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Abstract—We present a new direction for semi-supervised
learning where self-adjusting generative models replace fixed
ones and unlabeled data can potentially improve learning even
when labeled data is only partially-observed. We model each
class data by a mixture model and use a hierarchical Dirichlet
process (HDP) to model observed as well as unobserved classes.
We extend the standard HDP model to accommodate unlabeled
samples and introduce a new sharing strategy, within the
context of Gaussian mixture models, that restricts sharing
with covariance matrices while leaving the mean vectors free.
Our research is mainly driven by real-world applications
with evolving data-generating mechanisms where obtaining a
fully-observed labeled data set is impractical. We demonstrate
the feasibility of the proposed approach for semi-supervised
learning in two such applications.
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I. INTRODUCTION

Despite close to two decades of active research in semi-

supervised learning (SSL) there is still no consensus among

researchers whether unlabeled data helps with learning.

Numerous results reported over the years, with some studies

showing significant improvements in classifier performance

when unlabeled data is used along with labeled data,

yet others presenting results [1]–[3] suggesting that semi-

supervised learning is nothing but a hype, clearly indicate

that the controversy surrounding semi-supervised learning

will not come to an end anytime soon.

So far it has been theoretically proved that: 1. in the

context of finite mixture models when the model assumption

for the classifier is correct, that is, the model used to build

the classifier is identical to the model that generated the

data, under the additional assumption of statistical identifi-

ability, unlabeled data alone is sufficient to identify mixture

components [4]; 2. under various assumptions, classification

error decreases exponentially with the number of labeled

samples, and linearly with the number of unlabeled samples

[5]; 3. under a zero-bias assumption, unlabeled data reduces

the variance of the estimator and helps classification [6].

Although these results are strong and present the ideal

conditions under which unlabeled data would be useful, the

assumptions on which they are based are far from realistic

for real-world data. It is now an established fact in semi-

supervised learning that when there is a mismatch between

approximating and true distributions, unlabeled data may

actually degrade the accuracy of the classifier. Thus, it is

somewhat of a paradox, to expect a distribution learned with

limited labeled data to be flexible enough to accommodate

a large amount of unlabeled data.

In most semi-supervised settings the limited labeled data

is not only scarce but also collected without full knowledge

of the underlying components of the data-generating mech-

anism. The main challenge that arises in the mining of real-

world data sets but is often overlooked in semi-supervised

learning is that the data model is not only unknown at the

time of training but may also have an evolving nature that

makes learning with a fixed model impractical. Under such

circumstances it would be impractical to assume that labeled

and unlabeled data sets come from the same distribution

because certain aspects of the data-generating mechanism

evident at the time the unlabeled data set was observed may

not have been evident at the time the labeled data set was

collected. In other words, it is natural to have a labeled

dataset where the sets of classes and components are not

exhaustively defined. We next present two motivating real-

world applications of semi-supervised learning involving

non-exhaustively defined labeled datasets.

A. Motivation

Pathogen Detection: A global surge in the number of

outbreaks together with elevated concerns about biosecurity

has led to an enormous interest among scientific communi-

ties and government agencies in developing label-free, i.e.,

reagentless, techniques for rapid identification of pathogens.

The core advantage of label-free methods is their ability

to quantify phenotypes for which there are no available

antibodies or genetic markers. This information can be

used within a traditional supervised-learning framework in

which knowledge discovered from independently tested and

prelabeled samples is used for training. However, the quality

of training libraries is potentially limited because the sheer

number of bacterial classes would not allow for practical and

manageable training in a traditional supervised setting; for

instance Salmonella alone has over 2400 known serovars.



Additionally, microorganisms are characterized by a high

mutation rate, which means that new classes of bacteria can

emerge anytime. Thus, no matter how diligently the labeled

dataset is collected, the evolving nature of the problem

does not allow for obtaining an exhaustively-defined labeled

dataset.

Hyperspectral Data Analysis: With the recent advance-

ments in sensor technology, remote-sensing imagery can

now be collected in potentially thousands of spectral bands.

This increase in spectral resolution makes it possible to

differentiate land-cover types with only subtle structural

differences, allowing for in-depth analysis of the scene.

The widespread use of machine-learning techniques in the

analysis of hyperspectral imagery is usually hindered by

the lack of well-defined ground truth. Collecting ground-

truth is a laborious task limited mainly by the manual

labeling of the fields. The problem can get worse, especially

when analyzing images of scenes that cannot be physically

accessed, e.g., an enemy territory, or scenes with dynamic

characteristics, e.g., urban fields. Under these circumstances,

defining an exhaustive set of classes becomes impractical.

The previously collected ground truth for similar scenes

might allow for classification of broad land-cover types, but

this comes at the expense of misclassifying fields belonging

to undefined land-cover types into one of the existing types.

Besides, this approach under-exploits the wealth of spectral

information available in the imagery and does not allow

for in-depth and high-level image analysis. In summary, the

set of classes of informational value in hyperspectral image

analysis is inherently non-exhaustive and like the pathogen

detection problem presented above, robust analysis of hyper-

spectral data also requires new rigorous machine-learning

approaches capable of addressing the non-exhaustiveness

problem.

