
PANORAMIC REPRESENTATION OF SCENES 
FOR ROUTE UNDERSTANDING 

Jiang Yu Zheng and Saburo Tsuji 

Department of Control Engineering, Osaka University 
Toyonaka, Osaka 560, Japan 

Abstract Building I 

This work tackles route understanding in robot navi- 
gation. The strategies employed are route description 
from experience and route recognition by visual infor- 
mation. In description phase, a new representation of 
scenes along a route termed Panoramic Representation 
is proposed. It is obtained by scanning scenes sideways 
along the route, which provides rich information such as 
a 2D projection of scenes called Panoramic View, a path- 
oriented 2(1/2)D sketch, and a path description. The 
continuous Panoramic View is more efficient in process- 
ing than integrating discrete views into a c o m p l q  route 
model. In recognition phase, the robot matches the 
Panoramic Representation from incoming images with 
that memorized in the previous scan so that it can lo- 
cate and orient itself in autonomous navigation. The 
advantage of wide field of Panoramic Views brings reli- 
able scene recognition. 

Fig.1 A mobile robot continuously views scenes along a route by a 
camera. I t  autonomously builds the model along the route, which 
guides the navigation alone the same route. A route shown in this 
figure is used for the experiments. 

The key step to bridge local episodic scenes along a route to 
a global semantic description for route understanding is, per- 
haps, encoding of route views into an easy-to-access 
presentation. rn this paper, a novel representation of scenes, 
called panoramic ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ i ~ ~ ,  is proposed, for memoriz- 
ing and retrieving the information acquired in the trial 
move. This representation provides the essential information 
of scenes, such as 2D projection, a path-oriented 2(1/2)D 
&etch, and a path description. It can be used not only as an 
intermediate representation as M~~~ propose~[io], from which 
a more abstract and symbolic representation of the route can 
be built, but also as a description referred directly to in route 
recognition. 

In order to represent a wide field of view that contains 
global information with a small amount of data, we use Dy- 
namic ~rojection[11,1zI which Scans Scenes through a moving 
vertical slit. We call it Panoramic View (PV) which has the 
following two types: 

Local Panoramic View (Lpv): Projection of around 
a stationary view point, memory of a place used for deter- 
mining location and orientation of the robot. 
Route Panoramic View or simply Panoramic View: Pro- 
jection of side-views along a route, memory of the route 
used for locating the robot. 
The 2(1/2)D sketch described by the image ve- 

locity of each feature, is extracted by measuring the time delay 
of features in appearing in a pair of parallel slits in the image. 

In route recognition phase, the robot recalls, the route mem- 
orized in its trial move to identify its location and orientation. 
We, therefore, need to match two panoramie representations 
obtained from different moves along the same route, assum- 
ing the road-following process keeps the path within the roads. 
We also match two local panoramic views at positions close 

1. Introduction 

Much research on vision-based navigation has been focused on 
road-following and obstacle-avoidance. Their aim is to move 
a robot safely within a free space based on sensor data[1~2~3~41. 
For longer distance navigation, however, robots will also be 
confronted with another problem: how to understand the 
route it travels, which includes issues of sensing environment, 
creating spatial memory, locating robot, and selecting routes 
in the global world. The work described here discusses how to 
represent environment that a robot around, and how 
to recognize the scenes so as to locate and orient itself. 
Two kinds of outdoor environment representations, a bird's- 
eye view map and a series of route views, can be con~idered[~]. 
The robot can determine its way from either of them. Al- 
though a bird's-eye view map such as an aerial photograph 
or a city map is good for representing global relationships 
of routes and is straightforward in route planning, it is hard 
to be interpreted into real route views for recognition. A 
robot using a terrain map to understand its environment has 
been proposed[6vn. Another approach is to use route views. 
Landmarks specified by humans are employed in guiding the 
navigation[dl . 

