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Abstract ing the negative class.

In this study we introduce a novel algorithm for
learning a polyhedron to describe the target class.
The proposed approach takes advantage of the
limited subclass information made available for
the negative samples and jointly optimizes mul-
tiple hyperplane classifiers each of which is de-
signed to classify positive samples from a sub-
class of the negative samples. The flat faces
of the polyhedron provides robustness whereas
multiple faces contributes to the flexibility re-
quired to deal with complex datasets. Apart from
improving the prediction accuracy of the sys-
tem, the proposed polyhedral classifier also pro-
vides run-time speedups as a by-product when
executed in a cascaded framework in real-time.
We evaluate the performance of the proposed
technique on a real-world Colon dataset both in
terms of prediction accuracy and online execu-
tion speed.

In this process the actual labels of the counter-exampées ar
ignored and the negative class is formed by pooling sam-
ples of potentially different characteristics togethethivi

a single class. In other words samples of the negative class
do not cluster well since they can belong to different sub-
classes.

One promising approach that has been heavily explored in
this domain is the one-class classifiers. One-class classi-
fication simply omits the negative class (if it exists) and
aims to learn a model with the positive examples only. Sev-
eral techniques have been proposed in this direction. Sup-
port vector domain description technique aims to fit a tight
hyper-sphere in the feature space to include most of the
positive training samples and reject outliers (Tax & Duin,
1999). In this approach the nonlinearity of the data can
be addressed implicitly through the kernel evaluation of
the technigue. One-class SVM generates an artificial point
through kernel transformation for representing the negati
class and then using relaxation parameters it aims to sepa-
rate the image of the one-class from the origin (Scholkopf
et al.,, 1999). Compression Neural Network constructs a

1. Problem Specification three-layer feed-forward neural network and trains thts ne

In target detection the objective is to determine WhethePNorI_( W'th a standard back-pro.p.oganon algonithm to I_earn
or not a given example is from a target class. Obtainin he identity function on the positive examples (Manevitz &

ground truth for the target class usually involves a tedious'CUSef, 2001).

process of manual labeling. If samples belonging to the tarpiscriminative techiques such as Support Vector Machines
get class are labeled as positive, then negative classscovevapnik, 1995), Kernel Fisher Discriminant (Mika et al.,
everything else. Due to the nature of the problem and the000), Relevance Vector Machines (Tipping, 2000) to
labeling process, the number of samples representing thg&ame few are also used in this domain. These techniques
target class is usually scarce whereas abundant data is p@eal with the unbalanced nature of the data by assigning
tentially available to represent the negative class. lemwth different cost factors to the negative and positive samples
words the data is highly unbalanced between classes favoin the objective function. The kernel evaluation of these
techniques yields nonlinear decision boundaries suitable

Appearing inProceedings of the&5" International Conference e .
on Machine LearningHelsinki, Finland, 2008. Copyright 2008 for classifying multi-mode data from the target class.

by the author(s)/owner(s). In this study we aim to learn a polyhedron in the feature
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space to describe the positive training samples. Polyhedra
decision boundaries such as boundaries that are drawn pe
allel to the axes of the feature space as in decision tree
or skewed decision boundaries (Murth et al., 1994) have 1sh 8 3
existed for quite some time. Our approach is similar in 8 2 3 3
some sense to the Support vector domain description tect I 8. g 2

nique but there are two major differences. First instead o osl 8 -

a hypersphere, a polyhedron is used to fit positive training
samples. Second, positive and negative samples are us
together in this process. The target polyhedron is learne 5| A0 1
through joint optimization of multiple hyperplane classi- 4 6 y
fiers, each of which is designed to classify positive sample: '
from a subgroup of negative samples. The number of suc st e d
hyperplane classifiers is equivalent to the number of sub
classes identified in the negative class. The proposed tec| % 15 1 w05 o o5 1 15
nigue requires labeling of a small portion of the negative
samples to collect training data for the subclasses that exi
in the negative class.

