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ABSTRACT 

This paper describes a new medical image analysis technique for 
polygon mesh surfaces of human faces for a medical diagnosis 
application. The goal is to explore the natural patterns and 3D 
facial features to provide diagnostic information for Fetal 
Alcohol Syndrome (FAS). Our approach is based on a digital 
geometry analysis framework that applies pattern recognition 
techniques to digital geometry (polygon mesh) data from 3D 
laser scanners and other sources. Novel 3D geometric features 
are extracted and analyzed to determine the most discriminatory 
features that best represent FAS characteristics. As part of the 
NIH Consortium for FASD, the techniques developed here are 
being applied and tested on real patient datasets collected by the 
NIH Consortium both within and outside the US. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – Feature 
evaluation and selection. I.3.5 [Computer Graphics]: 
Computational Geometry and Object Modeling – Geometric 
algorithms. 

General Terms 
Algorithms, Measurement. 

Keywords 
Digital geometry, Pattern recognition, Classifier, 3D facial 
analysis, Medical diagnosis, Fetal alcohol syndrome. 
 

1. INTRODUCTION 
Technological advances in recent years have led to an era of 
information explosion. The enormous proliferations of data and 
information, in particular multimedia data, have created a great 
challenge and urgent need for new and more effective analysis 
techniques for data from multimedia sources. At the same time, 
biomedical sciences have been increasingly relying on 
information technology and multimedia data analysis for 
biomedical research, clinical studies and medical diagnosis.  

While traditional 3D medical imaging technologies focus on 
volumetric images such as CT and MRI, there is a tremendous 
need in medical applications for the image analysis techniques of 
surface scans that capture detailed geometric and texture 
information. Many diseases, particularly neurological diseases, 
exhibit strong correlations between facial feature anomalies and 
neurological conditions. 3D data analysis techniques that capture 
such correlations can potentially provide effective diagnosis tools 
for medical and clinical studied, especially in the pre-screening 
process and in early diagnosis of children. This technology 
becomes more attractive recently as 3D laser scanners become 
cheaper, faster and more portable with higher resolution. More 
importantly, many of the later models of laser scanners have been 
made eye safe, which is essential for human subject studies.  

This paper aims to develop advanced geometry analysis 
techniques for 3D facial images collected using a 3D laser 
scanner. We are specifically targeting the diagnosis problem of 
fetal alcohol syndrome disorder (FASD), mainly because of our 
participation in an NIH project that will allow us to test our 
theory and techniques with real clinical data. Fetal alcohol 
syndrome (FAS) is a neurological disorder due to alcohol 
exposure, and is the most common nonhereditary cause of mental 
retardation. A number of studies have examined different 
populations both within the United States and throughout the 
world to estimate the incidence and prevalence of this 
devastating syndrome. It is estimated that the prevalence in the 
general population of FAS is likely to be between 0.5 and 2.0 per 
1,000 births. Importantly, studies outside the U.S. have found 
even higher rates of prevalence in particular geographic regions.  

The basic features often associated with prenatal exposure to 
alcohol include growth deficiencies and neurodevelopmental 
abnormalities of the central nervous system, and a pattern of 
various facial anomalies [17]. A powerful FAS diagnosis method 
is the 4-Digit Diagnostic Code. It uses a numerical scale that 
measures 4 key diagnostic features of FAS: 1) growth deficiency, 
2) FAS facial phenotype, 3) brain damage/dysfunction, 4) 
gestational alcohol exposure. Each was ranked independently on 
a 4-point Likert scale. While the combination of the four features 
constitutes a complete diagnosis criterion, facial anomalies is the 
only one that can be easily detected and potentially automated. 
Naturally, facial data analysis approach is becoming an important 
tool for the development of early diagnosis and treatment for 
general pre-screening.  

