
Stream Clustering with Dynamic Estimation of
Emerging Local Densities

Ziyin Wang
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

Indianapolis, IN 46202, USA
Email: wang2457@purdue.edu

Gavriil Tsechpenakis
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis

Indianapolis, IN 46202, USA
Email: gtsechpe@indiana.edu

Abstract—We present a method for clustering data streams
incrementally, designed to discover all valid density peaks in
a single pass, in a non-parametric fashion. It detects emerging
clusters along the stream by dynamically locating kernels in
the most promising areas and performing a Stochastic Mean
Shift procedure to find clustering centers. We present a density
estimation approach for dynamic initialization, considering every
sub-stream that follows ‘emerging data’ as a sample set and
applying Hypothesis Testing (p-value approach) to estimate its
local density. The sub-stream size and the p-value are determined
in a way that provides provable accuracy guarantee. We compare
our method with the state-of-the-art, on realistic and complex
datasets. We show that it outperforms not only stream algorithms
but also their more complex, non-stream foundational paradigms.

I. INTRODUCTION

In stream clustering, data are processed sequentially (e.g.,
during acquisition) with two main constraints, namely compu-
tational efficiency and the use of limited memory, that give rise
to single-pass algorithms. The lack of prior knowledge, such
as the number of clusters and data size, renders the problem
even more challenging. The use of stream clustering is well
motivated by a wide range of application domains such as
onboard processing in unmanned aerial vehicles, online user
behavior, commercial transaction chains, etc.

Clustering data streams by approximating popular non-
stream algorithms has been a popular trend in the state-
of-the-art, with tight and proven convergence boundaries
[26][1][12][15], providing much faster processing at the ex-
pense of clustering quality. Considering that the foundational
algorithms themselves already sacrifice accuracy for reason-
able speed, there is still much left to be desired regarding the
trade-off between efficiency and clustering quality. Our objec-
tive in this work was to develop an algorithm that achieves
the highest possible accuracy in the center-based clustering
domain, while maintaining top-tier speed for processing data
streams.

Here we consider the Density Peak clustering paradigm:
given a neighborhood size θ and a minimum density ratio
0 < pf < 0.5, find all local density peaks C = {c1, c2, ..., cK}
such that pθk = Nk

N ≥ pf ,∀k = 1, . . . ,K, where pθk is the
density ratio of θ-neighborhood around ck, Nk is the number
of data points covered by this θ-neighborhood, and N is
the data size. We consider this formulation for data streams

because (a) the number of clusters is a priori unknown and
new clusters are likely to emerge continually, and (b) a density
peak inherently represents its neighborhood. In our method,
neighborhood size θ and density threshold pf are the only
two user-specified parameters, and no other prior information
is required.

A. Related Work
The data stream clustering problem gave rise to a number

of seminal works [30] [21] [2] [8]. The recent state-of-the-
art focuses more on approximating well-known algorithms
[26][25][1][12] [15][5]. [25] describes a heuristic method for
online K-means but without approximation boundary guaran-
tees. [1] presents a sampling method along with map-reduce
to construct a weighted subset (coreset), such that running
K-means++ on coreset can be a proven approximation of
the original algorithm. The coreset idea was also adopted in
[12] and [15]. The recently work in [19] presents an online
approximation of K-means that instantiates a new cluster when
an incoming data point is far away from existing clusters. In
[5] Markov Chain Monte Carlo sampling is used as a seed-
ing approximation of K-means++ algorithm. [16] describes
a hierarchical clustering method along with tree rotation to
approximate K-means with tractable solution when the number
of clusters is large.

A key attribute of data streams is that they can potentially be
very large, which calls for designing scalable methods, such as
[11]. [10] describes a parallel method to scale the K-means++
initialization process. In [7], a Map-Reduce model is used
to minimize dependency between iterations in K-means for
efficient scaling. [6] shows an salable solution in generating
coreset for K-means and K-median problems.