o
o o
wnar

Figure 1.A Toy example demonstrating the proposed algorithm.
Our approach does not intend to precisely identify each an®ark circles depicting positive samples, numbers representing
every subclass in the dataset. By manual labeling we airﬁegative samples. The decision boundary is shown with the solid
to identify major subclasses. Subclasses with similar-charines-

acteristics or with only few labeled samples can be grouped

together. During annotation one may also encounter posihgmely Colon CAD.

tive look alikes, i.e. samples do not appear as negative but

not yet confirmed as positive. A new subclass can be intro- .
duced for these samples. 2. Hyperplane Classifiers

In Figure 1 the proposed algorithm is demonstrated with aVe are given a training datasftz;, v;)};_,, wherez; €

toy example. Positive samples are depicted by the dark cif®? are input variables ang;, € {—1,1} are class labels.
cles in the middle, whereas negative samples are depictéfe consider a class of models of the forftw) = oz,
with the numbers with each number corresponding to a difwith the sign off(z) predicting the label associated with
ferent subclass. All eight classifiers are optimized simult the pointz. An hyperplane classifier with hinge loss can be
neously and polygon shown with dark lines is obtained as &lesigned by minimizing the following cost function.
decision boundary that classifies positive samples from the

negative ones.

Kernel-based classifiers have the capacity to learn higly ¢

nonlinear decision boundaries allowing great flexibility. J(@) = @)+ > wi (1 —a"y), )
However it is well-known that in real-world applications i=1

where feature noise and redundancy is a problem, too much

capacity usually hurts the generalizability of a classifigr where the functiond : R@ = R is a regulariza-
enabling the classifier to easily overfit the training data.tion function or regularizer on the hyperplane coefficients
The proposed approach is capable of addressing nonlineaé-nd (k). = maz(0,k) represents the hinge loss, and
ities by fitting the positive class through a series of Iinear{wi : w¢+> 0,3} is tf;e weight preassigned to the loss as-

hyperplanes, a]l _of which are optimized jointly to f_orm a gociated withe;. For balanced data usualiy, — w, but for
polyhedral decision boundary. The flat faces provides ro-

h ltile f ) he flexi _Iunbalanced data it is a common practice to weight positive
pustness whereas multiple faces contributes to the flexibi and negative classes differently, ifas; — w,, Vi € C*}

ity. and{w; = w_, Vi € C~} whereC* andC~ are the cor-
The problem described above is commonly encountered iresponding sets of indices for the positive and negative
areas like content-base image retrieval (Chen et al., 2001§lasses respectively.
document clas.s_iﬁcation (Manevitz & You;ef, 2001) a”‘,jThe function(l _ aTwi)
speech recognition (Brew et al., 2007). A similar scheme ISyeighted su
also observed in Computer Aided Detection (CAD). In this
study we explore the proposed idea for a CAD application

N is a convex function. The
m of convex functions is also convex. There-
fore for a convex functionP(«) (1) is also convex. The
problem in (1) can be formulated as a mathematical pro-
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gramming problem as follows: optimize these classifiers such that the cost induced by a
. ‘ positive sample is zero if and only if all of thH€ classifiers
(f)C R+ D(a) + Do wik classifies this sample correctly, i.&k : 1 — afz; < 0.
st. & > 1—alyua (2)  since each negative sample is only used once for training
& > 0,V the classifierk, the cost induced for a negative sample is

zero as long as it is classified correctly by the correspond-
For ®(a) = HOZH; where|., is the 2-norm, (2) results ing classifierk, i.e. 1 +ag$ik < 0. Each classifier can use

in the conventional Quadratic-Programming-SVM, and for@" arbitrary subset of the original feature set. This presid

®(a) = |al, where|.| is the 1-norm it yields the sparse Un time advantages in real-time when the classification ar-
chitecture is implemented in a cascaded framework. This
will be explained later in the paper. For now to keep the no-

. . } tation clean and tractable we assumed each classifier uses
3. Polyhedral Decision Boundaries the entire feature set in the formulation (4) above.