We propose a paradigm of describing route from experi- 
ence. A sequence of ground-based views are acquired through 
traversing routes and is further analyzed for guidance in robot 
navigation[g]. The scenario is as follows: A robot along 
a certain route under the guidance of a human and visu- 
ally memorizes the scenes. It is then commanded to pur- 
sue the same route autonomously. The robot keeps observing 
the scene and locates and orients itself by referring to the 
memorized route description so that it can instruct the road- 
following module where it should change its direction or stop. 
Fig.1 illustrates a part of such a route. 
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Figs.2 Schemes for generating Panoramic Views. (a) Acquiring LPV 
by taking slit image by a swiveling camera. (b) A modified P V  is 
yielded when a camera moving along a circle. (c) A generalized P V  
is acquired by a camera moving along a smooth path, with its optical 
axis aligned with the normal of path. 

each other to find a correct way or to move for the exact 
destination. 
Utilizing the sequential and continuous characteristics of the 
panoramic representation, we employ Dynamic Programming[l31 
and Circular Dynamic Programming (a modified Dynamic 
Programming for periodical scenes) in matching color projec- 
tions of PVs and LPVs, to find coarse correspondence. Then 
the distinct features appearing in 2D projections are verified 
in detail by examining their attributes. 2D shape changes due 
to changes in path are normalized by using 2(1/2)D informa- 
tion acquired in establishing the representation. 

Because of the wide sight of PV, the matching can start 
from a fairly global level to avoid failure from changed parts 
and, thus, results in a high reliability. Color-based recognition 
of outdoor scenes suffers from instability by the changes in 
illumination. We improve constancy of colors of panoramic 
representations from different moves. 

2.Panoramic Representation 
2.1 Formation of Panoramic View 

A method to model a wide environment is to direct a cam- 
era towards various parts of the environment and take discrete 
images. However, the spatial relationship between these im- 
ages is not easy to obtain, except when they share certain 
common fields of view. The drawbacks of this consideration 
are the data redundancy and the two-dimensional discontinu- 
ity in the overlapped parts which arises from the differences 
of view points and viewing directions. 

We take numerous narrow views at  finely divided angles 
of orientation at  a single view point for LPV, and at densely 
distributed positions to a given direction for PV. Figs.2 il- 
lustrate the schemes of image formation. Suppose a camera 
rotates at point c at a constant angular velocity on a horizon- 
tal plane and takes pictures through a vertical slit as Fig.2(a) 
shows. By pasting the slit views consecutively at the angle of 
observation, we get an LPV which contains all objects visible 
from point C .  The velocity of each image point passing across 
the slit is the same because the rotation center coincides with 
the camera focus. The LPV is considered as a minimum 2D 
data set which contains all the information acquired while the 
camera swivels. 

Let us modify this slightly so that the camera moves along 
a circle c at a constant speed with its direction perpendicular 
to the motion direction as in Fig.2(b). If we sample a vertical 
line at the center of each image and arrange them successively 
into an image, we get almost the same image as the case 
shown in Fig.2(a), except the object's image velocity passing 
across the vertical line depends on its range from the path. 

Fig.3 Camera system in generating PVs. 

The case that the camera moves along a straight line can be 
also considered as the case where the center of the path is at 
infinity. 

More generally, we can move the camera along any smooth 
curve S on a horizontal plane to obtain a panoramic view as 
Fig.2(c) shows. It employs a central projection along the Y 
axis (slit direction) and an orthogonal projection along the S 
axis (distance along the path). 

Let us call a path segment with the centers of curvature at 
the visible side, at  infinity, and at the invisible side as con- 
cave, linear, and convex, respectively. The constraints used 
for panoramic views are (1) the camera moves along a smooth 
curve on a Gorizontal plane and (2) the camera axis is hori- 
zontal and aligned with normals of the curve. 