Most algorithms that approximate foundational non-stream
methods usually provide limited clustering quality, as ex-
plained above. Some other accurate solutions that have been
approximated in streaming problems have higher complex-
ity, and their streaming counterparts are more focused on
maintaining clustering quality than achieving the best possible
speed. For instance, [28] that uses a Dirichlet Process mixture
model is a popular Bayesian nonparametric model for small,
low-dimensional data, with O(iNd3) complexity, where i is
the number of Gibbs Sampling iterations, N is the data size



and d is the data dimension. [17][4] are faster approximations
that reduce the cubic complexity and overcome the bottleneck
of Gibbs Sampling. [13] maintains three N × N matrices
to discover clusters in small datasets, with time and space
complexities O(iN2) and O(N2) respectively. [22] maps the
original data set into a 2-D density map with complexity
O(N2) in time and space, such that few density peaks can
be manually selected. Nowadays, even moderate-sized datasets
are far beyond the capacity of most of these methods.

B. Our contribution

We present a novel approach for clustering data streams
that is able to find all natural clusters accurately in a single
pass, while detecting emerging clusters over time. To sup-
port this functionality, we developed a dynamic initialization
framework based on Hypothesis Testing (p-value approach).
We postulate the problem in way that it can be elegantly solved
by this Hypothesis Testing and the accuracy can be proved.
We use the Stochastic Mean Shift paradigm to seek nearest
density peaks in a single pass, which is drastically benefited
by our dynamic initialization approach. In our comparisons
with existing popular methods we show that our approach
greatly improves the trade-off between accuracy in speed:
it outperforms the stream clustering competition in terms of
efficiency, and achieves similar level accuracy compared to
more complex, non-stream algorithms. We also report results
showing that our approach is more accurate compared to some
popular iterative methods (K-means, GMM, and Meanshift)
that many state-of-the-art stream algorithms approximate.

II. METHOD

Following the Density Peaks [22] and Mean-shift [9]
paradigms, we assume that each clustering center is located at
the density peak of a local neighborhood. In every step, Mean-
shift computes the mean of data inside a kernel, and moves the
kernel to the mean location. If we take a random sample from
data inside the kernel, its probabilistic expectation happen to
be the mean location, namely

∑
i p(i)xi = 1

N

∑
i xi, where

p(i) is the probability that xi is chosen. This property allows
us to seek local density peaks within a single pass.

Consider a toy dataset, in Fig. 1, generated by a Gaussian
distribution. Suppose we initially place a kernel with band-
width θ at Point A. We randomly sample a data point xi from
this dataset (without replacement), and compute its distance
to the center. If it is smaller than θ we call it a match, and we
update the center as,

ck
(new) =

nkck + xi
nk + 1

(1)

where ck is the center of the kernel and nk is the number
of samples it has been matched with so far. Note that inside
the kernel, the matched sample is more likely to come from a
dense dataset region (yellow-highlighted in Fig. 1). Therefore,
each update will problematically move the center towards a
denser location. If we apply this ”sampling, matching, and
updating” process throughout the entire dataset, the center will
keep moving towards the nearest density peak, as shown with

Figure 1. Updating a center: two candidate cluster initializations, at
Point A and Point B. The paths shown in red and blue colored cross
points indicate convergence towards the density peak of the natural
cluster during the ‘sampling, matching, and updating’ process. The
denser region (in yellow) inside the θ-defined kernel denotes where
the next matched sample is more likely to be. The blue shadow shows
a ”sufficient area” where any kernel inside this area is sufficiently
dense. The entire process requires a single pass through the dataset,
with no iterative operation involved.

the red cross path in Fig.1. The resulting path is quite similar
to the Mean-shift procedure, however the entire process here
is stochastic and merely requires a single pass. Note that since
a kernel always moves towards a density peak, nk can be reset
into a small value if the kernel gets trapped into a sparse region
(where θ is too small to capture sufficient population). Such
case is unlikely to happen with appropriate similarity values
θ or when initialization is close to the density peak (point B).

A. Dynamic Initialization: Density Estimation

To initialize the kernels with respect to their number (how
many?) and locations (where?), our objective is to find at
least one kernel that can be shifted towards each density peak.
We achieve this by estimating the local density around each
input data point that does not fall into any existing kernel, and
initializing a new kernel at that location.