3.1. Training a Classifier with an AND Structure

Linear-Programming-SVM.

3.2. Training a Classifier with an AND-OR Structure
We aim to optimize the following cost function
The AND algorithm is developed with the assumption that

the negative class is fully labeled. That is to say, the sub-
class membership of each of the negative sample is known
K apriori. For most real world applications this is not a very
b o Z Z (es) realistic scenario as it is almost |r.npra_ct|§:al.to label &ll o
it the negative samples due to the time limitations. However

K
j(oq,...ak) = Z(I)k(ak-) (3)
k=1

k: . —_ . .
tiedy one can label a small subset of the negative class to discover
+ vy Z max (0, €1, ..., €x) different type of subclasses as well as pool the training dat
ieCt for each subgroup. To accommodate for the unlabeled sam-

ples we modify the equation (3) for the unlabeled negative

R T, . i i
wheree;, = 1+ay, z;;, and(e;x )+ defines the hinge loss of samples as follows.

thei-th training exampl€ (x;x, i) } in subclass-k induced
by classifierk. C, is the set of indices of the negative
samples in subclass-k. Note that classifiés designed to I
classify positive examples from the negative examples in

the subclass-k. The first term in (3) is a summation of the K
regularizers for each of the classifiers in the cascade &nd th + oy Z Z (i),
second and third terms accounts for the losses induced by

(Jél,...(JéK) = q)k(ak:)

M=

k=1

the negative and positive samples respectively. Unlike (1) ko
the loss function here is different for the positive samples s
The loss induced by a positive sample € C+ is zero ton Z H (eir) 4
only if Vk : 1—af z; < 0, which corresponds to the “AND” ieC- k=1
operation. The problem (3) can be formulated as follows + Z max (0, €1, ..., €iK)
min SR Op(ar) + e Yo iect
(,€)ERK A+ = = i€C, S
+ ) ieor i whereC'~ is the set of indices of the unlabeled negative
samples. The first term in (5) requires a labeled sample
s.t. & > 14+alay from a subclass-k to be correctly classified by the classi-
S > 0 fier k. In other words if a sample is known to be a mem-
& > 1—alay ber of subclass-k, ideally it should be classified as negativ
& = 0 by the corresponding classifié¢r On the other hand the
(4) second term requires an unlabeled negative sample to be
where the first two constraints are imposedYorc C,_, correctly classified by any of the classifiers. As long as an

k = 1,..., K and the last two constraints are imposed forunlabeled sample is classified as negative it does not matter
Vi € C*, k = 1,.., K. Note that for a convex function which classifier does it, i.e3k : 1 — alz;, < 0 which
®(«) the problem in (4) is convex. In a nutshell we de- corresponds to a “OR” operation. The third term requires
signedK classifiers, one for each of the binary classifica-a positive sample is classified as positive by all of e

tion problems, i.e. positive class vs subclass-k of the negaclassifiers, i.eVk : 1 — af z; < 0, which corresponds to
tive class. Then we construct a learning algorithm to jgintl the “AND” operation.
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Due to the product operation in the objective function for4.1. An Algorithm for AND-OR Learning
unlabeled samples, unlike equation (3), equation (5) can - . . .
not be cast as a convex programming problem. In the next(o) ]!.mgallze eik.t'.n (5.) suclrég(:/at all cipqtldaé(;s are c.:;as:tsl—
section we propose an efficient alternating optimizatien al Slet as p?s' 'xei €. o sensitivity, 97 specilicily.
gorithm to solve this problem. et counter = 1.

