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Abstract 
 

This work achieves an efficient acquisition of scenes 
and their depths along streets. During the movement of a 
vehicle, a slit in the camera frame is set properly to 
sample scenes continuously for a route panorama. This 
paper proposes a novel method of depth estimation by 
analyzing a new phenomenon named stationary blur in the 
route panorama. We find its relation with the depth and 
evaluate its degree at local and global levels. The depth 
estimation through filtering avoids feature matching and 
tracking that are error-prone in the scanning of real and 
complex street scenes. Our method provides reliable 
results but requires much less data than that of the 
structure from motion. This keeps the elegance of the route 
panorama in data representation, and is suitable for real 
time sensor development. Utilizing the completeness of the 
route panorama in the scene archiving, we can generate 
planar models of streets, which will be used in city 
visualization.  
 
 
1. Introduction 
 

Recently, there are increasing demands for fast 
construction of urban models for city visualization. 
Although air-borne laser systems have produced elevation 
maps, the rendered images viewed from the ground have 
inadequate resolution, even with the finest LIDAR data. 
On the contrary, the route panorama (RP) has been 
proposed for archiving scenes along streets [5,6,7,12]. 

Continuous views are obtained from the slit scanning as a 
camera mounted on a vehicle moves along streets. The 
small data size and seamless scene coverage make the 
route panorama extendable to a long distance, which is a 
practical solution of virtual city indexing and navigation 
via network [5]. The drawback of the route panorama is 
the deformation of the 2D parallel-perspective projection. 
This can be overcome by the depth extraction and 3D 
model rendering.  

Targeting a large urban area is more challenging than 
working in an indoor environment. Because of the large 
scale of scenes, a stable and efficient approach for 
sustainable systems has to be explored. Many analysis 
methods on translating videos have estimated depth of 
scenes based on the structure from motion using optical 
flow [15], feature matching [4,16], and EPI tracking 
[11,12]. Besides the complexity issue of these methods, 
the entire video volume or image sequence are stored and 
processed, which makes the real time processing difficult. 
On the other hand, various laser range finders have been 
developed for scanning buildings. The shortcoming is the 
long measuring times at a local position. The most 
successful system for route scanning is a vehicle-borne 
laser system [14] that measures depth during movement.  

In this work, we propose a unique method to measure 
the depth from a street. We analyze a new phenomenon 
named stationary blur in the route panorama and find the 
depth from the degree of the blur. The depth is estimated 
from the temporal contrast in the RP and the original 
spatial contrast at the slit. More precise than the motion 
analysis based on abstract lines of sight, the sampling 

Fig. 1 A section of 2D route panorama generated from a slit with its tilt slightly facing up. 



process is analyzed. We propose an algorithm that 
generates more accurate depth but uses much less data 
than the structure from motion. The stored compact data 
for depth along with the continuous RP facilitates the post 
model construction along long routes. We generate planar 
model of streets for fast VR environment construction.  

Related works for 3D scenes require feature matching 
on two GPVs [1] or image patches [4] scanned in different 
directions from the path, which are influenced by 
repetitive patterns on buildings, and frequent occlusions 
from close range objects. Another problem of these 
methods is the inconsistent coverage at distance scenes. 
Although two close viewing directions can diminish the 
difficulty in matching, the resulting depth of urban scenes 
has inadequate resolutions. An alternative depth 
estimation method is to track EPIs in a video volume 
during the camera translation [11,12,13]. However, it was 
used at local positions or for short distances. On a real 
road, EPIs are easily destroyed by unstable camera motion 
or curved paths. Robust tracking in EPIs is hard to expect. 
Overall, these approaches have not extended to a long 
distance.  