B. Our Approach and Contributions

Non-exhaustiveness of the labeled data set is a very

realistic yet ill-defined scenario where traditional approaches

to semi-supervised learning with a fixed model assumption

would fail, as there is a clear mismatch between the model

defined by the labeled data set and the model that generated

the unlabeled data set. In this study we present a new

framework for semi-supervised learning by replacing the

traditional brute-force approach of fitting a fixed model onto

the unlabeled data set with a new approach that can enable

“data to speak for itself.” We believe that our approach

differs significantly from earlier work in that we relax the

fixed model assumption defined by the labeled data in

order to have a self-adjusting model that can evolve by

dynamically adding new components or classes to better

accommodate unlabeled data.

We model each class by a Gaussian mixture model

(GMM) with an unknown number of components. We define

a hierarchical Dirichlet process (HDP) over class distribu-

tions to dynamically model the number of components as

well as classes. HDP also offers a natural framework for

parameter sharing across inter- and intra-class components,

practically addressing the ill-defined covariance estimation

problem even for components observed with only few

samples. We use a collapsed Gibbs sampler to perform

inference and to estimate the posterior distribution of the

component indicator variables for all samples in the labeled

and unlabeled data sets. Our specific contributions in this

study can be summarized as follows:

1) We propose a new framework for semi-supervised

learning where unlabeled data can potentially improve

learning even when the models that generated the

unlabeled and labeled data sets are different.

2) We extend the concept of HDP, which allows joint

learning of components across a fixed number of ob-

served classes, to learning components of potentially

infinite number of unobserved classes in addition to

those of observed ones.

3) We provide a strategy for sharing the covariance

matrices across different components while leaving the

mean vectors free.

4) New class discovery and discovery of new components

from existing classes comes as a by-product of our

approach.

C. Related Work

Early work in semi-supervised learning can be broadly

categorized into five areas: 1. self-training, 2. co-training,

3. graph-based methods, 4. transductive approaches, and 5.

generative mixture models. We refer the reader to the survey

by X. Zhu [7] for details of SSL techniques introduced

in these areas. These earlier approaches in SSL assume

that classes generating unlabeled data are also observed in

the labeled data, which, as we discussed in the previous

section, is not a realistic assumption for data sets with an

evolving nature. These techniques are destined to fail when

the unlabeled data set contains samples from classes not

represented in the labeled data.

The work of Miller et al. [8] differs from this large body

of work in SSL in that theirs is the first study to deal with

the fact that the unlabeled data may originate from classes

not observed in the labeled data. In this study, known and

unknown classes were modeled by a mixture of expert model

with learning performed by expectation-maximization [9].

The study uses minimum description length coupled with

some heuristics to decide on the number of optimal mixture

components, but the fully parametric nature of the proposed

model does not allow for a systematic modeling of the

number of mixture components. Additionally, it is not clear

how the curse of dimensionality is addressed for a model that

relies on the point estimates of the component parameters.

It is possible that some of the mixture components present

with a small number of samples in the combined labeled



and unlabeled data set, in which case point estimates of

the parameters will be ill-conditioned. Unlike the work of

Miller et al., the proposed framework uses a non-parametric

prior to model the number of components and adopts a

fully Bayesian approach for model learning that eliminates

the need for point estimates of the parameters, practically

addressing the curse of dimensionality problem to a greater

extent.

Most of what we did in this study is more closely related

to the field of Bayesian non-parametrics primarily involving

Dirichlet process mixture (DPM) models [10]–[12]. The

DPM has been heavily studied for clustering applications

over the past decade. Most of these approaches assume that

all the components of the mixture model are unobserved

and study inference techniques to learn these components

in an unsupervised manner. Although certain aspects of

these studies have been inherently useful for our study, an

unsupervised approach would be most desirable in settings

where the patterns and structure within the data set are

completely unobserved.

Two recent studies [13], [14] that use a partially-observed

DPM for class modeling are of particular interest for the

current study. Both of these techniques deal with online

learning problems and use a partially observed DPM to

model existing and emerging classes together. The work

of Dubey et al. [13] models training data by a HDP and

introduces a DP model to handle incoming data. Incoming

data contains samples from observed as well as unobserved

classes. HDP and DP models are then coupled with the goal

of identifying news articles with new topics while classifying

those with older topics into one of the classes represented in

the training data. In [14], motivated by a pathogen detection

problem, a partially observed DPM model is coupled with a

particle filtering algorithm to detect emerging classes in an

online manner.

We believe that the proposed framework pioneers the

approach to learning with a non-exhaustively defined labeled

data set and presents a unique framework to tackle unlabeled

data in partially-observed semi-supervised settings. The dis-

tinct algorithmic aspects of the proposed study involve, first,

the extension of the HDP model to accommodate unlabeled

data and to discover and recover new classes, and second,

the fully Bayesian treatment of mixture components to allow

for parameter sharing across different components that not

only addresses the curse of dimensionality problem but also

connects observed classes with unobserved ones through

sharing of parameters.

The rest of this paper is organized as follows. In Section

II-A we briefly review the hierarchical dirichlet process

(HDP). In Section II-B we discuss how HDP can be ex-

tended to partially observed settings. In Section II-C we

incorporate the data model and discuss a strategy for sharing

the covariance matrices while leaving the mean vectors

free. In Section II-D we demonstrate the feasibility of the

proposed approach on an artificial dataset. In Section II-E

we discuss some of the implementation details. In Section

III we present results of our experiments comparing the

proposed approach against several state-of-the-art supervised

and semi-supervised learning techniques for the bacteria

classification and hyperspectral image analysis problems.