. L . . () Fix all the classifiers in the cascade except classi-
4. Cyclic Optimization of AND-OR Algorithm fier k and solve (5) for, using the training dataset

We develop an iterative algorithm which, at each iteration, ~ { (2}, v:) }le- Repeatthisforalk =1,..., K.
carries outi steps, each aiming to optimize one classifier .. . L. o
at a time. This type of algorithms is usually called alternat (i) ComputeJ®(ay, ..., ax) by replacinga;™" by af in

ing or cyclic optimization approaches. At any iteration, we (). forallk=1,..., K.

fix all of the classifiers but the classifier The fixed terms  (jii) Stop if J¢ — J¢~! is less than some desired tolerance.
have no effect on the optimization of the problem oncethey  E|se replacexg_l by ag forall k = 1,..., K, ¢ by
are fixed. Hence solving (5) is equivalent to solving the fol- ¢+ 1 and go tostep i.

lowing problem by dropping the fixed terms in (5):

The initial objective function in (5) is neither convex nor

T(ag) = Pp(ak) twice differentiable due to the product of the hinge loss
+ Z (eik) term. Therefore the convergence theore_m .intr_oduced in
Pyt (Bezdek & Hathaway, 2003) for cyclic optimization does
iy not hold here. On the other hand the subproblem in (5)
+ Z w; (k) is convex and hence at each iteratiéh <= J°~! holds
i€C- and also (5) is bounded below. These guarantee conver-
+ Z max (0, €51, .., €iks - -, €iK) gence of the algorithm from any initial point to the set of

suboptimal solutions. The solution is suboptimal if the ob-
jective functionJ can not be further improved following
any directions. For a more detailed discussion on this topic
please see (Dundar & Bi, 2007).

1€Ct

wherew, = HkK:Lk#k (eix),. This can be cast into a
constrained problem as follows

An unseen sample: can be classified as positive if
Dplon) + 11X e & maz(l —ofx,...,1—akr) < 7 and as negative if vice

min
) d+ep+E4 . .
(o, )ER versa for a threshold@. The receiver operating character-

o Lec- wiki istics (ROC) curve can be plotted by varying the value of
+ Zi€C+ & -
S.t. fz > Cik, Vi . .
& > 0,VieC-uCy 5. Cascade Design for Run-Time Speedups
& =z v Vet 5 In Figure 2 a cascade classification scheme is shown. The
h B ®) key insight here is to reduce the computation time and
where y; = max (0,1, €igk—1), Ci(ka1), -+ -5 Cik) speed-up online learning. This is achieved by designing

and/;, is the number of samples in subclass-k. The SUb'simpler classifiers in the earlier stages of the cascade to re

prog:em _in (g’) ti)s a conve>i| pLobIem ar|1:(_:l diffhers frgn;] theject as many negative candidates as possible before calling
problem in (2) by two small changes. First the weig tas'upon classifiers with more features to further reduce the

signed to the loss induced by the negative samples is NOYh1se positive rate. A positive result from the first classifi

i = K o i . g -y
adj:".Stle.d by the ternwz]-c - Hk:.l,kik (e”f|)+' This t(lerml activates the second classifier and a positive result frem th
multiplies out to zero for negative samples correctly clas-q ;o0 q classifier activates the third classifier, and so bn (V
sified by one of the other classifiers. For these sample8Ia & Jones., 2004). A negative outcome for a candidate at

es, < 0 andg; = 0 making the constraints af) in (5) re- any stage in the cascade leads to an immediate rejection
dundant. As a result there is no need to include these SaM that candidate. Under this scenafip_, = T, U F,

ples when traln'lng for thelassifier-k which yields signif- ndTy = Ty U U{( F, whereT}, and F}, are the sets of
icant computational advantages. Second the lower boun . e : .

: candidates labeled as positive and negative respectiyely b
for ¢ is now max (O, €ils -y Ci(k—1)s Ci(kt1)s - - - ,eiK). classifierk
This implies that if any of the classifiers in the cascade '
misclassifiest;;, the lower bound orf is no longer zero The proposed algorithm learns a polyhedron through
relaxing the constraint omn;y. jointly optimizing a series of sparse linear classifiersic8i
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tracted for each candidate and eventually passed to a-classi
fier where each candidate is labeled as normal or diseased.

