318 Chapter 5 Compilers

EXERCISES

Section 5.1

1. Draw parse trees, according to the grammar in Fig. 5.2, for the fol-
lowing <id-list>s:

a. ALPHA
b. ALPHA, BETA, GAMMA

2. Draw parse trees, according to the grammar in Fig. 5.2, for the fol-
lowing <exp>s:

a. ALPHA + BETA
b. ALPHA - BETA * GAMMA
¢. ALPHA DIV (BETA + GAMMA) - DELTA

3. Suppose Rules 10 and 11 of the grammar in Fig. 5.2 were changed to

<exp> <term> | <exp> * <term> | <exp> DIV <term>
<term> ::= <factor> | <term> + <factor> | <term> - <factor>

Draw the parse trees for the <exp>s in Exercise 2 according to this
modified grammar. How has the change in the grammar affected the
precedence of the arithmetic operators?

4. Assume that Rules 10 and 11 of the grammar in Fig. 5.2 are deleted
and replaced with the single rule

<exp> ::= <factor> | <exp> + <factor> | <exp> - <factor>
| <exp> * <factor> | <exp> DIV <factor>

Draw the parse trees for the <exp>s in Exercise 2 according to this
modified grammar. How has the change in the grammar affected the
precedence of the arithmetic operators?

5. Modify the grammar in Fig. 5.2 to include exponentiation operations
of the form XTY. Be sure that exponentiation has higher priority than
any other arithmetic operation.

6. Modify the grammar in Fig. 5.2 to include statements of the form

IF condition THEN statement-1 ELSE statement-2

10.

11.

12.

Exercises

where the ELSE clause may be omitted. Assume that the condition
must be of the form a < b, a = b, or a > b, where a and b are single
identifiers or integers. You do not need to allow for nested IFs—that
is, statement-1 and statement-2 may not be IF statements.

Modify the grammar in Fig. 5.2 so that the I/O list for a WRITE state-
ment may include character strings enclosed in quotation marks, as
well as identifiers.

Wrrite an algorithm that scans an input stream, recognizing operators
and identifiers. An identifier may be up to 10 characters long. It must
start with a letter, and the remaining characters, if any, must be
letters and digits. The operators to be recognized are +, -, *, DIV, and
:=. Your algorithm should return an integer that represents the type
of token found, using the coding scheme of Fig. 5.5. If an illegal
combination of characters is found, the algorithm should return the
value -1.

Modify the scanner you wrote in Exercise 8 so that it recognizes inte-
gers as well as identifiers. Integers may begin with a sign (+ or -);
however, they may not begin with the digit 0 (except for the integer
that consists of a single 0).

Draw a state diagram for a finite automaton to recognize a token
type named “real constant.” This token consists of a string of digits
that contains a decimal point. There must be at least one digit before
the decimal point.

Modify your answer to Exercise 10 so that a real constant may also
contain a scale factor. The scale factor, which follows the string of
digits, consists of the letter E followed by a positive or negative inte-
ger. A real constant must contain either a decimal point or a scale fac-
tor (or both). There must be at least one digit before the decimal
point (if any).

Draw a state diagram for a finite automaton to recognize a token
type named “write-element.” Each such token must have one of the
following forms:

name
name:n
name:n:m
‘string’
‘string’:n

319

320

Chapter 5 Compilers

13.

14.

15.

16.

17.

18.

19.

20.

where

name must start with a letter (a-z); all characters after the first let-
ter must be either letters (a-z) or digits (0-9).

string may contain any characters other than quote (‘).

n,m must be positive integers containing only digits (0-9), with no
leading zeros allowed.

Write a program that simulates the operation of a finite automaton,
using a tabular representation like the one illustrated in Fig. 5.10(b).

Select a high-level programming language with which you are famil-
iar and write a lexical scanner for it.

Parse the following statements from the example program in Fig. 5.1,
using the operator-precedence technique and the precedence matrix
in Fig. 5.11:

a. the assignment statement on line 11
b. the declaration on line 3

c. the FOR statement beginning on line 7

Parse the entire program for Fig. 5.1, using the operator-precedence
technique and the precedence matrix in Fig. 5.11.

Parse the assignment statement on line 11 of Fig. 5.1, using the
method of recursive descent and the procedures given in Fig. 5.17.

Write recursive-descent parsing procedures that correspond to the
rules for <dec-list>, <dec>, and <type> in Fig. 5.15. Use these proce-
dures to parse the declaration on line 3 of Fig. 5.1.

Write recursive-descent parsing procedures for the remaining non-
terminals in the grammar of Fig. 5.15. Parse the entire program in
Fig. 5.1, using the method of recursive descent.

Use the routines in Figs. 5.18-5.20 to generate code for the following
statements from the example program in Fig. 5.1:

a. the assignment statement on line 11
b. the WRITE statement on line 15
c. the FOR statement beginning on line 7

21.