Recalling the Density Peak problem statement given in
section I, we define a kernel as sufficient if its density ratio
is greater than pf , and insufficient otherwise. Around any
valid density peak, there exists a dense region such that any
kernel inside this region is sufficient (as illustrated by the blue
circle in Fig.1). Therefore, as long as we correctly estimate
the density around at least one emerging data point within
a ‘sufficiently’ populated region, we are guaranteed to find
the local density peak following the stochastic Mean Shift
procedure above. Thus, in our dynamic kernel generation
principle:

(i) every data point that cannot be matched to any existing
kernel is temporarily set as a location of a new kernel;

(ii) for every new kernel, we perform an efficient density test
(we estimate its density using the p-value approach), and
discard it as noise if it cannot pass the test;

(iii) we use the kernels that pass the density test to seek local
density peaks.

We consider each data point of the stream as a random
sample from the entire dataset. For every input point that
does not belong to an existing kernel, the subsequent r data
construct a sample set of size r that can be used for density



estimation following the p-value approach. Specifically, given
a statistical confidence α (here we consider α = 1%), the
following two conditions must be satisfied:
Condition A: If a kernel is known to be sufficient, we have
1− α confidence that it will not fail density test.
Condition B: If a kernel passes the density test, we have 1−α
confidence that it is indeed sufficient.

Proposition 1 (Satisfying Condition A): For any r random
samples from the dataset, with

r =
lnα

ln(1− pf )
, (2)

the probability that there are no data points covered by a
sufficient kernel k is less than or equal to α.

Proof: Consider the density pk = Nk
N of a sufficient kernel

ck, pk ≥ pf , with Nk being the set of points covered by ck
and N being the size of the dataset. The probability that a
single sample is not covered by kernel ck is 1 − pk. Thus,
the probability that none of the r samples are covered by the
kernel will be,

(1− pk)r = (1− pk)
lnα

ln(1−pf ) = (1− pk)
log1−pf

α

≤ (1− pf )
log1−pf

α
= α

(3)

�
Proposition 2 (Satisfying Condition B): Consider any r
samples from the entire dataset and a sufficient kernel ck. Let
the stochastic variable X denote the number of data points
among the r samples that fall into kernel ck. For

Xf = rpf + Φ−1(α)

√
rpf

(
1− pf

)
, (4)

we have

P{X > Xf} ≥ 1− α, (5)

where Φ−1(.) is the inverse Cumulative Density Function of
Standard Normal distribution. In other words, we have 1− α
confidence that if the kernel passes the density test, it is indeed
sufficient.

Proof: X follows Binomial Distribution X ∼ B(r, pk).
According to the Central Limit Theorem, when r is large and
rpk(1 − pk) ≥ 10, we can approximate binomial distribution
B(r, pk) with normal distribution N (rpk,

√
rpk(1− pk)). If

we consider the statistical variable, Y = X−rpk√
rpk(1−pk)

∼
N (0, 1),

P{X > Xf} ≥ P

{
X − rpk√
rpk(1− pk)

>
Xf − rpk√
rpk(1− pk)

}

≥ P

{
Y >

Xf − rpf√
rpf (1− pf )

}
= P{Y > Φ−1(α)} = 1− α,

(6)

given pk ≥ pf , pf ≤ 0.5 (more than one density peak). �

In Fig.1, the dense region covers a large number of data
points; this implies that we are able to detect the density peak
from at least one point from this region that passes the density
test. Suppose we test L data points from such a dense region.

Algorithm 1: Stochastic Mean Shift(D, θ, pf )
1 Dictionary,Memory ← ∅, r←eq.(2), φ← eq.(7)
2 for each x ∈ D do
3 k ← nearest kernel to x in Dictionary
4 if similarity (x, k) ≥ θ then
5 update Dictionary kernel k by eq.(1)
6 else
7 k ← nearest kernel to x in Memory
8 if similarity (x, k) ≥ θ then
9 update Memory kernel k by eq.(1)

10 k.activity = k.activity + r
11 if k.activity ≥ φ then
12 trasfer k to Dictionary

13 else
14 initial a kernel knew at x
15 knew.activity = r
16 Memory.add(knew)

17 Decrease activity of each kernel in Memory by 1
18 Remove kernels with negative activity

19 return Dictionary

According to Proposition 1, the probability of a single failure
is α = 1%. Therefore, the probability of failure for all L tests
will be αL, i.e. it will be almost impossible to fail detecting
the density peak. Additionally, according to Proposition 2, if
any kernel from such dense area passes the test, we have 1−α
confidence that it is indeed sufficient.