In Section IV we conclude with a brief summary of our

contributions and future research directions.

II. LEARNING FROM NONEXHAUSTIVE DATA

We start this section with a brief review of the Hi-

erarchical Dirichlet Processes (HDP) [15] widely used in

the machine learning literature for co-clustering multiple

groups of data by enabling sharing of parameters across

components. Throughout this section we use the terms group
and class interchangeably. We also assume that each group

data comes from a mixture model with an unknown number

of components.

A. Hierarchical Dirichlet Processes

HDP extends Dirichlet Processes (DP) [11], which is

mainly used in clustering and density estimation problems

as a nonparametric prior defined over the number of mixture

components. A DP can be considered as a distribution over

distributions. HDP models each group of data in the form of

a DPM model, where DPM models across different groups

are connected together through a higher level DP. We use the

notation xji ∈ �d, i = {1, ..., nj}, j = {1, ..., J} to identify

sample i in the group j where nj denotes the number of

samples in group j, J is the total number of groups, and θji
defines the parameters of the mixture component associated

with xji. Each xji is associated with a mixture component

defined by the parameter θji, which is generated i.i.d. from

a Dirichlet Process as follows:

xji|θji ∼ p(·|θji) for each j, i

θji|Gj ∼ Gj for each j, i
(1)

where Gj’s are random probability measures distributed i.i.d.

according to a DP with base distribution G0 and precision

parameter α. The stick-breaking construction due to [16]

suggests Gj =
∑∞

i=1 βjiδθji where βji = β
′
ji

∏i−1
l=1(1−β

′
jl),

β
′
ji ∼ Beta(1, α), and θji ∼ G0. The points θji are called

the atoms of Gj . Note that unlike continous distributions

the probability of sampling the same θji twice is not zero

and proportional to βji. Thus, Gj is considered a discrete

distribution.

The precision parameter, α, is the parameter that controls

how much of the stick will be left for subsequent values.

The smaller the α is, the larger the β
′
ji will be, and the less

of the stick will be left for subsequent values on average.

Thus, α is the parameter that controls the prior probability

of assigning a new sample to a new component and thus,

plays a critical role in the number of components generated.



In the HDP model the base distribution G0 is distributed

according to a higher level DP with a base distribution H
and parameter γ. This hierarchical model couples Gj’s and

allow for sharing of mixture components within and between

groups. HDP model is completed as follows:

Gj |G0, α ∼ DP (G0, α) for each j,

G0|H, γ ∼ DP (H, γ)
(2)

The generative process defined by an HDP model can be

better explained by an analogy to the Chinese Restaurant

Franchise (CRF) [15]. We have a restaurant franchise with

a global menu of dishes shared across all restaurants. In

each restaurant a certain dish is served at each occupied

table, which is shared by all customers sitting in that

table. The same dish can be served in other tables across

multiple restaurants. The popularity of a particular dish is

proportional to the number of tables serving that dish. In

an arbitrary restaurant j, customer i is associated with θji
and is seated at table tji, and table t is associated with one

of the K random draws from H , i.e., ψjt ∈ {φ1, . . . , φK},

which represents the global menu of dishes. A dish from the

global menu served at table t in restaurant j is denoted by

the indicator variable kjt. In the HDP model the parameter

γ controls the prior probability of serving a new dish at a

new table.

In this model, restaurants correspond to classes, each table

in a restaurant corresponds to a mixture component in the

mixture model, and each dish in the menu corresponds to a

unique set of parameters shared by one or more components.

The conditional distributions for tji and kjt are obtained

by integrating out Gj and G0, respectively.

tji|tj1, . . . , tj,i−1, α ∼ α
nj+αδtnew +

∑mj.

t=1
njt

nj+αδt
(3)

where mj . is the number of tables in restaurant j and njt is

the number of customers at table t in restaurant j. According

to this conditional distribution θji inherits one of the existing

ψjt with probability
njt

nj+α or ψj,mj .+1, i.e., a new table, with

probability α
nj+α . Similarly,

kjt|kj1, . . . , kj,t−1, γ ∼ γ
m..+γ δknew +

∑K
k=1

m.k

m..+γ δk
(4)

where m.k is the number of tables across all restaurants

serving dish φk and m.. is the total number of tables across

all restaurants. According to this conditional distribution ψjt

is equal to one of the φk with a probability m.k

m..+γ or φK+1,

i.e., a new dish, with probability γ
m..+γ .

Inference in the described CRF setting can be performed

using a Gibbs sampler by iteratively sampling the variables

t =
{{tji}nj

i=1

}J

j=1
, k =

{{kjt}mj.

t=1

}J

j=1
, and φ = {φk}Kk=1

given the state of all other variables. The conditional distri-

butions for tji is:

p(tji = t|t\tji,k,φ,x) ∝{
αp(xji) for t = mj. + 1

n−i
jt p(xji|φkjt

) for t ∈ {1, . . . ,mj.}
(5)

The conditional distributions for kjt is:

p(kjt = k|t,k\kjt,φ,x) ∝{
γ
∏

i:tji=t p(xji) for k = K + 1

m−jt
.k

∏
i:tji=t p(xji|φk) for k ∈ {1, . . . ,K}

(6)

In the above conditional distributions n−i
jt is the number

of customers sitting at table t in restaurant j excluding

the customer i, m−jt
.k is the number of tables sharing the

same dish φk excluding the table t in the restaurant j. The

conditional distribution for φ is omitted as we choose a

conjugate pair of H and p(·|φ) in this study, which allows us

to integrate out φ analytically to obtain a collapsed version

of the Gibbs sampler.