22.

23.

24.

25.

26.

27.

28.

29.

Exercises

Refer to the parse tree in Fig. 5.4 to see the order in which the parser
recognizes the various constructs involved in these statements.

Use the routines in Figs. 5.18-5.20 to generate code for the entire pro-
gram in Fig. 5.1.

Write code-generation routines for the new rules that you added to
the grammar in Exercise 6 to define the IF statement.

Suppose that the grammar in Fig. 5.2 is modified to allow floating-
point variables (i.e., the <type> REAL) as well as integers. How
would the code-generation routines given in the text need to be
changed? Assume that mixed-mode arithmetic expressions are al-
lowed according to the usual rules of Pascal.

The code-generation routines in the text use immediate addressing
for integers written by the programmer in arithmetic expressions (for
example, the 100 in the expression SUM DIV 100). How could such
constants be handled by a compiler for a machine that does not have
immediate addressing?

What kinds of source program errors would be detected during lexi-
cal analysis?

What kinds of source program errors would be detected during syn-
tactic analysis?

What kinds of source program errors would be detected during code
generation?

In what ways might the symbol table used by a compiler be different
from the symbol table used by an assembler?

Suppose you have a one-pass Pascal compiler similar to the one
described in Section 5.1. Now you want to add a simple macro capa-
bility to this compiler. The macro processing should be integrated
into the rest of the compiler, not implemented as a preprocessor.
Describe how the macro processing routines would interact with the
rest of the compiler. For example, would the routine that processes
macro definitions be called by the scanner, the parser, or the code
generator? Which of these phases of the compiler would interact
with the routines that recognize and expand macro invocation state-
ments?

321

322

Clhapter 5 Compilers

Section 5.2

. Rewrite the code-generation routines given in Figs. 5.18 and 5.19 to

produce quadruples instead of object code.

2. Write a set of routines to generate object code from the quadruples
produced by your routines in Exercise 1. (Hint: You will need a rou-
tine that is similar in function to the GETA procedure in Fig. 5.19.)

3. Use the routines you wrote in Exercise 1 to produce quadruples for
the following program fragment:

READ(X,Y) ;
2 :=3**X-5*Y+X~*Y;

4. Use the routines you wrote in Exercise 2 to produce object code from
the quadruples generated in Exercise 3.

5. Rewrite the code-generation routines given in Fig. 5.20 to produce
quadruples instead of object code.

6. Use the routines you wrote in Exercises 1 and 5 to produce quadru-
ples for the program in Fig. 5.1.

7. Divide the quadruples you produced in Exercise 6 into basic blocks
and draw a flow graph for the program.

8. Assume that you are generating SIC/XE object code from the
quadruples produced in Exercise 6. Show one way of performing
register assignments to optimize the object code, using registers S
and T to hold variable values and intermediate results.

Section 5.3

1. Write an algorithm for the prologue of a procedure, assuming the
activation record format shown in Fig. 5.30.

2. Write an algorithm for the epilogue of a procedure, assuming the ac-
tivation record format shown in Fig. 5.30.

3. Suggest a way of using the activation record stack to perform dy-

namic storage allocation for controlled variables. What would be the
advantages and disadvantages of such a technique as compared to
using a separate area of free storage to perform these allocations?

Exercises

. Assume the array C is declared as

|
C: ARRAY[5..20] OF INTEGER

Generate quadruples for the statement

Cl1] := 0

. Assume the array D is declared as

D: ARRAY [-10..10,2..12] OF INTEGER

and is stored in row-major order. Generate quadruples for the state-
ment

D(I,J] := 0

. Assume the array D declared in Exercise 5 is stored in colummn-major
order. Generate quadruples for the statement

D[I,J] := 0

. Generalize the methods given in Section 5.3.1 to the storage of three-
dimensional arrays in row-major order. Assuming the array declara-
tion

E : ARRAY[1..5, 1..10, 0..8] OF INTEGER
generate quadruples for the statement

E[I,J,K] := 0

. How could the base address for the array A defined in Fig. 5.26(a) be
modified to avoid the need for subtracting 1 from the subscript value
(quadruple 1)?

. How could the technique derived in Exercise 8 be extended to two-
dimensional arrays?

323

324

Chapter 5 Compilers

10.

11.

12.

Assume the array declaration

T : ARRAY[1..5, 1..100] of INTEGER

Translate the following statements into quadruples and perform
elimination of common subexpressions on the result.

K := J-1;
FOR I := 1 TO 5 DO
BEGIN
T[I,J)] := K * K;
J :=J + K;
T [I,J] := K *K-1;
END

Modify the quadruples produced in Exercise 10 to remove loop in-
variants.

Write an algorithm to construct the proper display when a procedure
is invoked. Your algorithm may use the old display (i.e., the current
display before the call), the address of the activation record created
for the procedure being called, and the block-nesting level of the pro-
cedure being called.

