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OutlineOutlineOutlineOutline
 Our goal is to track and identify moving g y g

vehicles ahead against static background in car 
video 

 Under ego-motion, dynamic vehicles and 
background display different motion behaviorsbackground display different motion behaviors

 Profile features in car video and track motion 
for fast and robust processingfor fast and robust processing

 Describe motion probability regarding image 
iti  d i  l itposition and image velocity

 Use HMM to identify vehicles from their 
continuous movement



InIn car Video:  Assumptionscar Video:  AssumptionsInIn--car Video:  Assumptionscar Video:  Assumptions
 Ego-motion (speed and steering) is controllable or go ot o  (spee  a  stee g) s co t o ab e o  

readable from a vehicle
 All vehicles run on road, and are mostly moving in 

the same direction as the camerathe same direction as the camera
 Horizontal image velocity change and vertical scaling 

happen in both background area and target vehicles
 We separate moving vehicles and static background 

including stopped vehicles

Z
Y


y

X

f x

X



ChallengesChallengesChallengesChallenges

 Variations of vehicles in shape, size, color, type, 
etc.

 Illumination changes in outdoor environments 
(day and night, shadow and highlight, etc. )

 Unpredictable occlusion between vehicles
 Cluttered background or no prior knowledge  Cluttered background or no prior knowledge 

on changing background
 Real time Performance Real-time Performance



Related Works on Vehicle Detection Related Works on Vehicle Detection 
Based on Shapes and Models Based on Shapes and Models 

Employ priori knowledge to hypothesize vehicle 
locations in an image

 Intensity Intensity
◦ Learning the characteristics of vehicle classes from 

a set of training imagesg g
 Shape cues
◦ Symmetry, color, shadow, corners, 

ti l/h i t l d  hi l  li ht  d t tvertical/horizontal edges, vehicle lights, and texture
 Model
◦ Vehicle templates or models with varying degrees ◦ Vehicle templates or models with varying degrees 

of deformability
 Optical flow or motion traces
◦ Tracking vehicle 



Our Approach Using Image MotionOur Approach Using Image MotionOur Approach Using Image MotionOur Approach Using Image Motion

 Ego-motion (forward translation + horizontal 

rotation) is general for all types of ) g yp
observer vehicle

 Ego motion generated background  Ego-motion generated background 
motion is determinant in direction and 

lscale
 The vehicle motion against background g g

is invariant to the shape, color, and size 
of target vehiclesof target vehicles



Motion alone tells somethingMotion alone tells something



Motion Model in VideoMotion Model in Video
Positive flowNegative flow

Motion Model in VideoMotion Model in Video
Flow field in 
id  f

x

 Ego-motion
◦ Dividing flow into positive 

and negative fields in the 

video frame

and negative fields in the 
video frame

◦ Smaller flow at center 
than at two sides Projected 

Sky

than at two sides
 Background Motion
◦ Distant scenes have lower 

l i  h  l  

Projected 
horizon

velocity than close scenes
◦ Sky has zero flow

 Vehicle MotionVehicle Motion
◦ Speed up and slow down
◦ Change lane Slow Slow

Speed up Speed up

Cutting lane



MethodMethodMethodMethod
 Using horizontal image velocity only Using horizontal image velocity only
◦ Profiling video vertically and tracking the 

condensed imagecondensed image
◦ This yields variables: (x,v)

(Image position  Horizontal image velocity)(Image position, Horizontal image velocity)
 Computing likelihood probability distribution 

P(x v) for vehicles and backgroundP(x,v) for vehicles and background
 Detection using continuous motion behavior

Hidd  M k  M d l (HMM)◦ Hidden Markov Model (HMM)
◦ Results in identity with probability description



Background and Vehicle Distributions on RoadBackground and Vehicle Distributions on RoadBackground and Vehicle Distributions on RoadBackground and Vehicle Distributions on Road
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Vehicle Occurrence in VideoVehicle Occurrence in Video

 Vehicles appear most frequently in the image 
across the projected horizon

 Taking1D profile from image using a mask to 
speed up tracking
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Vehicle Feature ExtractionVehicle Feature ExtractionVehicle Feature ExtractionVehicle Feature Extraction
 Vehicles typically contain many horizontal  Vehicles typically contain many horizontal 

edges formed by top and bottom boundaries 
f   li  l t  d i d  dof a car, license plate, and window edges.