The difference of this work from others is in 
determining the depth instantly from local data, according 
to the stationary blur. We evaluate the blur to avoid the 
feature matching or tracking. A filtering process makes the 
scanning suitable for real time processing, robust to 
outdoor motion, and extendable to long distances. Rather 
than elongating time for more observations, we generate 
depth directly as the slit scans across a scene. Such a 
strategy reduces the influences from the varied motion, 
vehicle shaking, and occlusion in urban environments. It 
keeps the advantages of the route panorama and will 
benefit sensor development. The motion is obtained from 
other reliable sources such as GPS or vehicle control. The 
model can be constructed by using the obtained depth and 
motion information at a global level.  

As a base, we provide a general model of scanning in 
Sec. 2, which covers slit setting, shape and motion aspects 
of the route panorama based on abstract lines of sight. 
Stationary blur is explored at a detailed sampling level in 
Sec. 3. Local and global estimations of the depth from the 
stationary blur are in Sec. 4, and experiment in Sec. 5.  

 
2. Acquisition of Route Panoramas 
 
2.1 Camera Motion and Slit Scanning 
 

We define a slit-scanning model that is more general 
than what has been proposed in [6]. A camera is mounted 
on a vehicle with its axis perpendicular to the vehicle 
translation V. The vehicle path is a smooth curve on a 
horizontal plane, with small disturbances over bumpy 
roads. A four-wheeled vehicle can realize this motion. We 

denote the camera path by S(t) in a global coordinate 
system, where t is the time of scanning. Such a path is the 
envelope of circular segments with changing curvature κ. 
If the vehicle moves along a straight lane, the camera path 
has curvature κ=0. The vehicle keeps a speed as constant 
as possible. The variation in speed and path can be 

normalized by reading precise output from GPS as in [8].  
In order to produce good shapes in the route panoramas, 

a plane of scanning (PoS) is set vertical in the 3D space as 
the camera moves forward (Fig.2). This ensures that 
vertical lines in the 3D space appear vertically in the RPs 
even if the camera moves on a curved path. The curves or 
lines parallel to the camera path are horizontal in the route 
panorama. The angle α between the PoS and motion 
vector V determines the viewing aspects of streets, e.g., 
side view, fore-side view, or rear-side view along the 
street.  

The camera frame intersects with the PoS to form a slit 
l. The slit may not be vertical in the frame if the camera is 
tilted up for high buildings (Fig. 3). We calibrate the slit 
by using a sample image taken when the vehicle is on a 
horizontal plane. A building with vertical structure lines 
exists in the image. The vanishing point of the vertical 
lines is estimated and the slit is programmed to pass the 
vanishing point for the vertical PoS. From the vanishing 
point, we calculate the camera tilt, and then the projection 
of the horizon h in the image. Because of the defined 
camera direction, optical flow caused by motion V is 
horizontal for the local translation. For most curved paths 
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with low curvatures, the flow direction on the slit can still 
be approximated as horizontal.  

We continuously collect the temporal data on the slit 
(one pixel line) and paste them to another image memory 
consecutively. The generated route panorama has time t 
(frame) as its horizontal coordinate and slit y as its vertical 
coordinate. A fixed sampling rate, normally selected as the 
maximum reachable frame rate, is used for scanning. The 
generate route panorama, which has non-redundant scene 
coverage, is only a slice in the entire video volume. 
Concurrent to the acquisition of the route panorama, we 
compute the spatial differential across the slit (involving 
±2 pixels) for later use.  

   
Fig. 3 Example of the programmable slits in the 
image frame determined from the vanishing point 
of vertical lines.  
 

The slit scanning approach obtains a 2D route 
panorama directly. It processes less data than the image 
stitching because no scene overlapping and inter-frame 
matching are necessary in the scanning. Mosaicing for a 
translating camera is not as simple as for a rotating camera. 
Because the translation yields inconsistent motion parallax 
at different depths, a perfect 2D image overlapping is 
impossible. Deforming scenes to a dominant depth yields 
an irregular scale in the image length; the horizontal 
coordinate is no longer equal-distance but depth-
dependent. The real integration of patches has to be done 
in 3D space, or equivalently piece-wised image 
deformation [4]. The mosaicing requires image matching, 
motion estimation, and intermediate view interpolation, 
which may be influenced by occlusion and lack of features. 
If these are not applied at the sensor level, the cost to store 
the increasing images during the vehicle motion is huge.  
 
