the floor map (for
each frame the original sequences is on the left and the top-down view with the
floor map in on the right
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Figure 10: Select frames showing the detection of shopping groups (marked by
white rectangles)

7 Future Work

The next steps in activity recognition we intend to take are: identifying queue
lengths and queue wait times, building store traffic heat maps, aisle penetration
maps and estimating customer conversion rate, i.e. the number of people making
purchases in relation to the total number of customers in the store. Moreover,
the color histogram information, recorded for each customer can potentially be
used to determine person’s age, gender or ethnicity.

We plan to extensively validate the accuracy of group detection algorithm
using the manually marked dataset of more than 30000 frames provided by
CAVIAR project [21]. Although the evaluation of the tracking subsystem shows
promising results, the authors are aware that a more formal evaluation has to
be performed for the each of the customer activity characteristics.

Another potential improvement is to enhance the quality of our depth maps
using 3D CAD model of the store, which we expect to result in highly stable
tracking. Such models, currently under development, will incorporate the layout
of the store fixtures, product placement and camera location. We are currently
also investigating the use of a single panoramic camera to cover large area in the
store, which could provide continuous tracking for longer uninterrupted periods
of time.

We are currently also investigating the use of a single panoramic camera
to cover large area in the store, which could provide continuous tracking for
longer uninterrupted periods of time. Combined with the customer counting
camera installed at the entrance this method will allow to compute the percent-
age customer distribution in the different areas of the store as well as provide
important clues into the “conversion rate” analysis (the ratio of the amount
of purchases to the total number of customers). With the increased capturing
quality we hope to get enough detail to perform an analysis of certain prod-
uct interaction aspects: attention (i.e. turning the torso towards the product,
or squatting/reaching for the product), browsing (when hands are performing
“reaching out” gestures).

In future the position and orientation of body ellipsoid can be combined
with multiple-view color representation for more reliable color tracking [22]. We
believe that this kind of tracking will provide information for customer attention
analysis, such as rough estimations of customer gaze center or interactions within
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customer groups [8].
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