Motion Based Vehicle Identification in Car Video

Amirali Jazayeri, Hongyuan Cai,〕iang Yu Zheng, Mihran Tuceryan

Dept. of Computer Science
Indiana University Purdue University Indianapolis

Outline

- Our goal is to track and identify moving vehicles ahead against static background in car video
- Under ego-motion, dynamic vehicles and background display different motion behaviors
- Profile features in car video and track motion for fast and robust processing
- Describe motion probability regarding image position and image velocity
- Use HMM to identify vehicles from their continuous movement

In-car Video: Assumptions

- Ego-motion (speed and steering) is controllable or readable from a vehicle
- All vehicles run on road, and are mostly moving in the same direction as the camera
- Horizontal image velocity change and vertical scaling happen in both background area and target vehicles
- We separate moving vehicles and static background including stopped vehicles

Challenges

- Variations of vehicles in shape, size, color, type, etc.
- Illumination changes in outdoor environments (day and night, shadow and highlight, etc.)
- Unpredictable occlusion between vehicles
- Cluttered background or no prior knowledge on changing background
- Real-time Performance

Related Works on Vehicle Detection Based on Shapes and Models

Employ priori knowledge to hypothesize vehicle locations in an image

- Intensity
- Learning the characteristics of vehicle classes from a set of training images
- Shape cues
- Symmetry, color, shadow, corners, vertical/horizontal edges, vehicle lights, and texture
- Model
- Vehicle templates or models with varying degrees of deformability
- Optical flow or motion traces
- Tracking vehicle

Our Approach Using Image Motion

- Ego-motion (forward translation + horizontal rotation) is general for all types of observer vehicle
- Ego-motion generated background motion is determinant in direction and scale
- The vehicle motion against background is invariant to the shape, color, and size of target vehicles

DAY
 Nicht

Motion alone tells something

Motion Model in Video

- Ego-motion
- Dividing flow into positive and negative fields in the video frame
- Smaller flow at center than at two sides
- Background Motion
- Distant scenes have lower velocity than close scenes
- Sky has zero flow
- Vehicle Motion
- Speed up and slow down
- Change lane

Method

- Using horizontal image velocity only
- Profiling video vertically and tracking the condensed image
- This yields variables: (x,v)
(Image position, Horizontal image velocity)
- Computing likelihood probability distribution $P(x, v)$ for vehicles and background
- Detection using continuous motion behavior
- Hidden Markov Model (HMM)
- Results in identity with probability description

Background and Vehicle Distributions on Road

$\left(0, V_{z}\right)$

Vehicle Feature Extraction

- Vehicles typically contain many horizontal edges formed by top and bottom boundaries of a car, license plate, and window edges.
- Other features include corners, intensity peaks, etc.

- Vertically profile features extracted in the video frames to generate traces of vehicles in the spatialtemporal image

$$
T(x, t)=\sum_{y=-h / 2}^{h / 2} w(x, y) I(x, y, t)
$$

- The condensed image containing feature traces for detecting vehicles
- Reducing the influence of vehicle shaking in pitch and roll

Examples of Condensed Images

Intensity Peak Profile

I-D Profiles Processing

- Due to the presence of horizontal lines in the background scene, the original ID profile is very noisy

- Pyramid scaling operations are preformed on the profiles to eliminate the noise and extract
 major feature traces

Tracking Traces in Condensed Image

- Tracking traces in the condensed image over time determines (x, v) sequences
- For unstable traces from line segments, we track the center part of each trace
- Track traces in the condensed image using Kalman filter during the vehicle motion
- Motion continuity is applied in tracking to avoid noise from instantaneous light changes

Motion Behaviors along Traces

- Background objects pursue hyperbolic trajectories expanding from the Focus of Expansion.
- The curvature of a background trace is high if it is closer to road and is low if it is further from road.
- Their image velocity is higher on scenes passing by, and is lower at scenes down the street.
- On the other hand, vehicles tracked within the road may stay in the image frame even they drive irregularly in a zigzag way

Identifying Traces during Tracking

- Using a probabilistic formulation to model the motion to avoid using sensitive thresholds in classification
- Hidden Markov Model (HMM) is used to model the continuous process of vehicles and background motion
- Two hidden states describe every trace at any time t :
- State C_{t} as vehicle
- State B_{t} as background
- The observation is a sequence of $(x(t), v(t))$ obtained from tracking trace
- Image position $x(t)$
- Horizontal image velocity $v(t)$

