CSCI 30000
Systems Programming
Course Project

SYSTEM SOFTWARE

An Introduction to

Leland L Beck

TA: Hongyan Zhou(zhou94@iu.edu)

Course Project: Introduction

* These slides will serve as a basic guide to help you get started

* This project will take a considerable amount of time to complete
successfully

* |f you have not already, please quickly make a plan with your group detailing
how vou will complete this project

 There is no way you will be able to successfully complete this project if you
put if off until the end of the semester

* This project will enhance both your understanding of System
Software and your skills as a programmer

* You need to start by reading the first two chapters of the textbook

Course Project: Goal

* Desigh and Implement Project: implement an assembler
using Java, C++, Perl, Tcl/Tk, others (any one is OK)

* | would suggest Java or Python, but you may choose whatever language
reflects your team members’ strengths

* Irrespective of choice, you will be responsible for clearly outlining the details
of how to successfully compile and run your code

* Implement an assembler which can process SIC/XE assembly
programs and generate the corresponding object codes and object
programs

Course Project: Overview

* In HW1 we saw how use an object code to calculate the corresponding
SIC/XE instruction’s TA(target addresses), addressing modes, opcode and
instruction format (object code -> instruction details)

* |In this project you are tasked with discerning a SIC/XE program's
instructions’ information and working to create the corresponding object
codes (instruction details -> object code)

Course Project: Implementation Details

* Let us take a look at some assembler implementation details

* In an email you were given six sample SIC/XE assembly programs
basic.txt

functions.txt

literals.txt

program_blocks.txt

control_sections.txt

6. macros.txt

* You need to implement an assembler which can successfully process
all these files

* Let us start by taking a closer look at functions.txt

Lk wNh e

Course Project: functions.txt

10
12
13
15
20
a5
30
35
40
45
50
55
60
65
70
80
95
100
105
110
115
120
125
130
132
133
135
140
145
150
155
160
165
170
175
180
185
195
200
205
210
212
215
220
225
230
235
240
245
250
255

Line

COPY FILE FROM INPUT TO OUTPUT
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

TEST FOR EOF (LENGTH = 0)

EXIT IF BEOF FOUND

WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUERCUTINE TO READ RECORD INTO BUFFER

Source statement
CoPY STRRT 0
FIRST STL RETADR
LDB #LENGTH
BASE LENGTH
CLOOP +JSUB RDREC
LDA LENGTH
CoMP #0
JEQ ENDFIL
~JSUB WRREC
J CLOOP
ENDFIL LDA EOF
STA BUFFER
LDA €3
STA LENGTH
+JSUB WRREC
J @RETADR
EOF BYTE C*BOF*
RETADR RESW 1
LENGTH RESW 1
BUFFER RESB 4096
RDREC CLEAR X
CLEAR A
CLEAR s
+LDT #4096
RLOOP D INFUT
JEQ RLOOP
FD INPUT
COMPR A.5
JEQ EXIT
STH BUFFER. X
TIXR T
JLT RLOOP
EXIT STX LENGTH
RSUB
INPUT BYTE X'F1*
WRREC CLEAR X
LoT LENGTH
WLOOP T™D OUTRUT
TR WLOOP
LDCH BUFFER, X
WD OUTPUT
TIXR T
JLT WLOOP
RSUB
OUTPUT BYTE X-05°
BND FIRST

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR 5 TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X*00°)
EXIT LOOP IF EOR

TEST OUTPUT DEVICE
LOOP UNTIL READY

GET CHARACTER FROM BUFFER
WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

CODE FOR OUTPUT DEVICE

* This SIX/XE program should look
familiar, it is from you book!

 functions.txt (pg. 55)

Course Project: functions.txt
))

Line Loc Source statement Object code
e f I
. ow com s o unctions.txt solution (pg. 58)
10 0000 FIRST STL RETADR 17202D
12 0003 L8 RLENGTH 69202D .
1 mes Lewm * Loc and Object Code columns
15 0006 CLOOP +JSUB ROREC 481010386
20 D0OA LIDA LEMGTH 032026
2 e R now present!
30 0010 JED ENDFIL 332007
as oD13 +«JSUB WHEEC 4B1010SD
40 o017 J CLOO® IF2FEC
a5 DOLlA ENDFIL LDA EOF 032010
50 001D —TSTA BUFFER oF2016&
55 0020 LA LE] 010003
&0 o023 STA LENGTH OF200D
65 0026 +JSUB WRREC 4810105D
TO 002A J PRETADR IE2003
B0 002D EOF BYTE C"EBOF" 454F46
95 0030 RETADR RES 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
110 .
115 . SUBROUTINE TO READ RECORD INTO BUFFER

K'FDP‘I' PDDDDD,PDlﬂT?