2.2 Shape Properties of Route Panoramas 
 
From the projection point of view, scenes at consecutive 
time instances are projected along the fixed PoS towards 
the camera path. A parallel-perspective projection is 
obtained from linear camera motion, and a bended-
parallel-perspective projection from curved path. As 

depicted in Fig. 2, scenes scanned by one PoS are 
projected onto the slit view in perspective projection, and 
entire scenes are projected towards the camera path 
through the parallel planes of scanning with the same 
angle α from V. By transforming data on a slit l to the slit 
l’ vertical in the PoS, we can convert a general route 
panorama to the basic route panorama that is vertical along 
the camera path. Defining the local camera coordinate 
system O-XYZ, which has the X axis aligned with V, and 
vertical Y axis, a 3D point P(X,Y,Z) under the normal 
perspective projection has the image position (x,y) as  
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where f is the calibrated camera focal length. The 
projection of P in the route panorama through the parallel-
perspective projection is '),,(),( lxtyxIytI
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where V=|V|, S=|S|, m (frame/sec) is the camera frame rate, 
and r (meter/frame) is the slit sampling interval on the 
path.  

The parallel-perspective projection is different from 
either perspective projection or parallel projection. Under 
perspective projection, both horizontal and vertical scales 
of an object are relative to the depth. While in parallel 
projection, both scales are absolute. Under parallel-
perspective projection, the horizontal scale is absolute 
while the vertical scale is relative to the depth. Therefore, 
objects in the route panorama have shape characteristics 
briefly as follows:  
(1) A distant object looks “wider” in a route panorama 
than in a perspective image, and looks “lower” than in a 
parallel projection image.  
(2) Due to the parallel PoS piled horizontally, a 3D line 
stretching in depth is projected as a hyperbola approaching 
to a horizontal asymptotic line; such a line in a perspective 
image is generally slanted and extends to a vanishing point.  
(3) Under bended-parallel-perspective projection of scenes 
towards a general curved path, 3D lines will be projected 
as lines or envelopes of hyperbolas in the route panoramas.  

 
2.3 Motion Characteristics at Sampling Slit 
 

Assume point P(X,Y,Z) has translation V(V,0,0) and 
rotation Ω(0,β,0), where rotation velocity β is a piece-
wised constant along a path readable from GPS. The 
relative velocity of the point to the camera is 
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Taking derivative of (1), the image velocity v at the slit 
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For the linear motion, β=0 so that 
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which is a traditional approach to obtain depth. In order to 
obtain good estimation of v, feature matching, EPI 
tracking and Kalman filtering have been applied to the 
entire image sequence over a long observation period. For 
the slit scanning, however, no redundant data are acquired 
for tracking and position refinement. The depth has to be 
computed from the slit and a few additional pixels around 
it. We achieve this goal by using the stationary blur in the 
route panorama. 
 
3. Stationary Blur in Route Panorama 
 
3.1 Stationary Blur as Counterpart of Motion 
Blur 

We find that distance features in the route panorama 
have blur along the t direction in the route panorama. This 
phenomenon is particularly obvious in the street scanning 
of urban areas. By examining the mechanism of this blur, 
we find it has similar characteristics as the motion blur but 
appears in the temporal domain. We name it stationary 
blur because it appears on points with low image 
velocities and, therefore, retaining at the slit position. The 
slower the camera velocity, the more the stationary blur is 
visible. If the camera stops, identical scenes are projected 
onto the slit so that horizontal patterns last along the time 
axis in the route panorama. This is similar as the motion 
blur stripes along the optical flow direction in the spatial 
domain, if the camera velocity is extremely fast. 