Estimate Status of a Trace

- Posterior probabilities $P\left(C_{t} \mid x(t), v(t)\right)$ and $P\left(B_{t} \mid x(t), v(t)\right)$ are updated by

$$
\begin{gathered}
P\left(C_{t}\right)=\max \left[P\left(B_{t-1}\right) P\left(C_{t} \mid B_{t-1}\right) P\left(x(t), v(t) \mid C_{t}\right),\right. \\
\left.P\left(C_{t-1}\right) P\left(C_{t} \mid C_{t-1}\right) P\left(x(t), v(t) \mid C_{t}\right)\right] \\
P\left(B_{t}\right)=\max \left[P\left(B_{t-1}\right) P\left(B_{t} \mid B_{t-1}\right) P\left(x(t), v(t) \mid B_{t}\right),\right. \\
\left.P\left(C_{t-1}\right) P\left(B_{t} \mid C_{t-1}\right) P\left(x(t), v(t) \mid B_{t}\right)\right]
\end{gathered}
$$

using Viterbi algorithm

- If $P\left(C_{t}\right)>P\left(B_{t}\right)$, the trace is considered as a car at time t, or as background otherwise
- At any time $t, P\left(C_{t}\right)+P\left(B_{t}\right)=1$, for normalization

$$
P\left(C_{t}\right) \leftarrow \frac{P\left(C_{t}\right)}{P\left(C_{t}\right)+P\left(B_{t}\right)} \quad P\left(B_{t}\right) \leftarrow \frac{P\left(B_{t}\right)}{P\left(C_{t}\right)+P\left(B_{t}\right)}
$$

- The identified trace is formally output after it is tracked over a certain duration. Otherwise, such a short trace is removed as noise

Vehicle Detection Results

> VEHICLE DETEGTION AND TRACKING INN-CAR VIPEO Using TEMPORAL PROFILES

Vehicle Detection Results

- The longer the tracked duration, the more certain the identification becomes.
- If a detected vehicle moves too far from the observer car, it will be ignored
- Approaching vehicles on the opposite lane are classified as background
- Turning at a street corner needs another likelihood distribution, but not dealt with here

True-Positive	86.9
False-Negative	14.1
True-Negative	85.9
False-Positive	13.2

Opposite lane vehicle

Conclusion

- Detected features and tracked their profiled trajectories in spatial-temporal condensed image
- Introduced a probability model of background and vehicles and computed the likelihood probability distribution of their motions
- Used HMM to estimate the process of location dependent motion for vehicle identification

Questions?

Background PDF

$$
\begin{aligned}
& x=\frac{f X}{Z} \\
& v=\frac{x^{2} V}{f X}-\frac{x^{2}+f^{2}}{f} R_{y} \\
& p(x, v \mid B)=\int_{R_{y}} p\left(R_{y}\right) p\left(x, v \mid R_{y}\right) d R_{y}=\int_{R_{y}} p\left(R_{y}\right) p\left(x, v \quad \left\lvert\, v=\frac{x^{2} V}{f X}-\frac{x^{2}+f^{2}}{f} R_{y}\right.\right) d R_{y} \\
& =\int_{R_{y} X} \int_{X} p\left(R_{y}\right) p^{(d)}(X) p(X) p(Z, V \mid X) d X d R_{y} \quad(Z(x, v, X), V(x, v, X)) \\
& =\int_{R_{y} X} p\left(R_{y}\right) p^{(d)}(X) p(X) p\left(\left.Z=\frac{f X}{x} \right\rvert\, X\right) \times p\left(\left.V=\left(v+\frac{x^{2}+f^{2}}{f} R_{y}\right) \frac{f X}{x^{2}} \right\rvert\, X\right) d X d R_{y} \\
& =C_{1 r} \iint_{R_{y} X} e^{\frac{-R_{y}^{2}}{2 \sigma_{r}^{2}}} \frac{1-e^{\frac{-X^{2}}{2 D^{2}}}}{|X|+1} e^{\frac{-\left(\left(v+\frac{x^{2}+f^{2}}{f} R_{y}\right) \frac{f X}{x^{2}}-S\right)^{2}}{2 \sigma^{2}}}\left|\frac{f X}{x^{2}}\right|^{2} d X d R_{y}
\end{aligned}
$$