B. Partially-observed HDP model for semi-supervised
learning

In this section we extend the HDP model to semi-

supervised learning in partially-observed settings. We model

each class by a Gaussian mixture model (GMM) with an

unknown number of components. We introduce the notion

of observed and unobserved classes/subclasses to distinguish

classes/subclasses represented in the labeled data set from

those not represented. Each subclass is represented by a

single component in the corresponding GMM model. Thus,

we use subclasses and components interchangeably in the

rest of the paper.

The labeled data set is non-exhaustively defined because

the set of classes and the set of components for some or

all of the classes are not complete, i.e., partially observed.

The class labels for samples in the labeled data set are

known, whereas component labels are not. The unlabeled

data set may contain samples from classes and subclasses

not represented in the labeled data set. However, neither the

class labels nor the component labels are known for samples

in the unlabeled data set. The number of components in each

class and the total number of classes are also not known.

In the partially-observed setting the learning problem

includes the following two tasks: (i) inferring the component

membership of labeled samples and (ii) inferring both the

group and component membership of unlabeled samples.

Unlike labeled samples which are known to originate from

observed classes, unlabeled samples can originate from

observed as well as unobserved classes. Each class in the

proposed SSL framework corresponds to a separate restau-

rant in the CRF analogy. To relate this partially observed

setting to the CRF metaphor each unlabeled sample can

be considered as an undecided customer who has not yet

decided which restaurant to go. These customers can go to



one of the existing restaurants in the franchise but may as

well choose a new restaurant, which is treated as a new

restaurant with a single table in the proposed framework.

Labeled samples represent customers who already arrived

at one of the existing restaurants and waiting to be seated.

These customers can be seated using the same Gibbs sampler

scheme presented in the previous section after accounting for

the presence of undecided customers who eventually choose

to go to the same restaurant. In short, decided customers

sit at existing or new tables in existing restaurants only,

whereas undecided customers can seat at new tables in

new restaurants in addition to existing or new tables in

existing restaurants. Before we move on to describing the

details of our approach for extending the HDP framework

for semi-supervised learning in a partially-observed setting

we introduce new notation to distinguish between labeled

and unlabeled samples.

We use x =
{{xji}nj

i=1

}J

j=1
and t =

{{tji}nj

i=1

}J

j=1
to

denote samples and component indicator variables, respec-

tively, for the labeled data. For the same variables in the

unlabeled data, we use x̃ = {x̃i}nu

i=1 and t̃ =
{
t̃i
}nu

i=1
.

For the unlabeled data we also introduce ỹ = {ỹi}nu

i=1

to denote the unknown class indicator variables, where

ỹi ∈ {1, . . . , J + J̄}, J̄ is the number of newly created

classes after observing the unlabeled data. Finally we use

k =
{{kjt}mj.

t=1

}J

j=1
and k̃ =

{
k̃j

}J̄

j=1
to define indicator

variables for the unique parameters shared across observed

and newly created classes, respectively.

The part of the Gibbs sampler for inferring the compo-

nent membership of labeled samples involve evaluating the

following conditional distributions iteratively given the state

of all other variables.

The conditional distribution for tji for a labeled sample

is:

p(tji = t|t\tji,k,φ,x, x̃, ỹ, t̃) ∝{
αp(xji) for t = mj. + 1

(n−i
jt + ñjt)p(xji|φkjt) for t ∈ {1, . . . ,mj.}

(7)

where ñjt is the number of unlabeled samples assigned to

component t in class j.

Unlike a labeled sample, which is either assigned to one

of the existing components associated with its class of origin

or to a new component generated for that class, an unlabeled

sample can be assigned to any of the existing components

across all classes or to a new component generated for a

new class. In this framework each new class will inherently

have one component. The fact that true labels of unlabeled

samples are not known makes it impossible to readily

associate new components with existing ones.

The conditional distribution for t̃i for an unlabeled sample

is:

p(t̃i = t|t,k,φ,x, x̃, t̃\t̃i, ỹ, k̃) ∝⎧⎪⎪⎨
⎪⎪⎩

αp(x̃i) for t = 1
j = J + J̄ + 1

(njt + ñ−i
jt )p(x̃i|φkjt

) for t ∈ {1, . . . ,mj.}
j ∈ {1, . . . , J + J̄}

(8)

Next, we discuss the part of the Gibbs sampler for

inferring the indicator variables of unique parameters for

components of existing and new classes.