Generaion e In order to train a CAD system, a set of medical images
(eg CT scans, MRI, X-ray etc) is collected from archives of
T T, Tex T community hospitals that routinely screen patieatg, for
"1 N2 — K [— colon cancer. These medical images are then read by ex-
pert radiologists; the regions that they consider unhgalth
lpi lpz lFK are marked as ground-truth in the images. After the data
collection stage, a CAD algorithm is designed to learn to
Rejected Candidates diagnose images based on the expert opinions of the radi-

ologists on the database of training images. First, domain
knowledge engineering is employed to (a) identify all po-
tentially suspicious regions in a candidate generatiogesta
Figure 2.A general cascade framework used for online classifica-and (b) to describe each such region quantitatively using a
tion set of medically relevant features based on for example,

texture, shape, intensity and contrast. Then, a classifier i

the order these classifiers are executed in real-time dogg,ineq using the features computed for each candidate in
not matter in terms of the overall pre(_jlc'uon accuracy of o training data and the corresponding ground truth.

the system, we can arrange the execution sequence of these

classifiers in a way to optimize the run-time. L&t be ~ When training a classifier for a CAD system for detection
the set of indices of nonzero coefficients tbassifier-k¢;  Of colonic polyps, the only information that is usually dvai

be the time required to compufieature ifor a given candi- ~ able is the location of polyps, since radiologists only mark

datei = 1,...,d andny_, is the number of samples in set unhealthy regions when they are reading cases. This, of
T,.—1, then the total time required for the online executionCourse, is very important for training a CAD system. But
of the algorithm is for all other structures that are picked up during candidate

generation phase that are not pointing to a known lesion
K there is no other information available and they all have to
T — Z Ne_1 Z t; (6) be treated equally as negative examples. This introduces
—1 (e 02T two complllcauons. First all the ngga}nve_ cgndldates are
! clustered in one group although variation in size and shape
among them is very big and valuable information about
those candidates, e.g. type category, is not used. Second,
radiologists only mark lesions of clinical importance,. i.e
a- polyps greater than 6mm in colon. It is also possible that

tion problem withk! different outcomes, wher! is the some lesions are overlooked during clinical evaluation. So
factorial of K. For smallX one can tf)’/ the exhaustive potentially there are unidentified lesions in our datasét wi
number of orderings between classifier to find the optimun{© Matching ground truth. If the candidate generation al-
sequence. However wheki is large we can start with the gorithm generates candidates for these lesions then these
most sparselassifier, i.e. the linear classifier with the least c@ndidates are also marked as negative together with all the

number of nonzero coefficients and choose the next classPther candidates with no corresponding radiologist marks.
fier as the one that will require computing least number o n other words negative class may also contain unidentified
additional features. samples of the target class.

The setd", are learned during offline training of the poly-

hedral classifier and are fixed for online execution. How-
ever the setd, is a function of theclassifier 1through
classifier k-1 Therefore this is a combinatorial optimiz

In the rest of this section we will discuss some motivation
6. Computer Aided Detection for the proposed algorithm within the scope of a CAD sys-
tem designed to detect colorectal cancer. Colorectal can-
The goal of a Computer Aided Detection (CAD) system iscer is the second leading cause of cancer-related death in
to detect potentially malignant tumors and lesions in medthe western world (Jemal et al., 2004). Early detection
ical images (CT scans, X-ray, MRI etc). In an almost uni-of polyps through colorectal screening can help to prevent
versal paradigm for CAD algorithms, this problem is ad-colon cancer by removing the polyps before they can turn
dressed by a 3 stage system: A typical CAD system conmalignant.
sists of a candidate generation phase, a feature extraction ) i
module and a classifier. The task of the candidate generYPical examples of different polyp morphologies are
ation module is to create a list of potential polyps with a3ven in Figure 3.
high sensitivity but low specificity. Features are then ex-
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The commonly encountered false positive types in coloris chosen for labeling and a total of 177 false positives (out
are fold, stool, tagged stool, meniscus, illeocecal vake, of 1249) are annotated and ten different subcategories are
tum etc. Some of these are shown in Figure 4. Ideally weadentified.

