
CSCI 30000
Systems Programming

Course Project

TA: Hongyan Zhou(zhou94@iu.edu)

Course Project: Introduction

• These slides will serve as a basic guide to help you get started
• This project will take a considerable amount of time to complete

successfully
• If you have not already, please quickly make a plan with your group detailing

how you will complete this project
• There is no way you will be able to successfully complete this project if you

put if off until the end of the semester

• This project will enhance both your understanding of System
Software and your skills as a programmer

• You need to start by reading the first two chapters of the textbook

Course Project: Goal

• Design and Implement Project: implement an assembler
using Java, C++, Perl, Tcl/Tk, others (any one is OK)

• I would suggest Java or Python, but you may choose whatever language
reflects your team members’ strengths

• Irrespective of choice, you will be responsible for clearly outlining the details
of how to successfully compile and run your code

• Implement an assembler which can process SIC/XE assembly
programs and generate the corresponding object codes and object
programs

Course Project: Overview

• In HW1 we saw how use an object code to calculate the corresponding
SIC/XE instruction’s TA(target addresses), addressing modes, opcode and
instruction format (object code -> instruction details)

• In this project you are tasked with discerning a SIC/XE program's
instructions’ information and working to create the corresponding object
codes (instruction details -> object code)

Course Project: Implementation Details

• Let us take a look at some assembler implementation details
• In an email you were given six sample SIC/XE assembly programs

1. basic.txt
2. functions.txt
3. literals.txt
4. program_blocks.txt
5. control_sections.txt
6. macros.txt

• You need to implement an assembler which can successfully process
all these files

• Let us start by taking a closer look at functions.txt

Course Project: functions.txt

• This SIX/XE program should look
familiar, it is from you book!

• functions.txt (pg. 55)

Course Project: functions.txt

• functions.txt solution (pg. 58)
• Loc and Object Code columns

now present!

• functions.txt object program
solution (pg. 65)

Course Project: Implementation Details

• Cool! We can already see the answers
• For many of the sample programs the solutions are given in the book
• As you implement assembler and add functionalities to successfully

process the 6 sample programs, you can reference these solutions to
see if you are on the right track

• This still doesn’t tell us much about how to actually generate the
displayed object code or location columns though

• Let us try to figure out

Course Project: Implementation Details

• Our given functions.txt file has four tab delimited columns
• Symbol Col, Operation Col, Operand Col and Comments Col

• Comments are indicated with a ‘.’
• In the solution a Loc Col and Object Code Col are added

Course Project: Implementation Details
• Pass 1 serve mainly to create the Loc Col and Symbol Table (SYMTAB)
• The Loc Col can be created by simply finding the program’s starting address

and tracking the amount of bytes that have been used by instructions
• Length of instruction(e.g. 3 bytes)
• Data area to be generated(e.g. buffer)

• The SYMTAB will keep track of the values in the Loc Column corresponding
to each symbol in the Symbol Column

Course Project: Implementation Details

• Pass 2 generates the Object Code column
• Take a second to re-read 2.2.1 Instruction Formats and Addressing

Modes (pg. 57-61) to get an idea of what we will need to do

• First we should create an Operation Table (OPTAB)
• The OPTAB will contain an entry for each instruction

belonging to the SIC/XE instruction set
• Each entry should contain the instruction’s corresponding

mnemonic, opcode, and format(s)
• Re-read Appendix A

Course Project: Implementation Details

• Once we have the OPTAB, we know an instruction’s opcode and format
• Then (if necessary) we need to calculate the addressing mode

information (n i x b p e bits)
• Finally (if necessary) we need to calculate the disp/TA information

based on the addressing mode information

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆
• All this information will be used to calculate the instructions object

code

Example 1

• Take a look in functions.txt at this line:
FIRST STL RETADR .SAVE RETURN ADDRESS

• First, from our OPTAB, STL : opcode 14 (hexadecimal)
format 3/4 (3 or 4)

• This means the first byte of our obj code will contain the value 14
(0001 0100) plus the n and i bit values we find

• This also means we will either have a format 3 or 4 instruction

Calculate the n i x b p e bits

• n=1, i=1 indicates simple addressing(by default)
• n=1, i=0 indicates indirect addressing ‘@’

• For example, in functions.txt find the J @RETADR line
• n=0, i=1 indicates immediate addressing ‘#’

• For example, in functions.txt find the LDB #LENGTH line

• x=1 indicates indexed addressing ‘, X’
• For example, in functions.txt find the STCH BUFFER, X line

• b=1, p=0 indicates for base relative addressing
• b=0, p=1 indicates for program-counter relative addressing

• e=1 indicates a format 4 instruction ‘+’ (e=0 indicates format 3 instruction)