2.2 2D Projection of Panoramic View 

Let us first explore properties of the projection of 3D space 
to the panoramic views for different camera movements. Lin- 
ear and circular paths are considered, because we can approx- 
imate a smooth path by their segments. Our analyses assume 
the camera motions are ideal and their parameters are known. 
The following is notations used (see Fig.3). 
0: Camera focus. 
f: Focal length of the camera. 
U: Linear velocity of camera. 
W :  Angular velocity of camera. 
R: Radius of circular path (R = U / w ) .  
0': Center of camera path (at infinity for linear path). 
s: Length passed (S = o for LPV). 
e: Angle between the camera axis and a reference direction 
( S =  Re). 
P (S ,  Y, 2): A 3D point viewed at s, where z is the depth from 
0,  and Y is the height from the horizontal plane. 
p ( s ,  y): Projection of P in the panoramic view, where s is the 
coordinate of the horizontal axis. 
U ,  U :  Horizontal and vertical components of image velocity. 
p :  Horizontal distance of point P from the center 0' (For a 
convex path, p = R + 2, For a concave path, p = R - Z if P is 
near than 0' and p = Z - R if P is farther than Of.)  
L ( H , D ) :  A horizontal line in 3D space, where D is the hori- 
zontal distance from Of,  and H is the height of the line. It is 
also denoted by a vector ( A ,  0, C) from a initial point (So, H ,  ZO)]  
for a linear path. Table 1 summarizes the 2D shapes of some 
basic 3D features in the panoramic views from various paths. 
When a horizontal line L ( H , D )  is observed from a circular 
path or appears in LPV, the reference direction is selected as 
orthogonal to the line. The derivation of Table 1 can be found 
in reference['2J4]. 

2.3 Path-Oriented 2(1/2)D Sketch 

162 



Line I Plane I Volume 

I I I I I 

Convex Path 
Z = p - R  

Line 

I I I I I 

I I 1 I 

I I I I I I 
Table.1 2D and 2(1/2)D characteristics of panoramic views from different motions. 

From panoramic views, we acquire a path-oriented 2(1/2)D 
sketch for understanding the depth of objects along the routes, 
by measuring image velocities of features passing through the 
vertical slit. 
(1) Image Velocities Observed from Different Paths 

Let us examine the image velocities through a slit for cam- 
era motion along different paths. Let the focal length f = I .  
The horizontal image velocity U of point P at the center line 
(z = 0) of the image caused by camera motion is shown in 
Table 1. Each object velocity in the image is inversely pro- 
portional to the range of the object for linear camera motion. 
The image velocity increases by a factor of p / R  if the path 
is convex. For a concave path, the velocity decreases by the 
same factor. The points nearer than the center 0’ move in 
the direction reverse to the camera motion, while the points 
more distant than the center move in the same direction as 
the camera. 

If the robot motion type and parameters are known and 
the horizontal image velocity of a point at the center line is 
measured, its depth can also be computed as in Table 1. 
(2) Acquiring Image Velocities 

Let us assume a stable robot motion, such that both mo- 
tion class and velocity are invariant, at least for a short period. 
The horizontal image velocity of a feature through the image 
center line is estimated as its average velocity between two 
vertical slits placed symmetrically to the center line. Gener- 
ating two PVs from the same images through the two slits, 
we determine the velocity from the difference of the horizontal 
positions of the feature in two PVs. 

Figs.4 intuitively show the traces of a point P in the images 
for different paths. Because of the symmetry of the path to 
the line of sight, the point moves on a line or circles relative 
to camera, which is line or ellipses symmetric to the central 
line in images. Then, the feature appears at the same height 
on the two slits. A constraint for matching becomes 

CI: A point P has the same y coordinates in two PVs generated 
from a pair of parallel slits symmetric to the central vertical 
line. 

Depth of 
Point 

Horiiontal 
Image Velocity 
of Point P 

U=-, 

I 

I u>o 

2.4 Route Description 

The robot speed U, angular velocity w, and the sampling 
rate T are recorded with PV. They influence on the panoramic 
representation as the scale changes but not on the route ge- 
ometry. The intrinsic parameters of the route geometry are: 

Distance s along the route from the start point or selected 

Curvature of the path described by radius of curvature R. 

s = udt ,  R = ujW (1). 