A component in an existing class may contain both labeled

and unlabeled samples. Thus, the conditional distribution for

kjt is:

p(kjt = k|t,k\kjt,φ,x, x̃, ỹ, t̃, k̃) ∝⎧⎪⎪⎨
⎪⎪⎩

γ
∏

i:tji=t p(xji)
∏

i:t̃i=t∧ỹi=j p(x̃i)

for k = K + 1

m−jt
.k

∏
i:tji=t p(xji|φk)

∏
i:t̃i=t∧ỹi=j p(x̃i|φk)

for k ∈ {1, . . . ,K}
(9)

On the other hand a component in a new class contains

only unlabeled samples. Thus, the conditional distribution

for k̃j is:

p(k̃j = k|t,k,φ,x, x̃, ỹ, t̃, k̃\k̃j) ∝⎧⎪⎪⎨
⎪⎪⎩

γ
∏

i:ỹi=j p(x̃i)

for k = K + 1

m−j
.k

∏
i:ỹi=j p(x̃i|φk)

for k ∈ {1, . . . ,K}

(10)

Finally, the class indicator variables ỹ for unlabeled

samples can be obtained from t̃. If an unlabeled sample

is assigned to a new component this will indicate a new

class and thus ỹi = J + J̄ + 1. If an unlabeled sample is

assigned to one of the existing components associated with

class j then ỹi = j. Note that class j can be one of the

classes represented in the labeled data set as well as one

of the classes previously associated with unlabeled samples,

i.e., j ∈ {1, . . . , J + J̄}. Each sweep of the Gibbs sampler

also involves sampling γ and α values using the technique

described in [10].

This completes our discussion for learning with labeled

and unlabeled data sets with an HDP model in a partially-

observed setting. Next, we will present the data model used

in this study and discuss a strategy for sharing the covariance

matrices of mixture components while leaving their mean

vectors free.

C. Parameter Sharing in a Gaussian Mixture Model

We model each class by a mixture model with each

component data distributed according to a Gaussian distri-

bution with mean vector μjt and a covariance matrix Σjt,

i.e., ψjt = {μjt,Σjt}. For the base distribution H , from



which the unique component parameters φk’s are sampled,

we define a conjugate prior:

H = p (μ,Σ) = N
(
μ|μ0,

Σ

κ

)
︸ ︷︷ ︸

p(μ|Σ)

×W−1 (Σ|Σ0,m)︸ ︷︷ ︸
p(Σ)

(11)

where μ0 is the prior mean and κ is a scaling constant

that controls the deviation of the mean vectors of mixture

components from the prior mean. The smaller the κ is,

the larger the scattering between the components will be.

The parameter Σ0 is a positive definite matrix that encodes

our prior belief about the expected Σ. The parameter m
is a scalar that is negatively correlated with the degrees

of freedom. In other words the larger the m is the less

Σ will deviate from Σ0 and vice versa. The parameters

(Σ0,m, μ0, κ) are estimated using labeled samples in the

same way described in our earlier work [14].

To evaluate the Gibbs sampler introduced in the previous

section we need the conditional distribution p(x|ψjt) and

the marginal distribution p(x). Since ψjt are not known

they can be replaced with the class conditional predictive

distributions p(x|Djt), where Djt denotes the subset of

samples belonging to component t in class j. This collapsed

version of the Gibbs sampler eliminates the need for point

estimates of ψjt and reduces the state space of the sampler

leading to faster convergence to the equilibrium distribu-

tion [17]. The marginal distribution can be obtained from

p(x|Djt) by setting Djt an empty set. For the multivariate

Gaussian data the sample mean x̄ and the sample covariance

matrix S are sufficient statistics and therefore we can write

p(x|Djt) = p(x|x̄jt, Sjt).
To evaluate p(x|Djt) for a given x requires evaluating the

following integral with respect to ψjt = {μjt,Σjt}.

p(x|Djt) =

∫
p(x|ψjt)p(ψjt|Djt)∂ψjt (12)

If parameter sharing across different components were

not allowed, evaluating the above integral analytically would

yield a multivariate Student-t distribution with the following

parameters [18].

Location vector:

μ̂jt =
njtx̄jt + κμ0

njt + κ

Scale matrix:

Σ̂jt =
Σ0 + (njt − 1)Sjt +

njtκ
njt+κ (x̄jt − μ0)(x̄jt − μ0)

T

(κ+njt) v
(κ+njt+1)

(13)

Degrees of freedom:

vjt = m+ njt − d+ 1

A B C D E

Figure 1. Templates of covariance matrices used for the illustrative
example

However, in the proposed framework the clustering prop-

erty of the HDP model allows multiple components to

inherit one of the distinct parameters in φ. Thus, instead of

integrating out ψjt as in (12), sharing property of the HDP

model requires that we integrate out φk in the predictive dis-

tribution. Let D.k be the samples of all components sharing

parameter φk then the predictive distribution p(x|D.k) can

be obtained by evaluating the following integral.

p(x|D.k) =

∫
p(x|φk)p(φk|D.k)∂φk (14)

If φk contains both the mean vector and the covariance

matrix then this would imply sharing the same mean vector

and the covariance matrix across multiple components. This

would mean fitting each component by the same Gaussian

distribution, which would not make sense as components

sharing the same parameters would no longer be identifiable.

To tackle this problem we adopt a strategy, where sharing

is limited with the covariance matrices only. Thus, if we set

φk = {Σk} and evaluate the integral in (14) analytically we

obtain the predictive distribution as a multivariate Student-t

distribution with the same location vector as previously but

with the scale matrix and degrees of freedom updated as

follows.