Bits: e

• Remember our SIC/XE addressing modes?
(pg. 8 and 9)

• To indicate an instruction is format 4, the
instruction will be preceded by a ‘+’

• E.g, in functions.txt take a look at the 15TH line

• Since STL has no preceding ‘+’ it must be format 3

Bits: b p

• The base relative vs. program-counter relative distinction is a bit
harder to discern

• In the reading we learned program-counter relative is used by default,
but, if the displacement (disp) we calculate is out of range, we resort
to base relative

Bits: b p
• To get value of b & p, we need to calculate the displacement (disp)
• Remember we are looking at the line:

FIRST STL RETADR .SAVE RETURN ADDRESS
• From out 1st pass, this line’s corresponding Loc Col value is 0000
• From the reading, the PC register will contain the next Loc Col value (0003)
• We also know from our first pass-generated SYMTAB that the

value corresponding to RETADR is 0030 (TA)

Bits: b p

• From the book we see, for pc-relative addressing:
TA=(PC)+disp -> disp=TA-(PC)

• This means our disp=0030-0003, disp=002D (hexadecimal values)
• This is within our program-counter relative disp bounds

(-2048 <= disp <= 2047) (decimal values)

Generate object code

• We finally have all the information we need to form the object code
for line:
FIRST STL RETADR .SAVE RETURN ADDRESS

• op (opcode)=14 or 0001 0100
• n=1,i=1,x=0,b=0,p=1,e=0 or 11 0010

• We have simple addressing because we didn’t have immediate or indirect
addressing!

• disp=02D or 0000 0011 1101

Generate object code
FIRST STL RETADR .SAVE RETURN ADDRESS

• Object Code Generation:
• First byte = opcode + ni -> 0001 0100 + 11 (or 14 + 3) -> 0001 0111 (or 17)

So, our first byte = 0001 0111 (or 17)
• Second byte first half = xbpe -> 0010 (or 2)

So, our second byte first half = 0010 (or 2)
• Second byte second half and third byte = disp -> 0000 0011 1101 (or 02D)

So, our second byte second half and third byte = 0000 0011 1101 (or 02D)
• Altogether, our 3-byte format 3 instruction is:

0001 0111 0010 0000 0011 1101 (or 17202D)

Course Project: Implementation Details

Course Project: Implementation Details

• The overall process will be quite similar for format 4 instructions
• This process will differ slightly with the different addressing modes
• Base relative addressing will require you to keep track of what is

loaded into the B register for use in your disp calculation
• Immediate and indirect addressing effects also need to be

considered!

Example 2

• Let us take a look at a format 2 instruction
• Look at functions.txt and find the line:

COMPR A,S .TEST for End Of Record (X'00')

• From our OPTAB we see COMPR has opcode of A0 (hexadecimal
value) and that it is a format 2 instruction

Course Project: Implementation Details

• So, we already have the op section ready (A0 or 1010 0000) for the
first byte

• We need to get the r1 and r2 values for the second byte

• The book lists all the register values for us in the first chapter

Course Project: Implementation Details

COMPR A,S .TEST for End Of Record (X'00')

• We need the A (0 hexadecimal) and S (4 hexadecimal) register values
for r1 and r2 respectively

Generate object code

COMPR A,S .TEST for End Of Record (X'00’)
• Object Code Generation:

• First byte = opcode -> 1010 0000 (or A0)
1st byte = 1010 0000 (or A0)

• Second byte first half = r1 -> A -> 0000 (or 0)
2nd byte first half = 0000 (or 0)

• Second byte second half = r2 -> S -> 0100 (or 4)
2nd byte second half = 0100 (or 4)

• Altogether, our 2-byte format 2 instruction is:
1010 0000 0000 0100 (or A004)

Course Project: Implementation Details

What else?

• With each of the sample programs there will need to be added
functionality your assembler will need to support

• literals.txt adds literals
• program-blocks.txt adds program blocks
• etc.

• You also should create object programs using the object code you generate
• I would suggest leaving this part until you can support all six test files

• Your assembler should support the six test programs
• To test for robustness, your assembler will be tested using files you do not

have access to

	CSCI 30000�Systems Programming�Course Project
	Course Project: Introduction
	Course Project: Goal
	Course Project: Overview
	Course Project: Implementation Details
	Course Project: functions.txt
	Course Project: functions.txt
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Course Project: Implementation Details
	Example 1
	Calculate the n i x b p e bits
	Bits: e
	Bits: b p
	Bits: b p
	Bits: b p
	Generate object code
	Generate object code
	Course Project: Implementation Details
	Course Project: Implementation Details
	Example 2
	Course Project: Implementation Details
	Course Project: Implementation Details
	Generate object code
	Course Project: Implementation Details
	What else?