 Other features include corners, intensity 
peaks, etc.



1D Profiles 1D Profiles form a Condensed Imageform a Condensed Image

t

1D Profiles 1D Profiles form a Condensed Imageform a Condensed Image

V ti ll fil f t Vertically profile features 
extracted in the video 
frames to generate traces of g
vehicles in the spatial-
temporal image
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 The condensed image
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 The condensed image 
containing feature traces for 
detecting vehiclesg

 Reducing the influence of 
vehicle shaking in pitch and 
rollroll

x



Examples of Condensed ImagesExamples of Condensed ImagesExamples of Condensed ImagesExamples of Condensed Images
t t

Horizontal Line Profile Intensity Peak Profile
x x



11 D Profiles ProcessingD Profiles Processing11--D Profiles ProcessingD Profiles Processing

D   h    Due to the presence 
of horizontal lines in 
h  b k d  the background scene, 

the original 1D profile 
i   iis very noisy

 Pyramid scaling 
operations are 
preformed on the 
profiles to eliminate 
the noise and extract 
major feature traces



Tracking Traces in Condensed ImageTracking Traces in Condensed ImageTracking Traces in Condensed ImageTracking Traces in Condensed Image
 Tracking traces in the Tracking traces in the 

condensed image over time 
determines (x,v) sequences 
F  bl   f   For unstable traces from 
line segments, we track the 
center part of each tracecenter part of each trace

 Track traces in the 
condensed image using 
Kalman filter during the 
vehicle motion

 Motion continuity is applied  Motion continuity is applied 
in tracking to avoid noise 
from instantaneous light 
changes



Likelihood Probability Distribution Likelihood Probability Distribution yy
of Motion in Video of Motion in Video 

v
 Joint probability Pb(x,v) for 

background
Pb(x, v)

v

◦ Including minor steering 
N(0,5º)
◦ From uncertain positions at 

x

◦ From uncertain positions at 
distance towards certain 
positions on left and right 

d  f b ’  h l  P (  ) sides of observer’s vehicle 
 Joint probability Pc(x,v) for 

vehicle features

Pc(x, v)

vehicle features
◦ Relatively low image velocity 

when vehicles are confined when vehicles are confined 
in the road space

Red = high probability; Blue = low probability 



Motion Behaviors along TracesMotion Behaviors along TracesMotion Behaviors along TracesMotion Behaviors along Traces
 Background objects pursue t Background objects pursue 

hyperbolic trajectories expanding 
from the Focus of Expansion.p

 The curvature of a background 
trace is high if it is closer to road 

(x,v)

and is low if it is further from road.
 Their image velocity is higher on (x,v)

scenes passing by, and is lower at 
scenes down the street. 
O  th  th  h d  hi l   On the other hand, vehicles 
tracked within the road may stay in 
the image frame even they drive 

x

the image frame even they drive 
irregularly in a zigzag way



Identifying Traces during TrackingIdentifying Traces during TrackingIdentifying Traces during TrackingIdentifying Traces during Tracking
 Using a probabilistic formulation to v(pixel/s)Using a probabilistic formulation to 

model the motion to avoid using 
sensitive thresholds in classification

Hidd  M k  M d l (HMM) i  d 

Close X
Closest X

v(pixel/s)

 Hidden Markov Model (HMM) is used 
to model the continuous process of 
vehicles and background motion

Distant X

X=o x(pixel)
X=-

 Two hidden states describe every 
trace at any time t:

St t  C  hi l

Target 
vehicle

◦ State Ct  as vehicle

◦ State Bt as background

 The observation is a sequence of  tVxfXV 2The observation is a sequence of 
(x(t),v(t)) obtained from tracking trace

