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Laplace Approximation (1) 

If p(z) is a posterior distribution in the form of 
 

𝑝 𝑧 =
1

𝑍
𝑓(𝑧) 

 
and if no analytical solution exists for 𝑍 =  𝑓 𝑧 𝑑𝑧,  a closed 

form solution for p(z) is not possible. 
 
Laplace approximation aims to find a Gaussian approximation 
q(z) to a probability density p(z) centered on the mode of p(z). 
 
The first step is to find a mode of p(z), i.e., a point 𝑧0 such that 
𝑝′ 𝑧0 = 0. 



Laplace Approximation (2) 

𝑝′ 𝑧0 = 0 → 𝑓
′ 𝑧0 = 0 

 
The logarithm of a Gaussian distribution is a quadratic function 
of its variables. Therefore a second order Taylor expansion of 
ln𝑓(𝑧) centered on the mode 𝑧0 may offer a good 
approximation. 

ln 𝑓 𝑧 ≅ 𝑙𝑛𝑓 𝑧0 −
1

2
𝐴(𝑧 − 𝑧0)

2 

where 𝐴 = −
𝑑2

𝑑𝑧2
𝑙𝑛𝑓(𝑧)|𝑧=𝑧0 . 

 
The first order term in the Taylor expansion vanishes as 
𝑓′ 𝑧0 = 0 



Laplace Approximation (3) 

Taking the exponential 

exp(ln 𝑓 𝑧 ) ≅ exp ln 𝑓 𝑧0 −
1

2
𝐴 𝑧 − 𝑧0

2  we obtain 

 

𝑓 𝑧 ≅ 𝑓 𝑧0 exp −
1

2
𝐴 𝑧 − 𝑧0

2  

 
Now that f(z) is approximated a by a Gaussian shaped function 
to obtain a standard Gaussian distribution we normalize f(z) to 
get q(z)  

𝑞 𝑧 =
𝐴
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2  

 



Laplace Approximation (4) 

When z is multivariate A becomes a matrix  
 

𝑞 𝑧 =
|𝑨|

2𝜋 𝑑

1/2
exp −

1

2
𝒛 − 𝒛0

𝑇𝑨(𝒛 − 𝒛0) = 𝑁(𝒛| 𝒛0,𝑨−𝟏) 

 
When the distribution is multimodal there will be different 
Laplace approximations according to which 
mode is being considered.  
 
Laplace approximation is based purely on the aspects of the true 
distribution at a specific value of the variable, and so can fail to 
capture important global properties. 



Model Comparison and BIC (1) 

Recall Bayes Factor from Lecture 8.  
 

Bayes factor: 
𝑝(𝐷|𝑀𝑖)

𝑝(𝐷|𝑀𝑗)
 

 
Earlier we approximated model evidence 𝑝(𝐷|𝑀𝑖) by 

Negative 



Model Comparison and BIC (2) 

𝑝 𝐷 =  𝑝 𝐷 𝜽 𝑝 𝜽
𝑓(𝜽)

d𝜽 

𝑓 𝜽 ≅ 𝑓 𝜽𝑀𝐴𝑃 exp −
1

2
𝜽 − 𝜽𝑀𝐴𝑃

𝑇𝑨(𝜽 − 𝜽𝑀𝐴𝑃)  

 
If we replace the approximation for 𝑓(𝜽) with the integrand 
in p(D) then we get  

𝑝 𝐷 ≅ 𝑓 𝜽𝑀𝐴𝑃
𝑨

2𝜋 𝑑

−
1
2

 

ln 𝑝(𝐷) = ln 𝑝 𝐷 𝜽𝑀𝐴𝑃 + ln 𝑝 𝜽𝑀𝐴𝑃 −
1

2
ln

𝑨

2𝜋 𝑑


𝑶𝒄𝒄𝒂𝒎𝒇𝒂𝒄𝒕𝒐𝒓

 



Model Comparison and BIC (3) 

where N is the number of data points, M is the number of 
parameters. This is known as the Bayesian Information 
Criterion (BIC) or the Schwarz criterion (Schwarz, 1978). 

The first term is log likelihood evaluated using the MAP 
parameters while the remaining two terms comprise the 
“Occam factor” which penalizes model complexity. 
 
Assume: a broad Gaussian prior over 𝑝(𝜽), and  a full rank 
Hessian ln 𝑝(𝐷) can be further approximated by 



Bayesian Logistic Regression (1) 

Exact Bayesian inference for logistic regression is intractable.  
 
Evaluation of the posterior distribution would require 
normalization of the product of a prior distribution and a 
likelihood function that itself comprises a product of logistic 
sigmoid functions, one for every data point. Evaluation of the 
predictive distribution is similarly intractable.  
 
We can consider Laplace approximation to the posterior.  
 



Bayesian Logistic Regression (3) 

𝑝(𝒘|𝑡) ∝ 𝑝 𝒘 𝑝(𝒕|𝒘) 
 

𝑝 𝒘 = 𝑁(𝒘|𝒎0, 𝑺0) 
 

Taking the log of both sides 

∝ 

We maximize this function with respect to w to obtain 𝒘𝑀𝐴𝑃 



Bayesian Logistic Regression (3) 

The Hessian matrix is equal to: 

The Gaussian approximation to the posterior takes the 
form: 

To make predictions about future data we will integrate 
out w to obtain the predictive distribution 



Bayesian Logistic Regression (4) 

This integral represents the convolution of a Gaussian with a 
logistic sigmoid, and cannot be evaluated analytically.  
 
We can approximate the logistic function by the inverse probit 
function, i.e., we approximate 𝜎 𝑎  by Φ(𝜆𝑎) 
 
The advantage of using an inverse probit function is that its 
convolution with a Gaussian can be expressed analytically in 
terms of another inverse probit function. 