The length t of a panoramic view is determined by route 
length s and an image sampling time 7. For constant U and 
7, we simply have 

s=urt (2). 

landmarks. 

These can be estimated from U and w as: 

3 Acquiring Stable  Panoramic Representations 
3.1 Acquiring Panoramic Representation from the Real World 

Experiments were made in the route shown in Fig.1 us- 
ing a mobile robot (an automatic guided vehicle for factory 
automation) with a color TV camera, which can be swiveled 
on a rotating table. An on-board microcomputer, which con- 
trols the robot and camera motion, communicates with a Sun4 
workstation with an image processor. 

Fig.5 displays an LPV of the outdoor environment taken 
at a corner on the route, in which one can find movable areas. 
Fig.G(a) shows an example of a Panoramic View of size 2048 x 
128 pixels acquired while the robot moved about 100 meter. 
The sampling rate was constant and the route consisted of 
an almost linear path followed by a concave and then convex 
paths. The robot stopped midway for a little while, waiting 
for passage of an obstacle, which yields an area covered with 
horizontal stripes in the PV. Unevenness of the road causes 
variations in the camera pitch, which results in much zigzaging 
in horizontal lines. 

By setting two vertical slits L1, L2 at (-Az1/2,Ad/2) sym- 
metric to the center line in the frame, we generate two PVs. 
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/ I  1 '  
.JConvex- Path / 
(a) Traces of a point in the field 

of view when PVs from linear, 
concave and convex paths are 
generated. 

y, PI/ from right slit I 

Figs.6 Panoramic representation obtained along the path shown-infig.1. (a) P a n o r a z Z ( $ ) G > G a /  
lines in the P V  and their depth information. The horizontal line segments attached to them indicate their 
delays in the PVs from two vertical slits. I 

(b) Acquiring image velocity by matching the PVs from the same images. 
Fig.4 Constraint for matching two PVs from slits symmetric to the 
center line. 

3.2 Color Constancy Improvement 

In the real outdoor environment, there is drastic change 
in the illumination. The panoramic representation therefore 
~hould be robust to the change. In order to understand Ob- 
ject color from sensor data, Color Constancy has been studied 
[16'17'1a1. In this work, we apply the retinex theorY['713 which 
thus far has been applied only in the ideal laboratory scene, to 
the outdoor panoramic views. Rather than being concerned 
with the recovering the absolute material reflectance, we ex- 
plore an efficient method for improving color constancy to 
some extent SO as to allow the reliable matching of scenes in 

Only vertica1,lines are analyzed because they will not break 
due to the unevenness of road while their heights are influ- 
enced. Fig.G(b) shows the matched vertical lines in the PVs. 
The matching method will be described in Chapter 4. B~ 
finding the duration ~t between matched pairs in the pvs, 
we obtain the time of lines penetrating ~ 1 , ~ 2 ,  which are dis- 
played by the length of horizontal segments attached on them. 
The horizontal image velocity at the center is computed as 
Az'IAt. route recognition. 

We do not intend to use the robot speed U and w to esti- 
mate the position of arrival because of the error accumulation. 
Our attempt is to build a more flexible route model in which 
approximate geometry is described. The robot locates itself 
by referring to the scenes on the route, assuming it can move 
along an almost identical path. The followings are defined for 
instructing a road-following process to pursue the memorized 
route. 

(1) Break point, where the curvature of path exceeds a cer- 
tain threshold and is considered as a corner to turn, is at- 
tached to the PV. A qualitative direction such as [Leftward, 
~ i g h t w a r d ]  is assigned. The entire route is thus divided into 
sub-routes connected at  these break points. 

(2) Complex break point, where an open area or more than 
three ways are ahead, to which a local panoramic view is 
attached for determination of direction to move. 