B. Single-Pass Algorithm
Algorithm 1 describes our single pass clustering algorithm.

We introduce two data structures, Dictionary that stores per-
manently kernels, and Memory where every newly emerged
kernel is examined according to the density test and is trans-
ferred to Dictionary if it passes, or is discarded as noise if it
fails. Both Dictionary and Memory are empty at the beginning,
and then enriched while parsing the data.

Proposition 1 and 2 can be concisely implemented by
maintaining a variable activity for every kernel in Memory.
Activity is set to r when a new kernel is created and decreases
by 1 after processing every data point in the stream. When a
Memory kernel is matched, its activity value is increased by
r; when this value exceeds a threshold φ, the corresponding
kernel is transferred to the Dictionary as a permanent kernel.
Therefore, a new kernel is maintained in Memory for least r
parsed data points after initialization, and diminishes as outlier
if it is not matched with any of the r input points, or it moves
to Dictionary when it is matched frequently. Following the
notations of Proposition 2, the (upper) threshold φ is,

φ = rXf (7)

A different way to perceive the role of the activity counter
is that it accounts for frequent matching with sufficient and
rare matching with insufficient kernels, in dense and sparse
areas respectively. So far we considered independence among
the data, i.e., cluster assignments are evenly distributed along
the stream, which is the worst case scenario: all kernels have



on average similar, limited number of matches within a sub-
sequence of size r, and their activity counters increase slower.
If the cluster assignments are unevenly distributed due to
temporal data dependencies of some nature, the kernels are
matched more frequently within different sub-streams, and
thus are more likely to be kept as permanent kernels faster,
since their activities increase fast within short parsing periods.

C. Subset size for successful clustering
Consider a sub-stream formed by the first N∗ data points

of the input stream. Our goal is to find a sufficient kernel for
every valid density peak by processing only these N∗ samples,
so that Dictionary will have enough subsequent data to update
itself to the density peaks.

Consider a sufficient kernel ck that covers Nk data points,
with Nk

N = pk > pf . Let N∗
k be the number of instances,

among the first N∗ random samples, covered by kernel ck.
Then N∗

k follows Binomial Distribution N∗
k ∼ B(N∗, pk). Us-

ing again the Central Limit Theorem, let M = (N∗
k −N∗pk)/√

N∗pkqk, where qk = 1 − pk and M follows Standard
Normal distribution, M ∼ N (0, 1). We hope that in the first
N∗ random samples, the instances covered by kernel ck are
more than 0.9 times of the expectation, N∗

k > 0.9N∗pk; the
probability is,

P {N∗
k > 0.9N∗pk}

= P

{
N∗
k −N∗pk√
N∗pkqk

>
0.9N∗pk −N∗pk√

N∗pkqk

}
= P

{
M > − 0.1N∗pk√

N∗pkqk

}
= Φ

(
0.1N∗pk√
N∗pkqk

)
, (8)

where Φ is the Cumulative Density Function of Standard
Normal distribution. We expect P {N∗

k > 0.9N∗pk} > 1−α;
if α = 0.01, then from eq. (8), we have1,

N∗ > 497.3
1− pk
pk

> 497.3
1− pf
pf

(9)

This equation indicates that our method does not ‘prefer’ small
datasets, especially when the cluster population is very small.
However, simple post-processing, such as data duplication or
interpolation, can resolve this issue.