Our approach is based on a digital geometry analysis framework 
that employs 3D geometry analysis techniques on the polygon 
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mesh surfaces of the scanned facial images for feature detection 
and classification. Digital geometry refers to the digital 
representation of geometric information of 3D surfaces, and is 
commonly represented as dense polygon meshes. Such mesh data 
often comes from 3D surface scanning devices such as laser 
scanners, or from surface extraction in volumetric images (e.g. 
CT image). They are usually not in a regular range image format. 
For example, 3D laser scanning often requires the merging and 
stitching of multiple scans taken from different angles, at 
different positions, or simply using multi-pass repeat scans. 
Thus, traditional approaches such as range image processing and 
analysis are not feasible with digital geometry data.  

We are currently working within an NIH-funded international 
Research Consortium to develop effective FAS diagnosis 
solutions. The Consortium has dispatched data collection teams 
in several parts of the world to collect 3D facial images for both 
FAS patients and normal people, in various age groups and races. 
These datasets will be a great source for system training in 
machine learning and for testing.   

2. RELATED WORK 
Digital Geometry Processing (DGP) has only recently been 
recognized as a separate field that dedicated to discrete 
geometric information processing and representation [16]. While 
DGP does not directly support analysis applications, it provides 
the basic algorithms and tools for analysis applications [19].  

There has been a large number of literatures on feature 
identification and extraction in 2D images. In 1991, Gordon [8] 
proposed a 3D face recognition method using curvature 
calculation based on range image data obtained from a rotating 
laser scanner. Tanaka et al. [18] extended the concept of free-
form curved surface in 3D shape recognition problem to 3D face 
recognition application. Based on Extended Gaussian Image 
(EGI) representation, he extracted face signature using principal 
curvatures and their directions.  Beumier and Acheroy [6] used 
central and lateral facial profiles to generate curvature values as 
feature vector for face authentication.  

Range image is a special case of digital geometry data. Many of 
the range image processing operations have been extended to 
digital geometry data by the digital geometry processing 
community. Segmentation of range images and extraction of 3D 
features has been intensely studied [4,22]. These segmentation 
results are then used to do object recognition [1,3,12]. Object 
recognition strategies based on surface properties such as surface 
areas and curvatures have also been used [3,4]. 

Machine learning and pattern recognition provides a 
computational framework for developing intelligent systems for 
analyzing geometric patterns. There are two general approaches 
to identifying optimal subsets of features: 1) strategies which 
evaluate subsets using abstract measures felt to be relevant to 
important properties of good feature sets, such as orthogonality, 
information content and low variance [20,17,7], and 2) strategies 
which involve actually building a classifier from the feature 
subset and evaluating its performance on actual classification 
tasks [11]. The first step in any classification process is to choose 
candidate discriminatory features and evaluate them for their 
usefulness. Principal Component Analysis (PCA) is first 

proposed  to define a subspace whose basis vectors are called 
eigenfaces [13,20].  To use higher order statistics of the training 
data, Independent Component Analysis (ICA) has gained 
importance in recent times [2].  Although the details vary, these 
techniques intend to project the set of training images onto a 
lower dimensional subspace. Features are now selected from this 
lower dimensional space and used for the classification module. 

3. FACE ALIGNMENT AND MAPPING 
Facial datasets are collected by various groups under different 
conditions. In order to properly compare 3D facial datasets, all 
face scans need to be precisely aligned in a common coordinate 
system. This can be done by using a template face (a standard 
face dataset) and aligning each new dataset with the template 
face. The problem of 3D alignment has been studied extensively. 
The most effective solution is the Iterative Closest Point (ICP) 
algorithm [5], which computes the optimal transformation by 
iteratively finding a local minimum of a mean-square distance 
metric. In our ICP algorithm, the cost function is defined as the 
sum of the least square distances from the vertices of one face 
dataset to the other face surface. Powell’s direction set method is 
employed for optimization [15] as it provides a way to estimate 
the optimal direction in the n-dimensional space during iteration 
without computing the derivatives of the cost function.  