It is well known that, under perspective projection, the 
image velocity is proportional to the camera translating 
speed and inversely proportional to the depth. For linear 
motion, stationary blur and motion blur appear in different 
ranges. If we illustrate the motion in EPI (Fig. 4a), the 
trace of a close feature may sweep across several (∆x) 
pixels in the image during the camera exposed time τ. The 
reflected light from the feature thus contributes to the 
intensities of multi-pixels in the image frame. Accordingly, 
the intensity collected at a pixel is the average from 
several neighboring points in the scene. The image 
intensity is obtained from the convolution between the 
surface color and a rectangular pulse. If the surface point 
is an edge, this average yields a motion blur [9]. A close 
feature with a high image velocity has severe motion blur 
[18]. On the contrary, a slow-moving point in the field of 
view retains at the same image position in several 
sampling instances (∆t), and is repeatedly captured by the 
slit (Fig. 4b). This causes the stationary blur along the t 

axis in the route panorama. Distant objects appear to be 
stationary-blurred because of their slow image velocities.  

Motion blur and stationary blur are not only related to 
depth. A convex path may produce more motion blur on 
objects over all ranges because of the additional rotation 
velocity, while a concave path may produce more 
stationary blur at objects close to the center of curvature of 
the path.  

 
Fig. 4 Traces of fast and slow moving features in 
the EPI, which cause the motion blur in the image 
and stationary blur in the RP, respectively. 
 
3.2 Formation of Stationary Blur in RP  
 

Using the projection model discussed in Sec. 2, the slit 
width is ideally zero, the PoS is absolutely thin, and the 
sampling is infinitely dense on the camera path. In the real 
situation, the slit has a nonzero physical width and the 
route panorama is formed with narrow perspective 
projections (Fig. 5). Different depths, classified as just-
sampling depth, under-sampling range and overlapped-
sampling range, have different sampling characteristics. 
For scenes at the just-sampling depth, its views captured 
from consecutive slits can be connected without 
overlapping just as a normal perspective projection. At a 
depth closer than the just-sampling depth, consecutive slit 
views cannot cover a space completely and the scene is 
under-sampled. On the contrary, a point farther than the 
just-sampling depth may be covered by multiple slit views, 
which is an overlapped-sampling. The point color 
contributes to multiple slits over time, which is an aliasing 
in the time domain. If the point is an edge, its intensity 
change repeats along the time axis and results in a lower 
contrast in the route panorama than in the image.  

We should not simply squeeze the route panorama 
along time axis to reduce the stationary blur on distance 
scenes, because this may deform a close scene at the same 
place. Although it has not been mentioned yet, the 
mosaicing doing local image deformation (expansion or 
squeezing) also has resolution changes similar as the 
stationary blur and the under-sampling.  

The degree of the blur is related to depth Z, camera 
sampling rate m, path curvature κ, and vehicle speed V. If 
m and V are invariant locally over a linear path (κ=0), we 
can estimate the depth from the stationary blur. 
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Fig. 5 Real projection of a route panorama (top 
view) by consecutive perspective cones 
distributed along the camera path.  

 
Fig. 6 Sampling route panorama. 

 
In determining an intensity at a slit, colors of surface 

points covered by a Point Spread Function (PSF) are 
averaged. We approximate Gaussian PSF by a rectangle 
pulse with height H and span W normalized by W×H=1. 
The span W of the PSF at a certain depth Z is W=2Ztanθ, 
where θ is half of the angle subtended by the cone. The 
averaging of scene color at Z corresponds to convolving 
color F(X), which is unknown, with the pulse PSF(X), i.e.,  

       )()()( XFXPSFXI ⊗=                       (7)  
where ⊗ denotes the convolution. This phase is not 
different from normal perspective projection. In the 
sampling phase of the route panorama, the function 
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with depth-independent interval r actually samples I(X), 
where δ is the impulse function. The intensity I(t) in the 
route panorama is finally obtained by  
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for the symmetric PSF. As a comparison, sampling cones 
(PSF) of the perspective projection will not intersect each 
other, i.e., the sampling function at depth Z is  
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and the image at the slit is  
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From I(t), we further approximate temporal differential 
∂I(t)/∂t by temporal difference ∆tI(t). Assume surface 
color F(X) at depth Z has a discontinuity observable in the 
image (a large feature) as depicted in Fig. 7. The 
horizontal difference of the route panorama is 
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On the other hand, the spatial difference ∆xI(x) at slit is  
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Fig. 7 PSF coverage of the route panorama and 
the image at the same position on a path.  
 