Intensive studies have explained that the spectral radiance 
sensed at an object point is the product of the surface re- 
flectance and the spectral distribution of incident light. The 
method hence is to generate a virtual white by averaging spec- 
tral distribution in a large field of view. The chromaticity of 
illuminant is bearing in the spectrum of the field. Then, we 
remove the constant illumination component by normalizing 
the color spectrum of each pixel by the virtual white in the 
entire view. This method requires many distinct color sur- 
faces visible in the image, but it is not so hard to achieve in 
the outdoor environment, because we can enlarge the region 
for processing to a wide field in PV. 

4 Matching Two Panoramic Representations 
4.1 Coarse Matching using Dynamic Programming 

In real navigation, it is difficult for a robot to pursue the 
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exact same path in different moves. The panoramic represen- 
tations are yielded in a path-oriented fashion. Fortunately, 
we can assume that the paths will not be separated too far 
apart so that we can match the two representations. Other- 
wise, the robot will conclude that it has gone on a different 
route. Analysis of shape changes in PVs due to the changes 
in paths has been given[l41. 

The matching process is coarse-to-fine, it first matches the 
color projections h(t) and h’(t) of two PVs onto the t axes, and, 
then, precisely matches vertical lines ~( i ) , i  = 1, ..., n and ~’( j ) , j  = 
1, ..., m in both PVs, by searching narrow regions around the 
locations determined by the color matching. Because patterns 
in PV change in the t-scale due to the changes in robot velocity 
and sampling rate of camera, Dynamic Programming (DP) 
methods can cope with the coarse matching of two PVs. 

The color projection h( t )  = [R(t) ,G(t) ,B(t)]  of a PV repre- 
sents the average color of the vertical lines. 

123 123 123 

~ ( 1 )  = C r ( t , y ) ,  ~ ( t )  = C g ( t , y ) ,  B ( t )  = C b ( t , y )  (3) 
$ C O  $ C O  y=O 

The color of a large pattern in PV is the same dominant color 
in h(t) .  Also, a long vertical line I(i) appears as a strong ”edge” 
in h(t) .  After h( t )  is computed, we smooth it so as to maintain 
the most remarkable color changes in it. The edges E( i )  and 
E’(j) in the projections are used as elements of correspondents, 
and the color values between them are used in computing an 
evaluation function. 

Fig.7 shows a matching result of the color projections of 
two PVs generated from different moves. The positions where 
a pair of edges are matched are connected by lines. Fig,8 
shows the search paths in the matching space of Dynamc 
Programming, in which the grid is drawn at the positions of 
edges E( i ) ,  E’(j). The local evaluation function p ( n  - 1, n) from 
node n - I to node n in the matching space is selected as: 

f.” 

f*,‘-, 

P(. - 1 ,  n) = Ilh(t) - h’(t’)ll+ IIE(in) - E’(jn)II (4), 

where 
llh(t) - h’(t’)ll = JR(t)  - R’(t’)[ + IG(1) - G’(t’)l + IB(t) - B’(t’)l (5) 

and IIE(in) - E’(jn)ll is the difference of color edge strengths of 
two edges E(&) ,  E’(jn). t’ is the linear transform from t in the 
small part ( tnWl , tn)  as 

4.2 Feature Matching by Attributes 

Given two sequences of data, Dynamic Programming can 
find the optimal correspondence between them. The question 
of whether the matching result of color projections fits the 
real scenes in the panoramic views has to be checked further. 
After the approximate positions of patterns are obtained by 
DP, vertical lines near the positions are easily matched by 
comparing their attributes such as edge strength, colors of 
both sides, etc.[q. 