A space encoding method is designed to allow fast minimum 
distance computation by localizing the search space. We use a 
simple uniform space subdivision in the volume space of the 
template dataset to encode the vertices of the template dataset 
first. A bounding box of the template face is subdivided into an 

lmn ××  3D grid. The vertices of template face as well as the 
face to be compared with will be registered with the 
corresponding grids to facilitate fast search and cost function 
computation in the Powell's iteration algorithm. The 
establishment of the distance function allows us to define a 
distance map as a mapping from a vertex on the template face to 
its closest point on the surface of another face dataset that is 
aligned with the template. Let }{ iP  be the vertices of the 

template dataset and }{ iQ  be the vertices of an aligned face 

dataset. The distance map is defined as: 

}){,(min)( ii
Q

i QPdistPDM =  

This closest distance can be computed quickly using the 
neighborhood information encoded with spatial encoding. We 
can define certain position-related features, such as landmarks, 
regions and boundary lines, on the template dataset first, and 
then automatically map these features, by the distance map, to 
another face dataset that is aligned with the template face.  

Distance map may also be used to generate a uniform cut for all 
datasets using the boundary of the template face, so that they all 
represent approximately the same area of the face. This is 
necessary in order to carry out some global comparisons among 
difference datasets, such as curvature histogram comparison, 
global measurements, and inter-face distances. The cut is done 
by mapping the points on the boundary of the template face to 
another dataset to form its new boundary, and then cutting the 
dataset along the boundary into a standard region. Figure 1 
shows some alignment and cutting examples. 
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Figure 1.  Face alignment and cutting. (a) Template face; (b) 
a new face before alignment; (c) after alignment and cutting. 

4. FEATURE COMPUTATION AND 
EXTRACTION 

The most critical component of this research is the detection of 
salient features that may be used as part of the diagnostic 
conditions, i.e. separating FAS faces from a non-FAS faces 

4.1 Difference Map Visualization 
Since there are infinite numbers of possible features that can be 
extracted from a face dataset, it is imperative to start from a set 
of features that have the best chance of being “salient”.  We are 
experimenting with a visual data mining approach which uses a 
visualization of the "difference" between two known groups to 
provide visual clues about possible salient features. 

The template face is used as a parametric domain to correspond 
points between faces using a distance map. We are given two 
groups of datasets for training: one contains known FAS faces, 
and the other contains known non-FAS faces (controlled group). 
After alignments and standard cuts, The difference map can be 
obtained by first computing the average displacement vector of 
the FAS faces at each vertex of the template face. Similar 
displacement vectors are also computed using the non-FAS faces. 
The vector differences of the displacement vectors on the 
template face provide the difference map that can be visualized 
to provide an intuitive visual impression about the differences of 
the two groups. This can help identifying areas or relationships 
that are most “salient” to the FAS problem. 

Displacement vectors represent the zero-order differences. 1st 
order and 2nd order difference maps can also be computed 
similarly. For instance, first-order difference vector can be 
computed using surface normal vectors. Second-order difference 
can be computed using one of the local surface curvatures. The 
combination of several such difference maps may provide much 
more information in detecting more accurate salient features. 

4.2 Feature Computation 
Discrete differential geometry algorithms and digital geometry 
operators are appllied to extract the potential salient features. 
The features computed include: curved distances, local 
curvatures, regional moments, and flatness measures. 

Curved distances. Curved distances on a surface provide more 
accurate measures than Euclidean distances. We employed the 
Dijkstra's algorithm is used to compute an approximated shortest 
distance between landmark points over a polygon mesh.  

Local Curvatures. Curvatures are local properties of a landmark 
point on the surface. Curvature computation requires the 
computation of the first and second fundamental forms of the 
surface. For digital geometry datasets, discrete operators will 
need to be applied to approximate the curvatures [14]. Typical 

curvatures include Principal curvatures 1κ  and 2κ  (maximum 

and minimum curvatures in the 2 principal directions), Gaussian 

curvature 21 κκκ ×=G  (local shape classification) and Mean 

curvature 2/)( 21 κκκ +=H  (average over all directions). 