4. Local and Global Estimations of Depth  
 
4.1 Local Estimation Generating Dense Depth 
 

We first examine the depth estimation from stationary 
blur at point level. Although the degree of stationary blur 
is related to the depth, the contrast distribution in the route 
panorama is insufficient to determine the depth 
independently because the original scene contrast 
distribution is unknown.  

To obtain the spatial contrast at the slit, we calculate 
differential value in the images, as the route panorama is 
extended. ∂I/∂x is computable at l’ if we wide the 
sampling slit to several neighboring pixels. We calculate 
∂I(t)/∂t in the RP, and it reflects the contrast after 
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stationary blurring. The ratio of the spatial and temporal 
differentials provides the depth as (6), because  
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and thus the depth can be estimated by  
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for a linear path. This is not used directly so far in the 
optical flow for the well-known reason that local optical 
flow can not generate accurate depth.  

Here we examine the scope and resolution of the 
filtering for the local evaluation of ratio Ix and It. We use 
3×5 Gaussian operators to calculate the spatial and 
temporal differentials Ix(t,y) (which is Ix(x,t,y)|x∈l’). This 
reduces noise from the roughness of the route panorama.  
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Fig. 8 Depth estimation on synthesized data. A 
step edge is put at all distances with 1m interval 
for measuring. (a) Different just-sampling depths 
are set to estimate the depths (colored curves). 
(b) Different exposure times are set to measure 
close depths. A longer exposure time produces a 
better depth at close range. 

 
To test the algorithm, we locate an ideal step edge at all 

the depths and calculate its distribution by Eq. 15 for a set 
of just-sampling depths (Fig. 8). The results show that the 

depth around the just-distance Zj is better than depths of 
distance scenes and very close scenes. The error at an 
approximate range of (2Zj,∞) is from the system when we 
choose a small operator scope ∆t. Also, as the depth 
increases, the data level becomes coarse.  

At the close range of (0, Zj/2), the measured depth is 
apparently more distant than its true value. This is caused 
by the under sampling effect where the location of the 
edge cannot be captured in consecutive slits completely, 
which is also possible to be interpreted by Nyquist 
theorem. Although reducing the just-sampling depth may 
improve the measure at close distances, the maximum 
frame rate and the resolution of the camera limits this 
possibility. On the other hand, if we extend exposure time 
of the frames (slow down shutter speed) to include the 
motion blur, the result is improved clearly in Fig. 8b. This 
is because the PSF sweeps a wider area over the sampling 
interval r, and the motion blur provides subtle changes in 
the slit views for the evaluation of spatial differential. 

Using local data to yield depth instantly can avoid 
many complex issues such as occlusion, dynamic objects, 
and lack of feature in outdoor scene. In the real route 
panorama, other two feature selection criteria are added.  

 The original level of feature contrast affects the 
resulting levels of Ix and It and then their ratio. We 
select reliable edges with high contrasts either in 
temporal or in spatial domain to calculate depth. A 
spatial-temporal gradient g(t,y) not influenced by motion 
blur and stationary blur is calculated as 

22 )),(()),((),( ytIytIytg tx +=             (16) 

for all y in the route panorama. Features satisfying 
g(t,y)>δ are selected for depth estimation.  
 To avoid disturbance from features at different 

heights due to vehicle shaking and waving, we avoid 
near-horizontal features in the depth estimation by 
limiting edge orientations in the route panorama. 