Since the viewing positions in different moves are different, 
2D shapes in two PVs may be inconsistent. However, we 
can normalize feature candidates to those viewed at the same 
depth by using the acquired 2(1/2)D information, in order to 
check the consistency in 2D size. Two additional constraints 
available for line matching in PVs are as follows: 
Let Y1,Y2 denote the Y coordinates of terminals of an almost 
vertical line in 3D space. Their y coordinates in a panoramic 
view are ~1,312 and the distance from the camera is 2. We 
have 

y l / Y l =  f/Z, y2/Y2 = f /Z  (7a) 

Thus, 
yl ly2  = Y1/Y2 

Since Y1/Y2 is a constant while the camera axis is horizontal, 
we have 
c2: The ratio of the heights of two end points yl/y2 for an 

almost vertical line is invariant in PVs while its depth 
changes. 
Let L = Y I  - ~2 denote the length of a line observed from 

distances Z and Z’ in different moves, and its projected lengths 
in two PVs be I and 1’. The ratio I / ?  gives another constraint. 

~ 3 :  For a vertical line, the lengths of its projections in two PVs 
have the relation: 

1 Z‘ 
I‘ z - = -  

where z‘/z is computed from formulae in Table 1 using 
motion parameters and the image velocity U. 
We examine the lengths of candidates in addition to the 

other properties. Thus, 2(1/2)D information is used in adjust- 
ing the size changes of shape in matching the scenes viewed 
at different points. Two lines / ( i ) , l ’ ( j )  in different PVs are ac- 
cepted as a matched pair if the most similar candidate of I(i) 
is /’(j), and vice versa. Fig.9 displays the matched pairs of 
line. 

4.3 Circular Dynamic Programming 

Matching of two local panoramic views obtained by swivel- 
ing the camera at two locations is slightly different from match- 
ing PVs. First, any initial position in the LPVs where the 
matching can start is not given since the robot direction at 
that location is uncertain, and we have to consider all the pos- 
sible combinations of features in both LPVs. Second, a stable 
result can be achieved by iterative matching, because of the 
circular structure of the LPVs. We thus introduce a method 
termed Circular Dynamic Programming algorithm applicable 
to matching general circular distributions. After the color 
projections of the LPVs onto the direction axis are matched, 
vertical lines in them are checked to verify the correspondence. 

Fig.10 depicts the basic idea of circular dynamic program- 
ming. Suppose two edge sets E = [ E ( i ) , i  = 1, ..., n] and E’ = 
[~ ‘ ( j ) , j  = I ,  ..,m] in two color projections are obtained from 
the corresponding LPVs. The optimal matching should es- 
tablish a closed path of one period in the search space of DP. 

Fig.8. Searching for the optimal path in Dynamic Programming 
space. R(t) and R‘(t’) of the projections are displayed at the left 
and top margins. The grid is drawn at edges positions. Gray paths 
indicate the possible matching and the dark one indicates the optimal 
correspondence. 
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Searched Path: (1.4)-(2,5)-(3,6) - 
(4.8)-(5.9)-(5,10)-(6.1)-(7.2) -(8.3)- 
(9,4)-(1,5)-(2,6)-(3.7) -(4.8) 

OptimalPath:(4,8)-(5.9)-(5,10) -(6,1). 
(7,2)-( 8.3)-( 9.4)-( 1.5) -( 2.6)-(3.7)- 

Fig.10 Circular Dynamic Program- 
ming searching for the optimal closed 
path of corresponding. 

Fig.12 Matching spaces of the LPVd 
(LPV3 to  LPV4, LPV4 to LPV1) in 
which closed curves represent the 
optimal correspondences. 

. .  Fig.9 Matching of vertical line segments in two PVs from different moves. 

The circular dynamic programming works as follows. 
(1) The search starts with all the possible combinations [E(I), E'(j 

j = 1, ..., m. 
(2) In order to save memory and computation, only a selected 

number of nodes is expanded, and the expanded path is dy- 
namically substituted for a sustained path if its cumulative 
evaluation value is inferior (known as beam search). 

(3) After a path arrives at the end E'(m) of the edge set E', it 
continues to search from the beginning edge E'(1) so that 
a circular search is realized. 

