Designing Embodied Interactions for Informal Learning: Two Open Research Challenges

Francesco Cafaro, Milka Trajkova
Human-Centered Computing
School of Informatics and Computing
Indiana University-Purdue University Indianapolis
Indiana, U.S.A.
fcafaro@iu.edu, milktraj@iu.edu

A’aeshah Alhakamy
Computer and Information Science
School of Science
Indiana University-Purdue University Indianapolis
Indiana, U.S.A.
aalhakam@iu.edu

ABSTRACT
Interactive installations that are controlled with gestures and body movements have been widely introduced in museums due to their tremendous educational potential. The design of such systems, however, remains problematic. In this paper, we reflect on two open research challenges that we observed when crafting a Kinect-based prototype installation for data exploration at a science museum: (1) making the user aware that the system is interactive; and, (2) increasing the discoverability of hand gestures and body movements.

CCS CONCEPTS
• Human-centered computing → Human computer interaction (HCI); HCI theory; concepts and models.

KEYWORDS
Embodied Interaction, Informal Learning, Human-Data Interaction

1 INTRODUCTION
The availability of commercial motion tracking devices (e.g., Microsoft Kinect) was initially met with great enthusiasm by early-adopters and by the research community, because of the promise to bring embodied interaction [7] to the masses. Such devices opened scenarios in which people no longer controlled large displays and interactive systems using traditional input devices (such as keyboard and mouse), but directly with their hand gestures and body movements. Museums, in particular, have embraced embodied interaction; its novelty generates buzz and excitement among their patrons and it has enormous educational potential. Designing gestures and body movements for embodied interaction is, however, still a challenge. In the following, we discuss two open research

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
PerDis ’19, June 12–14, 2019, Palermo, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6751-6/19/06.
https://doi.org/10.1145/3321335.3329688

2 RELATED WORK

2.1 Embodied Interaction
According to Dourish [5], we construct meaning through our embodied (i.e., physical) interaction with the world. More recently, the term “embodied interaction” has also been used to denote interactive installations that are controlled by hand gestures and body movements (e.g., [4, 7]).

2.2 Embodied Learning
According to the theory of embodied cognition [16], our body plays a fundamental role in our cognitive processes: our discoveries happen through the interaction between our body and the surrounding environment [14]. In the field of learning science, Embodied Learning [2] employs embodied cognition principles to design embodied interactions that facilitate learning. For example, Lindgren et al. showed that children better understand and remember physics concepts when they are asked to “embody” a meteor in an interactive simulation, rather than when they are introduced to similar concepts using a more traditional desktop simulation [9].
3 DESIGN CHALLENGE NO.1: MAKING USERS AWARE THAT THE SYSTEM IS INTERACTIVE

Despite their tremendous potential to bring in patrons and to facilitate embodied learning, full-body installations have no utility if visitors do not notice that the system is interactive. If the system is not immediately responsive to their action, people generally leave thinking that the installation is broken. During our in-situ observations, we noticed that the visitors’ experiences are completely derailed if they are not able to operate with an Human-Data Interaction system within 10 to 15 seconds [10]. Figure 2 portrays an even more problematic scenario that we observed. A user (who previously tried unsuccessfully to interact with the installation) decided that the system was not working, left and, after coming back with a book, took a seat on the projector stool in front of the screen, inhibiting other visitors from accessing that exhibit and the nearby installations. Thus, this problem requires research aimed at identifying strategies to quickly engage visitors with such interactive installations. Inspiration may come from three sources: (1) work on proxemics in the context of ambient displays [6]; (2) attempts to engage visitors with interactive museum labels [12]; and, (3) research on how the users’ silhouette may promote the interaction with displays in store windows [11].

![Figure 2: A discouraged user sits in front of a prototype exhibit, preventing other people from using it.](image)

4 DESIGN CHALLENGE NO.2: INCREASING THE DISCOVERABILITY OF HAND GESTURES AND BODY MOVEMENTS

Even after they notice that a screen is interactive, museum visitors tend to spend a short amount of time with an artifact or installation (less than two minutes [13]), and quickly leave if the exhibit does not respond to their control actions. This problem is exacerbated by the fact that museum visitors cannot consult user manuals before interacting with an installation. Most work in the field is currently dominated by elicitation studies [17]: groups of potential users are exposed to animations that represent functionalities of the system, and are asked to recommend gestures to control each functionality. The lack of a reference context during an elicitation study, however, often results in sets of gestures that are completely disconnected and may be difficult to discover. For example, the work in [15] recommends implementing a “Hand Wave” gesture to hide the menu of a smart TV, and a “Draw Letter M” gesture to open the menu. Being able to guess how to open the menu does not provide any clue as to which gesture should be used to hide that menu.

Inspiration may come from current attempts to identify intuitive cultural constructs that can be used to inform the design. Examples include using embodied schemata [8] to map input actions into perceptual feedbacks [1], and incorporating frames (i.e., scenarios) into elicitation studies [3]. Foundational work, however, still needs to be done to understand how to generalize these approaches. For example, the work in [11] implies a 1:1 relationship between one concept and one action (“fast” tempo - running “fast”), which is not well-suited for installations that show data visualizations and support many functionalities.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1848898 (CHS-Eager:Aiding Reasoning about Correlation and Causation).

REFERENCES