Scale matrix:

Σ̂jt =
Σ0+

∑
jt:kjt=k

(njt−1)Sjt+
njtκ

njt+κ (x̄jt−μ0)(x̄jt−μ0)
T

(κ+njt) v

(κ+njt+1)

(15)

Degrees of freedom:

vjt = m+
∑

jt:kjt=k

(njt − 1)− d+ 2

where the summation terms are over all components sharing

the same covariance matrix.

Next, we present an illustrative example demonstrating the

proposed approach discovering and recovering new classes

and new components of observed classes.

D. Illustration of the Proposed Approach

For this illustration we generated three classes, each as

a mixture of three Gaussian components. The covariance

matrices for individual components are randomly drawn

from a set of five different templates of covariance matrices,

each with a different shape and orientation (Figure 1). The



mean vectors of the classes are equidistantly placed along

the periphery of a circle centered at the origin with radius 7.

Similarly, the component means are arbitrarily chosen along

a circle with radius 1, centered at the corresponding class

means.

We generated 110 samples from each component for a

total of 330 samples for each class. We randomly selected 10

samples from each component as labeled data and used the

remaining 100 samples from that component as unlabeled

data. In order to produce a partially-observed labeled data

set in terms of both the number of classes and the number

of components for an observed class, we considered all

components of a class and one component of a second

class as unobserved and discarded all their labeled samples,

leaving only unlabeled samples only these components.

The purpose of this illustration is three fold. First, we

show that the proposed HDP model, which uses unlabeled

and labeled data together, can more accurately recover the

underlying distributions of the observed classes compared

to the version that uses only labeled data. Second, we

demonstrate that the proposed self-adjusting model can suc-

cessfully discover and recover the underlying distributions

of classes/subclasses that exist in the unlabeled data but are

unobserved in the labeled data, whereas classical approaches

that deal with samples of unrepresented classes/subclasses

by assigning reduced weight to them can neither discover

unobserved classes nor accurately model observed classes.

Third, we illustrate the sharing aspect of the proposed

approach by first identifying the types of the covariance

matrices of the recovered distributions and then comparing

them against the true types of the covariance matrices used to

generate data from each subclass. We show that with the pro-

posed approach the labels of the covariance matrices shared

among recovered subclass distributions perfectly match the

labels of those shared among true subclass distributions.

Figure 2a shows true subclass distributions for all nine

subclasses. The observed subclasses, i.e., those that are

represented in the labeled data set, are shown by solid

lines and unobserved ones by dashed lines. The ellipses

correspond to the distributions of the subclasses that are at

most three standard deviations away from the mean.

Figure 2b shows the distributions of the five observed

subclasses recovered by the version of the HDP model that

uses only labeled data. Note that the recovered distributions

deviate from the true subclass distributions. Additionally

three of the five recovered subclass distributions share dif-

ferent types of covariance matrices than those used in the

true subclass distributions.

Figure 2c shows the impact of unlabeled data over the

recovered subclass distributions when unlabeled data contain

samples from classes/subclasses unobserved in the labeled

data and a fixed model is used to accommodate unlabeled

data. These results are obtained using the technique in-

troduced in [19], which assigns reduced weight to unla-

beled samples as determined by their posterior probabilities.

Note that, since unlabeled data from unobserved subclasses

dominate labeled data from observed classes, the recovered

distributions for observed classes significantly deviate from

true subclass distributions.

Figure 2d shows the results of the proposed approach.

Both observed and unobserved subclass distributions are

almost perfectly recovered. The sharing of the covariance

matrices among recovered subclass distributions matches

the sharing of covariance matrices among true subclass

distributions. Labels for the covariance matrices of recovered

distributions are also correctly identified.

E. Implementation of the Proposed Approach

We end this section by briefly discussing some of the im-

plementation details involving the Gibbs sampler presented

in Section II-B. We initialize the HDP model by generating a

component for each observed class and assigning a random

sample from that class to this component. During each sweep

of the Gibbs sampler, all data samples are assigned to one

of the existing components or to a new component using

equations (7) and (8) for labeled and unlabeled samples,

respectively. This is followed by sampling the parameters

of the components based on the most current assignment

of the samples. For components associated with observed

classes the equation (9) is used, for those associated with

unobserved classes the equation (10) is used. Both labeled

and unlabeled samples can generate new components but

unlike a component generated for an unlabeled sample,

which is assigned to a new class, a new component generated

for a labeled sample is readily assigned to the observed class

the labeled sample belongs to.

When a sample is assigned to an existing component

the mean vector of the corresponding component and the

covariance matrices of all components associated with the

same φ are updated. If an unlabeled sample ends up at a

new table then we introduce a new class and tentatively

label the sample with that class until the next iteration and

process remaining unlabeled samples by taking the new table

into account as well. Unlike an observed class, which is

fixed by definition, a new class can be removed when no

samples are left in the component associated with that class.

A component associated with an observed class may contain

both labeled and unlabeled samples at a given sweep but

during later sweeps the labeled samples may move to other

components leaving only unlabeled ones in that component.

In this case we reassign that component to a new class.