TO0000001D172020692020481010360320262900003320074810105D3F2FECO32010 o functions.txt Object program

RODD'UID*.I.3"0!1Dl.%DIDODJPFZDEI&*'lulﬂﬁballzﬂﬂlaiiiliﬁ .
T001036,1084108400844075101000£32019332FFADB201JA00433200857C0038850 SO|ut|On (pg_ 65)
1001033) DIB2FEA) 340004 FOOOOF L34 1077400083201 1332FFASIC003IDF20082850

T,001070073B2FEE4FO00005

HO0000705

MP0001405

¥00002705

£000000

Course Project: Implementation Details

* Cool! We can already see the answers ©
* For many of the sample programs the solutions are given in the book

* As you implement assembler and add functionalities to successfully
process the 6 sample programs, you can reference these solutions to
see if you are on the right track

* This still doesn’t tell us much about how to actually generate the
displayed object code or location columns though ®

* Let us try to figure out

Course Project: Implementation Details

* Our given functions.txt file has four tab delimited columns
e Symbol Col, Operation Col, Operand Col and Comments Col

* Comments are indicated with a */
* In the solution a Loc Col and Object Code Col are added

Line Source statement Line Loc Source statement Object code
5 COPY ST 0 COPY FILE FROM INPUT TO OUTPUT 5 0000 COPY START o

10 FIRST STL RETADR SAVE RETURN ADDRESS 10 0000 FIRST STL RETADR 172020

12 LD8 #LENGTH ESTABLISH BASE REGISTER 12 0003 LD8 SLENGTH 69202D

13 BASE LENGTH 13 BASE LENGTH

15 CLOOP JSUB ROREC READ INPUT RECORD 15 0006 CLOOP «JSUB ROREC 481010386

20 LDA LENGTH TEST FOR EOF (LENGTH = 0) =2 oooa Lo LG 932026

s 000D oo 0 290000

25 COMP #0 10 0010 JEQ ENDFIL 332007

30 JEQ ENDFIL EXIT IF BOF FOUND s o013 +JSUB WRREC 4B10105SD

15 +JSUB WRREC WRITE OUTPUT RECORD 40 0017 J cLooP IF2FEC

40 J CLOOP LOOP 45 DOL1A ENDFIL LDA EOF 032010

45 ENDFIL LDA EOF INSERT OF FILE MARKER 552 oo1o —7STA 3'-‘3 FFER g*‘ggé;‘

LOA . 1

:g m ';"’Ffm - - 60 0023 STA LENGTH OF200D

LENGTH 65 0026 +JSUB WRREC 4B1010SD

Course Project: Implementation Details

e Pass 1 serve mainly to create the Loc Col and Symbol Table (SYMTAB)

* The Loc Col can be created by simply finding the program’s starting address
and tracking the amount of bytes that have been used by instructions
* Length of instruction(e.g. 3 bytes)
* Data area to be generated(e.g. buffer)

* The SYMTAB will keep track of the values in the Loc Column corresponding
to each symbol in the Symbol Column

Line Loc Source statement Object code SYMTAB
3 —— — START ° VName LOCCTR :

10 o000 FIRST STI. RETADR 17202D FIRST 1000
12 0003 LOB SLENGTH 69202D |
13 BASE LENGTH LOOP 1006
15 0006 CLOOP +JSUB ROREC 48101036
20 000A LDA LENGTH 032026 TABLE 1015
25 000D oo &80 290000 !
30 0010 JED ENDFIL 332007 COUNT 1018
s o013 +JSUB WREEC 4B10105D !
40 0017 J CLOOP IFZFEC ZERO 101B
45 001A ENDFIL LDA EOF 032010
50 001D ——FsTA BUFFER 0F2016 TOTAL 101E
55 0020 LDA 3 010003
60 0023 STA LENGTH OF200D
[0026 +JSUB WRREC 4810105D

Course Project: Implementation Details

* Pass 2 generates the Object Code column

* Take a second to re-read 2.2.1 Instruction Formats and Addressing
Modes (pg. 57-61) to get an idea of what we will need to do