III. EXPERIMENTS

In this section, we compare our method against state-of-the-
art center-based clustering algorithms on realistic datasets. As
mentioned in section I, our goal is to achieve top level per-
formance in both speed and accuracy. Therefore, we consider
not only stream clustering method but also accuracy-dedicated
algorithms. All clustering algorithms considered in this paper
are listed in Table I; in the complexity notations, N denotes
data size, d is the data dimensionality, i is the number of
iterations (usually 30 < i ≤ 100 except IGMM that usually
takes hundreds of iterations for Gibbs sampling), K is the
number of clusters, and C is the Coreset size in StreamKM++
and BICO. We also list the ability to discover the number of

1If Φ(x) = .99 then x = 2.23

Table I
ALL THE CLUSTERING ALGORITHMS IN COMPARISON

Algorithm complexity clusters stream #para
Our Method O(Nd) variant yes 2

Density Peak[22] O(N2d) variant no 2
AP [13] O(iN2d) variant no 2

Infinite GMM[28] O(iNd3) variant no 5
K-means++[3] O(iKNd) fixed no 1

GMM[20] O(iKNd) fixed no 1
Mean Shift[9] O(iKNd) variant no 2

StreamKM++[1] O(Nd + iKCd) fixed yes 2
BICO [12] O(Nd + iKCd) fixed yes 3
Pirch[16] hierarchical variant yes 3
Birch [30] hierarchical variant yes 5

Table II
BASIC STATISTICS OF ALL DATASETS

dataset clusters points dimension
Olivetti[24] 40 400 4096

Segmentation [29] 8 2310 18
LaSat [29] 6 6435 36
Letters [29] 26 20K 16
MNIST [18] 10 70K 784

Covertype [29] 7 581012 54
ALOI [14] 1000 108000 128

ILSVRC12 [23] 1000 1.3M 2048

clusters (indicated as ‘variant’ in the ‘clusters’ column), along
with the number of user-specified parameters (#para). Among
these algorithms, Density Peak, Affinity Propagation (AP) and
Infinite GMM are accuracy-dedicated methods that are only
suitable for relatively small datasets. K-means++, GMM and
Mean Shift are popular algorithms applied in diverse domains
and are also regarded as paradigms for approximation in many
state-of-the-art stream clustering algorithms. StreamKM++
and BICO are two popular approximation algorithms of K-
means++ that are able to cluster very large datasets with
proven approximation accuracy. Pirch is a recent approach
carefully designed for ‘extreme clustering’ [16], where the
number of clusters is very large. Finally, Birch [30] provides
a baseline for comparison.

We evaluate the above algorithms on 8 datasets of different
domains, dimensionality, and sizes. Characteristics of these
datasets are shown in Table II. ‘Lasat’ satellite data, ‘Letters’,
‘Segmentation’, and ‘Covertype’ are provided as benchmark
datasets by UCI Machine Learning Repository [29]. ‘ILSVRC’
dataset consists 1.3 million of web images from 1000 cate-
gories, and we use the next-to-last layer of Inception Network
[27] as the image description.

Here we consider two metrics for evaluating clustering
accuracy: F1 score and mean accuracy. F1 score balances
the impact between precision and recall. Mean accuracy only
considers number of points correctly assigned to ground-truth
clusters, which penalizes numbers of clusters higher than the
ground-truth. We also report running times for all compared
algorithms on a 2.7GHz Intel-i7 processor.

We ran all experiments 100 times, except Affinity Propa-
gation (AP) and Density Peak, which are deterministic. To
visualize more effectively accuracy, running time, and their



Figure 2. F1 scores, mean Accuracy, and execution times for all compared methods, for all employed datasets. Each method is denoted with bars of the same
color across all the datasets (see text).

standard deviations, we use the 2-D plots shown in Fig 2,
per dataset and per evaluation metric. The x-axis is log-
scale running time (since some methods have much higher
complexity), and y-axis is the evaluation metric. We use two
bars for each method to show running time and accuracy,
along with their standard deviations (bar lengths) over the 100
repetitions. The intersection point of each horizontal-vertical
bar pair corresponds to the average values of the employed
accuracy metric and the running time. Obviously, the best
method resides at the top-left part of each plot.

In general, our algorithm always achieves high levels of
accuracy across all datasets with the fastest running time.
‘Olivetti’, ‘Sementation’, and ‘Sat’ are small datasets, and thus
we were able to test more complex algorithms (AP, DP, and
IGMM). Every complex algorithm showed increased accuracy
in at least one dataset, however no complex algorithm was able

to perform well on all three small datasets. Our algorithm was
not always the most accurate, yet it showed very consistent
clustering quality. More importantly, these results reveal a
promising alternative for high quality clustering: our method,
AP, DP, and IGMM are all able to detect the number of
clusters and require at least 2 user-specified parameters, with
our method achieving high accuracy with the fastest running
times. We should still note though that each algorithm has a
preferred application area where our method may not always
outperform the competition.