(4) When a search path arrives at the end E ( n )  of the edge set 
E ,  it extends search to the starting edge E ( 1 ) ,  which brings 
a reliable matching selection back to the beginning where 

the combinations taken into consideration in step (1) may 

(5) The search paths expand iteratively across the matching 
space until the optimal path by that step forms a closed 
curve over one period. 
The circular iterative matching modifies the optimal path 

to pass through more correct corresponding positions, which 
yields a stable result on the coarse level. Fig.11 displays 4 
LPVs taken at positions separated by 1.5m, 6m, and 10m 
from each other to the right of point A in Fig.1 and their 
matching results. Figs.12 shows the search paths of possi- 
ble matching and the obtained closed curves representing the 
optimal matchings. Matched results are also shown as lines 

91, be uncertain. 
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1-2 

2-3 

3-4 

4- 1 

Fig.11 .Matching LPVs at four positions by Circular Dynamic Pro- 
$ramming. Matching results 1-2, 2-3. 3-4, and 4-1 are depicted by 
lines connecting them. 

drawn between the LPVs. If two positions imaging LPVs are 
distant from each other, objects in LPVs may suffer from a 
severe size change and occlusion. Failure in matching of such 
LPVs means that the robot is needed to approach that posi- 
tion. 

5 Route  Pursui t  

There are two ways to guide the road following process in 
route pursuit. As the robot moves along a street in an urban 
area, the destination is possible to be occluded by objects 
intervening and the heading of robot is approximately parallel 
to the road. The direction to move is able to be described 
simply as Ahead, Turn left, Turn right. The route recognition 
ta.sk only needs to notice specific positions in panoramic view 
to stop or turn. On the other hand, if the robot enters a wider 
area such as a square or a complex break point, there are 
more movable spaces and possible headings. The robot can 
mark the destination on LPVs and approach it by adjusting 
its heading. 

In the cognition phase, there is no particular demand in 
processing time, since the entire processing can be done off- 
line after scenes are recorded. In automatic navigation, how- 
ever, a quick response to incoming scenes is necessary. Be- 
cause of the small amount of data in a PV, realizing the real- 
lime recognition is promising. 

Since the matching of the panoramic views is implemented 
on iconical level, we have to deal with some inconsistency 
between the PVs from different scans. Dynamic objects may 
pass by and interfere with the static objects. Generally speak- 
ing, the probability of their appearance in the PV or LPV is 
much lower than in discrete images, because only one line in 
the image is sampled at any instance. An object having high 
relative speed appears in PV within several lines of pixel, and 
we can use the 2(1/2)D information to eliminate them by 
finding salience in image velocity with static background. 

Objects such as parked cars may also appear in one PV but 
disappear in the other. If the size of a changed part is small, 
it will not disturb correct matching of long PVs on coarse 
level, because the DP evaluates the correspondence from the 
accumulated value over a long range. If a changed part is 
large, the matching may fail and the robot will get lost. One 
idea for solving this problem is that it restarts matching with 
the confused part, where the matching evaluation is low, by 
a similar method as that for LPV. 

6 Conclusion 

This paper presents a dynamically generated panoramic 
representation for route recognition by a mobile robot. The 
described issues are visual sensing, spatial memory, and scene 
recognition. The panoramic representation is established from 
continuous viewing through a slit. It provides a continuous 
2D memory with a small amount of data, which maintains 
essential information about shape and location of scenes along 
a route. The panoramic views can also yield a 2(1/2)D sketch 
from the horizontal image velocity at the slit. 

In route recognition, we studied the matching of two PVs 
(also LPVs) generated from slightly different paths or posi- 
tions such that the robot can identify its location and orien- 
tation for guiding the road-following process. Since the PV 
covers a wide field of view, we can achieve a reliable matching 
using coarse-to-fine method, starting from a very coarse level. 
To solve the problems of color and shape changes due to the 
different illumination and path, we improve color constancy 
and employ the 2(1/2)D information in the matching. 
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