Vehicle PDF

$$
\begin{aligned}
& (\mathrm{x}, \mathrm{v}) \leftarrow(\mathrm{X}, \mathrm{Z}),(\mathrm{Tx}, \mathrm{Tz}), \mathrm{Ry} \\
& (X, Z) \sim N((0, F,)(D, 2 F)) \quad(T x, T z) \sim N\left((0,0), \sigma_{x}, \sigma_{z}\right) \\
& v(t)=\frac{f T_{x}(t)-x(t) T_{z}(t)}{Z(t)}-\frac{x^{2}(t)+f^{2}}{f} R_{y}(t)=v^{(t)}(t)+v^{(r)}(t) \\
& p(x, v \mid C)=p\left(x, v \mid\left(X, Z, T_{x}, T_{z}\right) \in C\right)=p\left(x=\frac{f X}{Z}, v=\frac{f T_{x}-x T_{z}}{Z}\right)=\int_{Z} p(Z) p\left(x=\frac{f X}{Z}, \left.v=\frac{f T_{x}-x T_{z}}{Z} \right\rvert\, Z\right) d Z \\
& =\int_{Z} p(Z) p\left(X=\frac{x Z}{f}, T_{z}, \left.T_{x}=\frac{Z v+x T_{z}}{f} \right\rvert\, Z\right)\left|\frac{Z}{f}\right|^{2} d Z=\int_{Z} p(Z) p\left(\left.X=\frac{x Z}{f} \right\rvert\, Z\right) p\left(T_{z}, \left.T_{x}=\frac{Z v+x T_{z}}{f} \right\rvert\, Z\right)\left|\frac{Z}{f}\right|^{2} d Z \\
& =\int_{Z} p(Z) p\left(\left.X=\frac{x Z}{f} \right\rvert\, Z\right)\left\{\int_{T_{z}} p\left(T_{z}\right) p\left(\left.T_{x}=\frac{Z v+x T_{z}}{f} \right\rvert\, T_{z}, Z\right) d T_{z}\right\}\left|\frac{Z}{f}\right|^{2} d Z \\
& p(x, v \mid C)=C_{2} \iint_{Z T_{z}} e^{\frac{-(Z-F)^{2}}{2(2 F)^{2}}} e^{\left.\frac{(x Z}{f}\right)^{2}} 2 D^{2} e^{\frac{-T_{2}^{2}}{2 \sigma_{z}^{2}}} e^{\frac{\left(\frac{Z V+x T_{z}}{f}\right)^{2}}{2 \sigma_{x}^{2}}}\left|\frac{Z}{f}\right|^{2} d T_{z} d Z
\end{aligned}
$$

Parameter Selection in Probability Computation

D	Average road width	As wide as three lanes	6 m	
F	Distance to target	Minimum safe distance	10m	
σ_{F}	Standard deviation of	farget distance	20m	
σ_{x}	Standard deviation of relative horizontal speed T_{x} of target vehicle Maximum cutting of three lanes, tolerant for moving on curved path			6 m
σ_{z}	Standard deviation of relative translation speed T_{2}, T_{2} is zero if target is pursued $10 \mathrm{~m} / \mathrm{s}$			
S	Average pursuing sp	ed of observer vehicle	$50 \mathrm{~km} / \mathrm{h} \quad 15 \mathrm{~m} / \mathrm{s}$	
σ	Standard deviation of	f the speed	10km/h 5m/s	
f	Camera focal length	Through offline calibra	900 pixel	
\int_{2}	Range for integration From camera position to distance close to infinity			$0 \sim$
	Range for integration Wider than a road to include all backgrounds in video -50~50m			
$\int_{\text {Tz }}$	Range for relative sp		-40~40m/s	
$\int_{\text {Ry }}$	Range of integration		$-10 \sim 10$ degree/s	
H	The maximum height of vehicle, As high as a truck, but mostly for cars			4 m
σ_{r}	Standard deviation of steering angle of R_{y} From the maximum tuning radius of a vehicle and road curvature.			5 de