Both the distance and curvature features are based on landmark 
points that are defined on the polygon mesh surfaces. These are 
either natural feature points (e.g. eyes, nose, etc.) or meaningful 
biological points defined by anthropologists or biologists. 

Moment features. Moments of inertia are used to represent 

global shape information of a region [10]. The thqp )( +  order 

moments of a density distribution function ),( yxρ  are:                    
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Order 0 and 1 central moments are constant for every 
standardized distribution function. Seven lower order (order 2, 
and 3) central moments are used in our application: 
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In our application, a moment feature is extracted from the 
Philtrum region and the whole face region after cutting.  The 
Philtrum is often considered an important region for FAS, and is 
defined as the groove between the nose and upper lip, and can be 
defined by three landmarks and the curved distance paths 
between the points, as shown in Figure 2(a). 

 

 

 

 

 

 

 

                       (a)                                         (b) 

Figure 2.  (a) the Philtrum region; (b) flatness test region. 
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Flatness features. Flatness feature can be computed by fitting a 
planar surface to the defined region using a least square fitting. 
Again, a region can be defined by a sequence of landmark points 
and the curved distance paths between them, as shown in Figure 
2(b). The objective function is defined as the sum of the squares 
of the distances from the vertices to a parameterized plane. 

5. FEATURE SELECTION AND 
CLASSIFICATION 

5.1 Feature Selection 
This is to determine an optimal subset of the initial features that 
has the best discriminatory (diagnostic) power. Various heuristic 
search strategies such as hill climbing and Best First may be 
applied. We use a Correlation-based Best First search approach 
in our implementation. The Best First search starts with an 
empty set of features and generates all possible single feature 
expansions. The subset with the highest evaluation is chosen and 
is expanded in the same manner by adding single features. If 
expanding a subset results in no improvement, the search drops 
back to the next best unexpanded subset and continues.  

The Correlation-based Feature Selection (CFS) uses a search 
algorithm to evaluate the merit of the feature subsets. The 
heuristic by which CFS measures the “goodness” of features 
takes into account the usefulness of individual features for 
predicting the class label along with the level of intercorrelation 
among them. It is based on the hypothesis that "Good feature 
subsets contain features highly correlated with (predictive of) the 
class, yet uncorrelated with (not predictive of) each other". 

5.2 Feature Classification 
Multilayer Perceptron Networks. It is a classifier that uses 
back-propagation to classify instances. It is a network of simple 
neurons called perceptrons [9], which compute a single output 
from multiple real-valued inputs by forming a linear combination 
according to its input weights and then possibly putting the 
output through some nonlinear activation function, i.e. 

b)xw()( T

1

+=+= ∑
=

ϕϕ bxwy
n

i
ii  

where w denotes the vector of weights, x is the vector of inputs, 
b is the bias and ϕ  is the activation function.  

A typical multilayer perceptron network consists of a set of 
source nodes forming the input layer, one or more hidden layers 
of computation nodes, and an output layer of nodes. The input 
signal propagates through the network layer-by-layer. MLP 
networks are typically used in supervised learning problems, and 
can be solved by a back-propagation algorithm.  

Support Vector Machines. It is a method for creating functions 
from a set of labeled training data [21]. For classification, SVMs 
operate by finding a hypersurface in the space of possible inputs. 
This hypersurface will attempt to split the positive examples 
from the negative examples. The split will be chosen to have the 
largest distance from the hypersurface to the nearest of the 
positive and negative examples. Intuitively, this makes the 
classification correct for testing data that is near, but not 
identical to the training data.  

Sequential Minimal Optimization (SMO) is a fast method to 
train Support Vector Machine. Training an SVM requires the 
solution of a large quadratic programming optimization problem. 
SMO breaks the problem into a series of smallest possible QP 
problems, which can be solved analytically, and thus avoids a 
time-consuming numerical QP optimization as an inner loop. 