Finally, as mentioned before, we used the formulation

in [10] to sample the precision parameters α and γ of the

HDP model for the Gibbs sampler. This formulation requires

defining Gamma priors with shape parameters (a0, b0) and

(a1, b1) over α and γ, respectively. The posterior distribution

for α is conditioned on the total number of samples N and

the total number of existing components m.. in the current
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Figure 2. Illustration of the proposed algorithm with an artificial dataset. Solid and dashed black contours indicate observed and unobserved subclasses,
respectively. Solid blue contours indicate recovered versions of observed subclasses whereas blue contours plotted with the plus sign indicate the recovered
versions of unobserved subclasses. Letters denote the labels of the covariance matrices. The star and cross signs show the location of the true and predicted
mean vectors of subclasses, respectively. (a) True subclass distributions. (b) Distributions recovered by the standard HDP model using only labeled data
set. (c) Distributions recovered by a fixed model that assigns full weight to labeled samples and reduced weight to unlabeled samples, using both labeled
and unlabeled data sets. (d) Distributions recovered by the proposed self-adjusting model using both labeled and unlabeled data sets.

iteration. Similarly, the posterior for γ is conditioned on m..

and the number of existing unique parameters in the current

iteration K. While experimenting with the shape parameters

of the Gamma priors, we observed that as m.. increases it

dominates the effect of a0 in the posterior and the expected

value of the Gamma posterior tends to increase regardless

of a0. Regarding the second parameter of the posterior, as

N is fixed, a large value for b0 is necessary to balance the

effect of the first parameter on the expected value. A similar

argument can be made for γ based on the values of K and

T . As a result we set a0 and a1 to one and coarsely tuned

b0 and b1 values.

III. EXPERIMENTS

A. Evaluated Classifiers

We considered three supervised learning methods as base-

line techniques, where only the labeled training samples is

used for learning the classifiers. The first one is a Naive

Bayes classifier (SL-NB). The second one is a maximum-

likelihood classifier with each class modeled by a single

Gaussian (SL-ML). The third one is a maximum-likelihood

classifier with each class modeled by a mixture of Gaussian

components (SL-EM). This method fits a mixture model

onto each class data by expectation-maximization.

In addition to these supervised learning methods we im-

plemented a number of benchmark semi-supervised learning

algorithms. The first one is the semi-supervised EM algo-

rithm introduced in [19] (SSL-EM). Briefly, this algorithm

first, fits a Gaussian distribution onto each class data in the

labeled data set, then, evaluates the posterior probabilities of

the unlabeled samples for each class using the learned distri-

butions, and finally, incorporates the unlabeled samples into

the parameter-estimation process for each class by weighting

them using their posterior probabilities. In this approach

each unlabeled samples only contributes to the class for

which the posterior is maximized. This process repeats until

convergence and the resulting classifier is applied on the test

data.

We also implemented two versions of the self-training

method (SELF) with base learners ML and NB, respectively.

Another algorithm we have included is the Co-training

algorithm (CO-TR) implemented in two versions with base

learners ML and NB respectively. For SELF and CO-

TR we only include the better performing version in the

experimental results.

One final approach we considered is an algorithm inspired

by [8] (SSL-MOD). In this technique, similar to SSL-EM,

we fit a Gaussian distribution for each class using labeled

samples and use this model to classify unlabeled samples.

The maximum of the class likelihood values are obtained for

each sample. A two component Gaussian mixture model is

fit onto the likelihood values in order to identify unlabeled

samples with higher and lower likelihood values. We expect

that unlabeled samples belonging to the observed classes

will yield higher likelihood values whereas those from

unobserved classes will yield low likelihood values. Then,

we merge the unlabeled samples in the higher-likelihood

group with the labeled samples to re-estimate the parameters

of the classes. This process repeats until convergence and in

the end another EM is performed on the samples remaning in

the low-likelihood group to identify unobserved components.

This technique is the only SSL technique, other than the pro-

posed approach, that attempts to model unobserved classes.

The proposed self-adjusting SSL approach is identifed by

SA-SSL in this section.

B. Classifier Design and Evaluation

The labeled, unlabeled, and test data sets are generated

as follows. We first divide the available labeled data into

two and reserve one portion as test data. Then we further

split the remaining portion into two as the labeled and

unlabeled training data sets. During each split stratified

sampling is used to make sure each class is proportion-

ately represented in each subset. Some of the classes are

considered unobserved and moved from the labeled set to

the unlabeled set generating a non-exhaustive labeled data

set. Both the unlabeled and test sets are exhaustive. The



exact numbers for the number of unobserved classes and the

proportions for the test, train and unlabeled sets are specified

for each experiment below. We evaluate the performance

of the classifiers using the overall classification accuracy

and the average classification accuracies evaluated separately

for observed and unobserved classes on the test set. We

repeated this process ten times by generating ten random

test/train/unlabeled splits and report the average accuracies

along with the standard deviations.

The performance of the proposed SA-SSL algorithm is

evaluated on three fronts: overall classification accuracy,

classification accuracy for observed classes, classification

accuracy for unobserved classes. To compute the classifier

accuracy for unobserved classes each newly created compo-

nent is assigned to the unobserved class having the majority

of the samples in that component. Classification accuracy

for each unobserved class is computed by the ratio of the

total number of samples recovered by the corresponding

components to the total number of samples in that class.