Figure 9 provides the result of the point-based depth 
measure, where spatial and temporal differential images 
are generated during input. The depths for the qualified 
points are computed. The ratio in (15) is displayed in gray 
levels. The brighter the point the closer the depth is, and 
vice versa. We can fill depth at empty points by using 
linear interpolation horizontally. This depth might be fine 
for visualization using layered representation, it is still 
very noisy and cannot yield satisfactory surfaces even we 
fit lines and planes over it. At the front lawn without many 
features, the depths are not reliable.  
 
4.2 Depth from Global Measure of Blurs  
 

The most significant result of the depth from stationary 
blur method is a global measure of the blurring. Instead of 
averaging or voting noisy data obtained from local depth 



to obtain layered images, we use global measures of the 
spatial and temporal differentials separately and then 
estimate the reliable depth from their ratio.  
 

 
Fig. 9 A section of route panorama and its point 
based depth estimation. (a) RP (b) Temporal 
differential, (c) Spatial differential, (d) Estimated 
depth at points with high spatial-temporal 
gradient. The value of arctan(It/Ix) is displayed. 
Points without depth measure are set to zero. 

 
Assuming an area σ in the route panorama captures an 

edge in the 3D space, we compute the averages of the 
spatial and temporal differentials respectively from all 
points with strong g(t,y)>δ in σ. According to (12) and 
(13), the ratio of the two averages is  
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where C is a constant and the result is proportional to the 
depth. If an area is large to contain multiple features with 
positive and negative differential values, we calculate  
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for the depth. This ratio of summarized differentials 
significantly reduces the noise and the result is more stable 

than the average of depths from all points.  
The average of the differentials can even be extended 

to irregular shapes after segmentation of the temporal 
route panorama, which has never been tackled in the 
optical flow computation. The resulting surfaces have 
more precise depths than layers (Fig. 11). 
 
5. Experiments and Discussion  
 

We have driven a vehicle through many streets to 
record complete route panoramas. For the route panorama 
shown in this paper, the vehicle speed is 20km/hr. A fixed 
sampling rate of the slit is set at 60HZ. On uneven roads, a 
vehicle suffers from additional shaking. Although the left-
and-right translation will not happen, the vehicle roll (left-
and-right swing) may have a big influence on the camera. 
Abrupt vertical translation due to the disturbance in 
vehicle pitch over a bumpy road will not be large and can 
be reduced by using a large vehicle with a long wheelbase 
and stable suspension. The video camera used has a 
shaking compensation function. A shaking removal 
algorithm has been developed to rectify the route 
panorama and then the corresponding differential images 
[19].  

The motion blur may affect feature matching in the 
structure from motion. However, it does not influence the 
route panorama, because close objects with high image 
velocities leave their clear view in the RP. Our filtering 
method use g(t,y) that is invariant to the motion blur in 
feature selection.  

The entire scanning keeps the calculation of spatial 
differential within a very narrow stripe (5pixel for the 
operator size) around the slit; it is much less than image 
patches used for feature searching, matching, and stitching. 
The depth can be generated instantly because the 
algorithm uses a constant time for local computation and 
the complexity for the entire route panorama is linear 
(O(S)). The storage for the street model generation is only 
two imageries (RP and spatial differential images).  

 

6. Conclusion 
 

This work developed the stationary-blur based depth 
estimation for route panoramas. Through an elaborated 
analysis of blurs and motions, the proposed algorithm 
avoids feature matching and tracking in structure from 
motion methods. It can generate robust depth measure 
efficiently without being influenced by occlusion, motion 
blur, and other complex situations. From the data storage 
perspective, the spatial differential and the route panorama 
stored are much less than EPIs used in tracking, and image 
patches used for stitching. It keeps the data compactness 
for sensor and system development. Moreover, the 



continuous and non-redundant route panorama greatly 
simplifies the model generation. It will broaden 
applications of slit scanning to real time visual archiving 
of cityscapes for communication and visualization.  
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Fig. 10 Route Panorama and estimated depth mpa. (a) route panorama, (b) depth map after filling 
empty holes with neighboring measured points, (c) an enlarged section of depth map. 

 
Fig. 11 Surface model of a street from global patches after segmentation. 