can label all of the negative candidates in the training data

and use the proposetiV D algorithm in (4) to jointly train 7.2 Performance Evaluation

classifiers one for each of the subclasses of negative sam-

ples. However an exhaustive annotation of all negative exJ N€ classifiers are trained with the combination of 1249

amples is not feasible. Therefore we first select a very smalf!Se Positives generated by the prototype classifier dnd al
subset of the negative candidates and annotate them mari}® Polyps the candidade generation detects in the training
ally through visual inspection. Then this set together withdata- A total of 1560 candidates are used for training. Clas-

the positive samples and the remaining negative sample§iﬁer5 are evaluated on the 1920 candidates the prototype
i.e. unlabeled samples is used in the propasatD — OR classifier marked as positive in the testing data. The corre-
framework to train the classifiers. sponding Receiver Operating Characteristics (ROC) curves

for each algorithm is plotted in Figure 5.

7. Experimental Results The classifier parameters are estimated using a 10-fold pa-

tient cross validation from a set of discrete values usieg th
We validate the proposed polyhedral classifalyhedral)  training data. These are namely the width of the kernel
with respect to its generalization performance and ruretim (,=[0.01 0.03 0.05 0.1 0.3 0.5 1 5]) fobf, svdd the cost
efficiency. We compared our algorithm to a Support Vectorfactor =[5 10 15 20 25 50 75 100]) forbf, polyhedral
Domain Description techniqugvdd) (Tax & Duin, 1999),  sparseand thev=[0.001 0.005 0.01 0.05 0.1 0.2] parame-
nonlinear SVM with Radial Basis Functigrbf), and one-  ter forsvdd The desired tolerance value for Algorithm 4.1
norm SVM (sparse). To achieve sparseness we set thg set to 0.001. The algorithm converged in less than 10
O (o) = |ay| for the polyhedral classifier. iterations.

As shown in Figure 5 the ROC curve corresponding to the
proposedpolyhedralclassifier is consistently dominating
The database of high-resolution CT images used in thigll the other curves. The curve associated withgparse
study were obtained from two different sites across US. Th&VMis almost linear implying a random behavior. This is
370 patients were randomly partitioned into two groups:not surprising to a greater extent as both the training and
training (n=167) and test (n=199). The test group was setesting data sets used in this experiment are derived from
questered and only used to evaluate the performance of thbe initial datasets via a linear SVM classifier. In other
final system. words the datasets are composed of samples marked as pos-

- . itive by the linear SVM, a significant portion of which are
Training Data Patient and Polyp Inforhere were 167 pa- false positives. Thene-class SVMs only slightly better

tients with 316 volumes. The candidate generation (CG) al- .
gorithm identifies a total of 226 polyps at the volume Ievelthan thesparse SVMEven though thebf SVMis the best

across all sizes while generating a total of 64890 candi-Of the three competitor algorithms, the difference in sen-

dates or an average of 205 false positives per volFest- sitivity between thebf SVMand the proposedolyhedral

e . 0 .
ing Data Patient and Polyp InfoThere were 199 patients classifier can be as high as 5% (10 polyps) in favor of the

with 385 volumes. The candidate generation (CG) algo_proposed algorithm.

rithm identifies a total of 245 polyps at the volume level 3. Run-time Evaluat
across all sizes while generating an average of 75946 sanz-' - Run-time Evaluation

ples or 194 false positives per volume (fp/vol). As stated earlier in the paper, run-time speedups can be

A total of 98 features are extracted to capture shape angchiéved as a by-product of the proposed algorithm when
intensity characteristics of each candidate. The proposefi® real-time classification is implemented in a cascaded
algorithm requires a small set of false positives annoff@mework as in Figure 2. For a more detailed discussion
tated. Rather than labeling false positives randomly acrosC! cascade classifiers in the CAD domain we refer the in-
a dataset with 64890 samples we used the output of th r_ested readers to these recent works (Dundar & Bi, 2007),
most recent prototype classifier for labeling. This classi-(Bi €t al., 2006).