* First we should create an Operation Table (OPTAB)
 The OPTAB will contain an entry for each instruction S
belonging to the SIC/XE instruction set LDA 00
 Each entry should contain the instruction’s corresponding i =
mnemonic, opcode, and format(s) -
* Re-read Appendix A i E

Course Project: Implementation Details

* Once we have the OPTAB, we know an instruction’s opcode and format

* Then (if necessary) we need to calculate the addressing mode
information (n i x b p e bits)

* Finally (if necessary) we need to calculate the disp/TA information
based on the addressing mode information

IRRERRRRRANI

 All this information will be used to calculate the instructions object
code

Example 1

 Take a look in functions.txt at this line:
FIRST STL RETADR .SAVE RETURN ADDRESS

* First, from our OPTAB, STL : opcode 14 (hexadecimal)
format 3/4 (3 or 4)

* This means the first byte of our obj code will contain the value 14
(0001 0108) plus the n and i bit values we find

* This also means we will either have a format 3 or 4 instruction

Calculate thenix b p e bits

* n=1, i=1 indicates simple addressing(by default)
* n=1, i=0 indicates indirect addressing ‘@’
* For example, in functions.txt find the) @RETADR line
* n=0, i=1 indicates immediate addressing ‘#
* For example, in functions.txt find the LDB #LENGTH line

* x=1 indicates indexed addressing ‘, X’
* For example, in functions.txt find the STCH BUFFER, X line

b=1, p=0 indicates for base relative addressing
* b=0, p=1 indicates for program-counter relative addressing

* e=1 indicates a format 4 instruction ‘+’ (e=0 indicates format 3 instruction)

Bits: e

« Remember our SIC/XE addressing modes? | "%
= 1
(pg' 8 and 9) Format 2 (2 bytes): o
= [nl«]
Format 3 (3 bytes): -
[FLERR e
* To indicate an instruction is format 4, the Format 4 & byis |
instruction will be preceded by a ‘+ o [Pp s
* E.g, in functions.txt take a look at the 15™ line
15 CLOOP +JSUB ROREC READ INPUT RECORD

* Since STL has no preceding ‘+’ it must be format 3

Bits: b p

* The base relative vs. program-counter relative distinction is a bit
harder to discern

* In the reading we learned program-counter relative is used by default,
but, if the displacement (disp) we calculate is out of range, we resort
to base relative

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0<disp < 4095)

Program-counter b=0,p=1 TA=(PC)+disp (-2048<disp <2047)
relative

Bits: b p

* To get value of b & p, we need to calculate the displacement (disp)
* Remember we are looking at the line:

FIRST STL RETADR .SAVE RETURN ADDRESS
* From out 1%t pass, this line’s corresponding Loc Col value is 0000

* From the reading, the PC register will contain the next Loc Col value (0003)
* We also know from our first pass-generated SYMTAB that the
value corresponding to RETADR is 0030 (TA)

Loc Source statement
000 PY STAR
=== 000 RS STL RETAD
== 000 LDB LENGTE
BASE LENGTE
00 CLOO +JSUB RDREC
000A LDA LENGTT
Q00 coMpP 0
001 JEQ ENDFIL
001 +JSUB WRREC
0 J “LOOP
001A ENDFIL LDA jo'e)
(o]] sTA UFFER
00
002
00

EOF BYTE EOF*
RETADR RESW

BUFFER RESB

Bits: b p

* From the book we see, for pc-relative addressing:

TA=(PC)+disp -> disp=TA-(PC)
* This means our disp=0030-0003, disp=002D (hexadecimal values)
* This is within our program-counter relative disp bounds

(-2048 <= disp <= 2047) (decimal values)

Mode Indication Target address calculation

Base relative b=1,p=0 TA={(B%* disp (0 < disp < 4095)
Program-counter b=0,p=1 TA=(PC)+disp (-2048 <disp <2047)

relative

Generate object code

* We finally have all the information we need to form the object code
for line:

FIRST STL RETADR .SAVE RETURN ADDRESS
e op (opcode)=14 or 0001 0160
* n=1,i=1,x=0,b=0,p=1,e=0 or 11 0010

* We have simple addressing because we didn’t have immediate or indirect
addressing!