C. Experiment 1: Pathogen Detection

In this experiment a total of 2054 samples from 28

classes each representing a different bacteria serovar were

considered. These are the type of serovars most commonly

found in food samples. Each serovar is represented by

between 40 to 100 samples where samples are the forward-

scatter patterns characterizing the phenotype of a bacterial

colony obtained by illuminating the colony surface by a laser

light. Each scatter pattern is a gray level image characterized

by a set of 22 features. More information about this dataset

is available in [20]. We reserved 30% of the samples as test

data, and used 30% of the remaining 70% as the labeled

data set, while the rest remained as unlabeled. Four of the

classes are considered unobserved and all of their samples

are moved from the labeled set to the unlabeled set. So

the non-exhaustive labeled set contains 24 classes and the

exhaustive unlabeled and test data contains all of the 28

classes.

As the results in Table I suggest the proposed SA-SSL

algorithm significantly outperforms all other techniques in

terms of the overall classifier accuracy as well as classifier

accuracies for observed and unobserved classes. In addition

to classifying samples from unobserved components with

a reasonable accuracy, the proposed approach also per-

forms favorably compared to other techniques for classifying

samples of observed components. On the average a total

of 180 components and 150 unique covariance matrices

were generated across twenty eight classes for this data set

indicating that each class is modeled on the average with six

components and about one sixth of the components shared

covariance matrices with other components.

Method Acc Acc-O Acc-U
SA-SSL 0.81 (0.02) 0.80 (0.02) 0.84 (0.12)
SSL-EM 0.64 (0.01) 0.75 (0.02) 0
SSL-MOD 0.67 (0.03) 0.74 (0.03) 0.26 (0.11)
SELF 0.59 (0.02) 0.70 (0.02) 0
CO-TR 0.60 (0.01) 0.72 (0.02) 0
SL-ML 0.62 (0.02) 0.73 (0.02) 0
SL-NB 0.52 (0.02) 0.62 (0.02) 0
SL-EM 0.30 (0.05) 0.35 (0.06) 0

Table I
AVERAGE OF 10 REPETITIONS, EACH RUN WITH DIFFERENT

TEST/TRAIN/UNLABELED SPLITS OF THE BACTERIA DATASET. THE

FIRST COLUMN SHOWS THE OVERALL ACCURACY ON THE TEST

SAMPLES, SECOND AND THIRD COLUMNS SHOW THE ACCURACIES FOR

THE OBSERVED AND UNOBSERVED CLASSES, RESPECTIVELY.

D. Experiment 2: Multi-spectral Image Data Set

We used the Flightline C1 multispectral image data set

for this experiment. This is a 12-band multispectral image

taken over Tippecanoe County, Indiana by the M7 scanner in

June, 1966. There are eight classes, each class representing

a different crop type. A total of 69,413 labeled pixels are

available. More information about this multispectral imagery

is available in [21]. In this data set we used 0.2% of all

samples as the labeled data set, 5% as the unlabeled data

set and the remaining samples are left for testing. One

class is considered unobserved and moved from the labeled

data set to the unlabeled data set, leaving a total of 121

labeled samples from seven classes for the non-exhaustive

labeled set and around 3000 samples from all classes in the

unlabeled set.

The proposed SA-SSL significantly outperforms all other

techniques compared and recovers the one missing class with

an almost perfect accuracy while achieving a fairly good

accuracy for observed classes. A total of 20 components

and 10 unique covariance matrices were generated across

eight classes for this data set indicating that each class is

modeled between two to three components and one half

of the components shared covariance matrices with other

components.

IV. CONCLUSIONS AND FUTURE WORK

We proposed a new framework for semi-supervised learn-

ing in partially-observed settings and presented results with

two real-world datasets that favors the proposed approach

in terms of improving the classifier performance even when

there is a clear mismatch between the models that gener-

ated labeled and unlabeled data sets. In addition to more

accurately classifying future samples of observed classes,

this new approach can also discover unobserved classes and

recover their samples with an acceptable accuracy.

Future research efforts will consider replacing the Gibbs

sampler with scalable deterministic inference techniques,

modifying the data model to accommodate text data,



Method Acc Acc-O Acc-U
SA-SSL 0.92 (0.01) 0.91 (0.01) 0.98 (0.01)
SSL-EM 0.85 (0.01) 0.89 (0.01) 0
SSL-MOD 0.77 (0.06) 0.79 (0.07) 0.0
SELF 0.82 (0.01) 0.85 (0.01) 0
CO-TR 0.81 (0.02) 0.84 (0.02) 0
SL-ML 0.84 (0.01) 0.87 (0.01) 0
SL-NB 0.77 (0.02) 0.80 (0.02) 0
SL-EM 0.77 (0.01) 0.80 (0.01) 0

Table II
AVERAGE OF 10 REPETITIONS EACH RUN WITH DIFFERENT

TEST/TRAIN/UNLABELED SPLITS OF THE MULTI-SPECTRAL IMAGE

DATASET. THE FIRST COLUMN SHOWS THE OVERALL ACCURACY ON

THE TEST SAMPLES, SECOND AND THIRD COLUMNS SHOW THE

ACCURACIES FOR THE OBSERVED AND UNOBSERVED CLASSES,
RESPECTIVELY.

and extending the developed framework to hierarchically-

structured data sets to automatically associate newly discov-

ered components and classes with higher level groups of

classes.
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