‘Letter’, ‘MNIST’, ‘Covertype’, and ‘ALOI’ are three
medium-size datasets, where the superiority of our algorithm
in terms of F1 score and speed can be clearly seen. However,
considering mean accuracy, K-means++ showed better results
in the ‘Letter’ dataset; the reason may be that incorrect
assignments to fixed number of clusters were not penalized.

wangz
高亮
the fastest running time in non-hierarchical algorithms



Similar observation can be made in the case of GMM in
the ‘CoverType’ dataset. Despite these two peculiar outcomes
of K-means and GMM, our algorithm consistently generates
top quality regardless of data distribution, dataset size, and
evaluation metric.

We evaluated our method on the ‘ALOI’ and ‘ILSVRC’
datasets that consist of very large numbers of clusters, and
observed that it performed StreamKM++ and BICO with
respect to all three evaluation criteria. The reason for the
poor performance of the competition is that each cluster in
‘ALOI’ contains only 100 data points. If we maintain a coreset
with 10% of the original dataset, each cluster in coreset
contains merely 10 data points, which are too few to make K-
means++ work successfully. However, increasing the coreset
size will sacrifice efficiency. In this dataset, even the original
K-means++ showed no better accuracy than our algorithm,
with 15.8 times longer running time. ‘ILVRC’ was the largest
dataset and we were only able to run stream algorithms. Again,
our method shows superiority in terms of both F1 score and
mean accuracy.

Finally, from the plots in Fig. 2 we observe that our
method maintains overall smaller standard deviations of execu-
tion times compared to the other non-deterministic clustering
algorithms. In general, among the competing methods, we
observed that StreamKM++ and BICO produce well balanced
performance between speed and accuracy. Birch is always the
fastest but with limited accuracy (left-bottom in the plots).
Pirch does not outperform StreamKM++ or BICO when the
number of clusters is small but achieves major performance
jump when the number of clusters is large (and the cluster
sizes are relatively small).

IV. CONCLUSION

We showed that accuracy does not necessarily need to
be sacrificed for faster speeds in clustering data streams.
Samples of the original dataset can provide sufficient, rich
information that can be used for saving computation. In this
paper, we considered a window of the data stream that is
used as a sample set to estimate emerging kernels which
in turn are updated towards density peaks in a single pass.
We evaluated the performance of our method and competing
clustering algorithms, and the results show that our approach
is an excellent alternative that improves the trade-off between
accuracy and efficiency.

REFERENCES

[1] M.R. Ackermann, M. Martens, C. Raupach, K. Swierkot, C. Lammersen,
and C. Sohler, ‘StreamKM++: A clustering algorithm for data streams,’
J of Experimental Algorithmics 17:2.4, 2012. 1, 4

[2] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu, ‘A framework for clustering
evolving data streams,’ in Proc. Int’l Conf. on Very Large Databases,
pp.81-92, 2003. 1

[3] D. Arthur and S. Vassilvitskii, ‘k-means++: the advantages of careful
seeding,’ in Proc. ACM-SIAM Symp. on Discrete Algorithms, pp. 1027-
1035, 2007. 4

[4] O. Bachem, M. Lucic, and A. Krause, ‘Coresets for nonparametric
estimation-the case of DP-means,’ in Proc. Int’l Conf. on Machine
Learning, pp. 209-217, 2015. 2

[5] O. Bachem, M. Lucic, S.H. Hassani, and A. Krause, ‘Approximate K-
Means++ in Sublinear Time,’ in Proc. AAAI Conf. on Artificial Intelli-
gence, pp. 1459-1467, 2016. 1

[6] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
‘Scalable k-means++,’ in Proc. VLDB Endowment, pp. 622-633, 2012.
1

[7] M.F. Balcan, S. Ehrlich, and Y. Liang, ‘Distributed k-means and k-median
Clustering on General Topologies,’ in Proc. NIPS, pp. 1995-2003, 2013.
1

[8] F. Cao, M. Estert, W. Qian, and A. Zhou, ‘Density-based clustering over
an evolving data stream with noise,’ in Proc. SIAM Int’l Conf. on Data
Mining, pp. 326-337, 2006. 1