¢ d|Sp=02D or OOOO 0011 1101 Format 3 (3 bytes):

6 1 121 s 12

op nii|x|blple disp

Generate object code

FIRST STL RETADR .SAVE RETURN ADDRESS

* Object Code Generation:

* First byte = opcode + ni->0001 0100 + 11 (or 14 + 3) -> 0001 0111 (or 17)
So, our first byte = 0001 0111 (or 17)

e Second byte first half = xbpe -> 0010 (or 2)
So, our second byte first half = 0010 (or 2)

e Second byte second half and third byte = disp -> 0000 0011 1101 (or 02D)
So, our second byte second half and third byte = 0000 0011 1101 (or 02D)

e Altogether, our 3-byte format 3 instruction is:
0001 0111 0010 0000 0011 1101 (or 17202D)

Course Project: Implementation Details

Line Loc Source statement Object code
5, 0000 COPY START (o
10 0000 FIRST STL RETADR 17202D i
iz 0003 o= HLENGTH £9202D
13 BASE LENGTH
al=; 0006 CLOOP +ISU= RDREC 43101036
20 - oooa DA LENGTH 032026
25 coMP

290000 3 \
332007 :

am10105D

2 5

032010,

0F2016

Course Project: Implementation Details

* The overall process will be quite similar for format 4 instructions
* This process will differ slightly with the different addressing modes

* Base relative addressing will require you to keep track of what is
loaded into the B register for use in your disp calculation

* Immediate and indirect addressing effects also need to be
considered!

Example 2

e Let us take a look at a format 2 instruction
e Look at functions.txt and find the line:

COMPR A,S .TEST for End Of Record (X'00')

* From our OPTAB we see COMPR has opcode of AO (hexadecimal
value) and that it is a format 2 instruction

Course Project: Implementation Details

* So, we already have the op section ready (AO or 1010 0000) for the
first byte

* We need to get the r1 and r2 values for the second byte

Format 2 (2 bytes); .

r op i)

ic Number Special use

Base register; used

mo- 0w
e U1 W=

Course Project: Implementation Details

COMPR A,S .TEST for End Of Record (X'00')

ic Number

s W s W

 We néed the A (O hexadecial) and S (4 hexadecimal) register values
for r1 and r2 respectively

Format 2 (2 byteg’:); .E :

LT

8
r o rtl A

Generate object code

COMPR A,S .TEST for End Of Record (X'00’)

* Object Code Generation:

* First byte = opcode -> 1010 0000 (or AO)
15t byte = 1010 0000 (or AO)

* Second byte first half =rl1 -> A -> 0000 (or 0)
2d pyte first half = 0000 (or 0)

e Second byte second half =r2 ->S-> 0100 (or 4)
2"d byte second half = 0100 (or 4)

* Altogether, our 2-byte format 2 instruction is:
1010 0000 0000 0100 (or AC04)

Course Project: Implementation Details

Line Loc Source statement Object code
5 CoPY START o
10 FIRST ST, RETADR 17202D ‘
1z DB #TENGTH 69202D
13 BASE LENGTH
1s CcLOoOP +ISUB RDREC 48101036 ‘
20 LDA LENGTH 032026 {
25 comP #0 290000 \
o JEQ ENDFIL 332007
+ISUB WRREC 4810105D 3
= CLOOP" < 3F2FEC
ENDFIL DA EOF 032010C,
STA BUFFER 0F2016
LDA #3 010003
LENGTH OF200D
WRREC = 481
@RETADR < 3E2003

C’'EOF”’ 4S4FAE

What else?

* With each of the sample programs there will need to be added
functionality your assembler will need to support

* literals.txt adds literals
* program-blocks.txt adds program blocks
* etc.

* You also should create object programs using the object code you generate
* | would suggest leaving this part until you can support all six test files

* Your assembler should support the six test programs

* To test for robustness, your assembler will be tested using files you do not
have access to

	CSCI 30000�Systems Programming�Course Project
	Course Project: Introduction
	Course Project: Goal
	Course Project: Overview
	Course Project: Implementation Details
	Course Project: functions.txt
	Course Project: functions.txt
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Example 1
	Calculate the n i x b p e bits
	Bits: e
	Bits: b p
	Bits: b p
	Bits: b p
	Generate object code
	Generate object code
	Course Project: Implementation Details
	Course Project: Implementation Details
	Example 2
	Course Project: Implementation Details
	Course Project: Implementation Details
	Generate object code
	Course Project: Implementation Details
	What else?