fier is trained using a naive SVM and optimized for the 0-5To avoid any delays in the workflow of a physician the
fp/vol range. This way we only focus on the most challeng-CAD results should be ready by the time physician com-
ing false positives. This classifier marks a total of 1432p|etes his own review of the case. Therefore there is a run-
candidates as positive. Out of these candidates 1249 aggne requirement a CAD system needs to satisfy. Among
false positives. A small subset of the volumes from this sethe stages involved during online processing of a volume,

7.1. Data and Experimental Settings



Polyhedral Classifier for Target Detection

Figure 4.Negative examples (from left to right): stool, fold, noisy data and reats

used, feature computation time and number of candidates
rejected at each stage in the sequence.

09r
Feature computation for the proposed approach on average
takes 452t secs per volume. On the other hand¥ddand

rbf, which require computation of all the features at once,
this stage takes 595t secs. This represents a roughly 25%
improvement in run-time execution speed of the system.
For the one-norm SVMparsethis time is 437t secs. How-
ever the corresponding sensitivity at this operating pioint

0.8r

0.7r

0.6

05

sens

0.4r

0.3r

‘‘‘‘‘ = sparse . & one-norm SVM is around 40% vs 85% for the proposed
.l o\ technique.
0.1r O
‘.
% 02 04 06 08 1 8. Conclusions

spec
In this study we have presented a methodology to take ad-

) . . vantage of the subclass information information available
gg;re 5.ROC curves obtained by the four classifiers on the testin the negative class to achieve a more robust description

of the target class. The subclass information which is ne-

glected in conventional binary classifiers provides a bet-
feature computation is by far the most computational stagéer insight of the dataset and when incorporated into the
of online processing. A cascaded framework for executindgearning mechanism acts as an implicit regularizer on the
the classifier in the order of increasing feature complex-classifier coefficients. We believe this is an important con-
ity may bring significant computational advantages in thistribution for applications where feature noise is prevalen
case. In this framework the cascade is designed so as tdighly nonlinear kernel classifiers provides flexibilityrfo
execute classifiers with less number of features earlier imodeling complex data but they tend to overfit when there
the sequence. This way the additional features required faare too many redundant and irrelevant features in the data.
the succeeding classifiers will only be computed on the rekinear classifiers on the other hand do not have enough
maining candidates, i.e. candidates marked as positive bgapacity to model complex data but they are more robust
all of the previous classifiers. when there is noise. The polyhedral classifier is proposed

In this section we evaluate the speedups achieved by thaeS a midway solution. The linear faces of the polyhedron

proposed classifier. We set the operating point at 60(@;’::;3\/% robustness whereas multiple faces provides flexi-
specificity, around 2.2fp/vol. At this specificity the pro- '

posed polyhedral classifier yields 85% sensitivity (see Fig The order in which the classifiers are executed during on-
ure 5). Assuming each feature takes on the average- line execution does not matter. Even though finding the

onds per candidate to compute we came up with the tablglobally optimum sequence is an open research problem
in 1. This table shows the aggregate number of featurefor a large number of subclasses, the ordering of the clas-
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sequence order 1 2 3 4 5 6 7 8 9
aggregate number 48 67 73 75 76 78 81 84 87
of features

aggregate number 1.08 237 257 282 290 293 3.06 3.07 3.40

of rejected candidates

(avg. per volume)

aggregate feature 291 386 408 414 418 424 434 443 452
computation time in t

(avg. per volume)

Table 1.Run-time Results obtained for the Polyhedral classifier. The classifeeexacuted in the order of increasing number of features
required by each classifier.

sifiers can be arranged in a cascaded manner to reduce tBeholkopf, B., Platt, O., Shawe-Taylor, J., Smola, A., &
total run-time of the system. Williamson, R. (1999). Estimating the support of a high-
dimensional distribution.
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