6. RESULTS 
We have implemented the techniques described in this paper, 
and have applied and tested them on some preliminary datasets 
collected by the NIH consortium: “Collaborative Initiative on 
Fetal Alcohol Spectrum Disorder (CIFASD)”.  Total 65 face 
datasets are collected using a Minolta Vivid 910 laser scanner. 
Among them, 44 are from patients with FAS, and the other 21 
are from a controlled population (Non-FAS).  

We used total 49 features as the initial feature vector. They 
include the mean curvature of the center of the philtrum, the 
flatness of the left cheek, the length of philtrum, the length of 
nose, and their ratio, the biocular breadth, the palpebral fissue 
length, moment features of the entire face, moment features of 
the philtrum, curvature moment features of the philtrum, etc. Age 
and gender information are also included.  

We first applied Correlation-based Best First search method for 
feature selection. The algorithm produces a subset of 8 features 
out of the total 49 features. Two classification methods are then 
applied on these 8 features: Multilayer Perceptron Network 
classifier and Support Vector Machine classifier. For a two-way 
classification, four classification outcomes are possible, which 
can be displayed in a confusion matrix. Errors occur as either 
False Positive (FP) or False Negative (FN). 

The results are validated using both Test-Set validation and 
Leave-One-Out cross validation. In Test-Set validation, one-third 
of the total datasets are randomly selected as the test set. The 
remaining datasets are used as a training set. Table 1 and Table 
2 show the confusion matrices under test-Set validation. The 
success rate is 95.6522% with the Support Vector Machines 
classifier and 86.9565 with the Multilayer Perceptron Networks 
classifier. In Leave-One-Out cross validation, each dataset by 
itself is used as the test set at a time, and the remaining n-1 
datasets become the training set. This process will repeat n 
times, and the average performance can then be measured. Table 
3 and Table 4 show the confusion matrices under Leave-One-Out 
cross validation. The success rate is 89.23% with both the 
Support Vector Machines classifier the Multilayer Perceptron 
Networks classifier. These results are very good with a relatively 
small training set. We are expecting several hundreds of new 
datasets to become available in the next few months. With a 
larger training set and more testing data, we expect the 
performance to become even better and more reliable. 

Table 1.  The confusion matrix using Support Vector 
Machines and Test-Set validation 

 Ground Truth 

Prediction FAS (+) FAS (−) 

FAS (+) 17 1 

FAS (−) 0 5 
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Table 2.  The confusion matrix using Multilayer Perceptron 
Networks and Test-Set validation 

 Ground Truth 

Prediction FAS (+) FAS (−) 

FAS (+) 15 1 

FAS (−) 2 5 

 
Table 3.  The confusion matrix using Support Vector 

Machines and Leave-One-Out cross validation 
 Ground Truth 

Prediction FAS (+) FAS (−) 

FAS (+) 42 5 

FAS (−) 2 16 

 
Table 4.  The confusion matrix using Multilayer Perceptron 

Networks and Leave-One-Out cross validation 
 Ground Truth 

Prediction FAS (+) FAS (−) 

FAS (+) 41 4 

FAS (−) 3 17 

 

7. CONCLUSIONS 
A new 3D image analysis approach for a medical diagnosis 
application is presented. The 3D geometry-based data analysis 
approach, the automatic 3D feature generation techniques, and 
its application in medical diagnosis are novel. We believe that 
this type of 3D analysis problems will become increasingly 
important as new sensory technologies become more ubiquitous. 
It can have significant impacts to a wide range of applications 
both within and outside the biomedical fields.  

In the future, we would like to investigate more sophisticated 
geometric features, including frequency domain features and 
higher-degree surface fitting features. We would also like to 
study a larger array of classifiers to determine the optimal 
classification methods for this type of 3D data analysis problems. 
A larger scale experiment with additional datasets will certainly 
be very desirable. We will report the results of this research in 
real clinical tests, whenever it becomes available. 
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