[9] D. Comaniciu and P. Meer, ‘Mean shift: A robust approach toward feature
space analysis,’ IEEE Trans. PAMI, 24(5):603-619, 2002. 2, 4

[10] X. Cui, P. Zhu, X. Yang, K. Li, and C. Ji, ‘Optimized big data K-
means clustering using MapReduce,’ The Journal of Supercomputing,
70(3):1249-1259, 2014. 1

[11] A. Ene, S. Im, and B. Moseley, ‘Fast clustering using MapReduce,’
in Proc. ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pp. 681-689, 2011. 1

[12] H. Fichtenberger, M. Gille, M. Schmidt, C. Schwiegelshohn, and C.
Sohler, ‘BICO: BIRCH meets coresets for k-means clustering,’ in Proc.
European Symp. on Algorithms, pp. 481-492, 2013. 1, 4

[13] B.J. Frey and D. Dueck, ‘Clustering by passing messages between data
points,’ Science, 315(5814):972-976, 2007. 2, 4

[14] J.M. Geusebroek, G.J. Burghouts, A.W.M. Smeulders, ‘The Amsterdam
library of object images,’ Int’l J. of Computer Vision, 61(1):103-112,
2005. 4

[15] S. Guha and N. Mishra, ‘Clustering data streams,’ Data Stream Man-
agement, Springer, pp. 169-187, 2016. 1

[16] A. Kobren, N. Monath, A. Krishnamurthy, and A. McCallum, ‘A
Hierarchical Algorithm for Extreme Clustering,’ in Proc. ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining, pp. 255-264, 2017.
1, 4

[17] B. Kulis and M.I. Jordan, ‘Revisiting k-means: New algorithms via
Bayesian nonparametrics,’ in Proc. Int’l Conf. on Machine Learning,
2011. 2

[18] Y. LeCun, C. Cortes, and C.J.C. Burges, The MNIST database of
handwritten digits: http://yann.lecun.com/exdb/mnist/. 4

[19] E. Liberty, R. Sriharsha, and M. Sviridenko, ‘An algorithm for online
k-means clustering,’ in Proc. Workshop on Algorithm Engineering and
Experiments, pp. 81-89, 2016. 1

[20] T.K. Moon, ‘The expectation-maximization algorithm,’ IEEE Signal
Proc. Magazine, 13(6):47-60, 1996. 4

[21] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,
‘Streaming-data algorithms for high-quality clustering,’ in Proc. Int’l
Conf. on Data Engineering, pp. 685:694, 2002. 1

[22] A. Rodriguez and A. Laio, ‘Clustering by fast search and find of density
peaks,’ Science, 344(6191):1492-1496, 2014. 2, 4

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei,
‘Imagenet large scale visual recognition challenge,’ Int’l J. of Computer
Vision, 115(3):211-252, 2015. 4

[24] F.S. Samaria, and A.C. Harter, ‘Parameterisation of a stochastic model
for human face identification,’ in Proc. IEEE Workshop on Applications
of Computer Vision, 1994. 4

[25] D. Sculley, ‘Web-scale k-means clustering,’ in Proc. ACM Int’l conf. on
World Wide Web, pp. 1177-1178, 2010. 1

[26] J.A. Silva, E.R. Faria, R.C. Barros, E.R. Hruschka, A.C.P.L.F. de Car-
valho, and J. Gama, ‘Data stream clustering: A survey,’ ACM Computing
Surveys, 46(1):13, 2013. 1

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘Rethinking
the inception architecture for computer vision,’ in Proc. CVPR, pp. 2818-
2826, 2016. 4

[28] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei, ‘Sharing clusters
among related groups: Hierarchical Dirichlet processes,’ in Proc. NIPS,
pp. 1385-1392, 2005. 1, 4

[29] UCI Machine Learning Repository: http://archive.ics.uci.edu/ml 4
[30] T. Zhang, R. Ramakrishnan, and M. Livny, ‘BIRCH: an efficient data

clustering method for very large databases,’ in Proc. ACM SIGMOD, pp.
103-114. 1996. 1, 4