◦ Image position x(t)       
 

 
fX

tVx
tZ

fXVtv 2)( 

◦ Horizontal image velocity v(t)



Estimate Status of a TraceEstimate Status of a TraceEstimate Status of a TraceEstimate Status of a Trace
 Posterior probabilities P(Ct | x(t),v(t)) and P(Bt | x(t),v(t)) are updated p ( t | ( ) ( )) ( t | ( ) ( )) p

by

P(Ct) = max[ P(Bt-1)P(Ct | Bt-1)p(x(t),v(t)|Ct), 

P(C )P(C |C ) ( ( ) ( ) |C )]P(Ct-1)P(Ct |Ct-1)p(x(t),v(t) |Ct)]

P(Bt) = max[ P(Bt-1)P(Bt | Bt-1)p(x(t),v(t)|Bt),

P(C )P(B |C )p(x(t) v(t)|B )]P(Ct-1)P(Bt |Ct-1)p(x(t),v(t)|Bt)]

using Viterbi algorithm

 If P(Ct) > P(Bt), the trace is considered as a car at time t, or as ( t) ( t)
background otherwise

 At any time t, P(Ct)+P(Bt)=1, for normalization 

 The identified trace is formally output after it is tracked over a 

)()(
)()(

tt

t
t BPCP

CPCP



)()(

)()(
tt

t
t BPCP

BPBP




 The identified trace is formally output after it is tracked over a 
certain duration. Otherwise, such a short trace is removed as noise



Vehicle IdentificationVehicle IdentificationVehicle IdentificationVehicle Identification
a b c

d e f

g h i



Vehicle Detection ResultsVehicle Detection ResultsVehicle Detection ResultsVehicle Detection Results



Vehicle Detection ResultsVehicle Detection ResultsVehicle Detection ResultsVehicle Detection Results

T P i i 86 9 The longer the tracked True-Positive 86.9

False-Negative 14.1

T N 85 9

The longer the tracked 
duration, the more certain 
the identification becomes.

True-Negative 85.9

False-Positive 13.2

 If a detected vehicle moves 
too far from the observer 
car it will be ignoredcar, it will be ignored

 Approaching vehicles on the 
opposite lane are classified 

v(pixel/s)

as background
 Turning at a street corner 

needs another likelihood 

x(pixel)0

needs another likelihood 
distribution, but not dealt 
with here Opposite lane vehicle



ConclusionConclusionConclusionConclusion
 Detected features and tracked their  Detected features and tracked their 

profiled trajectories in spatial-temporal 
condensed imagecondensed image

 Introduced a probability model of 
b k d d hi l  d d background and vehicles and computed 
the likelihood probability distribution of 
h i  itheir motions

 Used HMM to estimate the process of p
location dependent motion for vehicle 
identification
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Background PDFBackground PDFBackground PDFBackground PDF
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Vehicle PDFVehicle PDFVehicle PDFVehicle PDF
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P  S l i  i  P b bili  C iParameter Selection in Probability Computation

D Average road width As wide as three lanes 6mD Average road width As wide as three lanes 6m

F Distance to target Minimum safe distance 10m

F Standard deviation of target distance 20m

St d d d i ti f l ti h i t l d T f t t hi lx Standard deviation of  relative horizontal speed Tx of target vehicle
Maximum cutting of three lanes, tolerant for moving on curved path 6m/s

z Standard deviation of relative translation speed Tz,  Tz is zero if target is pursued 10m/s

S A i d f b hi l 50k /h 15 /S Average pursuing speed of observer vehicle  50km/h 15m/s
 Standard deviation of  the speed 10km/h 5m/s
f Camera focal length Through offline calibration 900 pixel

z Range for integration From camera position to  distance close to infinity        0~200m

x Range for integration Wider than a road to include all backgrounds in video ‐50~50m

Tz Range for relative speed -40~40m/s

Ry Range of integration ‐10~10 degree/s

H The maximum height of vehicle,   As high as a truck, but mostly for cars 4m

r Standard deviation of steering angle of Ryr y

From the maximum tuning radius of a vehicle and road curvature.  5 degree/s


