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1.1 Introduction

In hyperspectral data analysis, materials of practical interest, such as agricultural crops, forest
plantations, natural vegetation, minerals, and fields of interest in urban areas exist in a variety
of states and are usually observed in a number of conditions of illumination. That is, most
land-cover types do not have a single spectral response. Forexample a crop type will show
different spectral characteristics at different times of the day and year. Similarly, roof tops
are usually made of a variety of different materials including concrete, tile, bricks, glass etc.
all of which have different spectral responses. The number of such examples can easily be
augmented.

One possible way to deal with this problem is to model each class distribution data using
Finite Mixture models (McLachlan and Peel (2004)). Finite Mixture Models usually leads to
competitive performance when there is enough labeled data to reveal the underlying structure
of the class distributions. However, in most real world settings, this may not be the case. The
price one must pay for labeled data is usually prohibitivelyexpensive, as acquiring labeled
data requires a tedious and time consuming process of human labeling.
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Another alternative for modeling multi-modal class distributions is kernel machines. Ker-
nel machines was first introduced with Support Vector Machines (Vapnik (2000)) but later
adapted to several other classification algorithms including Fisher’s Discriminant (Mika et
al. (1999)). Kernel concept provides the flexibility required to model complex data structures
that originate from a wide range of class conditional distributions. Earlier studies show that
Fisher’s discriminant when implemented with kernel machines yields favorable results for
the analysis of hyperspectral data with multimodal class distributions and limited training
data (Dundar and Landgrebe (2004a)), (Dundar and Landgrebe(2004b)).

In the KFD algorithm the type of the kernel function and its parameters are usually esti-
mated from a designated set of kernel models by cross-validation. With this approach the
tuning procedure becomes quite computational for trainingset size larger than few hundred
samples. We propose an iterative classification algorithm for Kernel Fisher’s discriminant
(KFD) using heterogeneous kernel models. In contrast with the standard KFD that requires
the user to predefine a kernel function, we incorporate the task of choosing an appropriate
kernel into the optimization problem to be solved. The choice of kernel is defined as a linear
combination of kernels belonging to a potentially large family of different kernels.

Preliminary results with some benchmark datasets were presented earlier (Fung et al.
(2004)). In this study additional experimental results on ahyperspectral dataset are pre-
sented to further validate the effectiveness of the proposed algorithm inlearning the optimal
combination of kernel functions. The results demonstrate that the prediction accuracy of the
proposed algorithm is not significantly different than thatachieved by the standard KFD in
which the kernel parameters have been tuned using cross validation yet the training with the
proposed algorithm is multiple folds faster than that of standard KFD.

This chapter is organized as follows. In the next section we will briefly review the Lin-
ear Fisher’s Discriminant (LFD). Then, we will present a mathematical formulation of the
Fisher’s Discriminant algorithm that will form the basis for the Kernel Fisher’s Discriminant
(KFD). Next, we will discuss the implementation of KFD with heterogeneous kernel mod-
els and present an iterative algorithm for automatically selecting the kernels. Finally we will
present results to validate the applicability of the proposed approach on a real-world problem
with a hyperspectral dataset.

1.2 Linear Fisher’s Discriminant

It is well known that in supervised classification problems the probability of error due to a
Bayes classifier is the best that can be achieved. The Bayes classifier compares the a posteriori
probabilities of all classes, and assigns the sample to the class with the highest probability.
However for most classes of distributions, designing an optimum Bayes classifier is very
difficult if not impractical. The primary problem stems fromthe finite size of the training
set, leading to an imperfect estimate of the class probability density functions. The most
common way to mitigate this problem is to assume normal distributions for all classes. Under
this hypothesis standard classifiers using quadratic and linear discriminant functions can be
designed.

The well-known Linear Fisher’s Discriminant (LFD) (Fukunaga (1990)), arises in the
special case when the considered information classes have acommon covariance matrix. LFD
is a classification method that projects the high dimensional data onto a line and performs
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classification in this one-dimensional space. This projection is chosen such that the ratio
of the scatter matrices (between and within classes) or the so calledRayleigh quotientis
maximized. Even though LFD is mainly designed for binary classification problems it is
extension to multiclass classification problems is also possible. For multiclass problems the
ratio of between and within class scatter matrices can be maximized by solving a generalized
eigenvalue problem. This leads to a projection matrix withK − 1 eigenvectors whereK is
the number of classes in the dataset Fukunaga (1990).

In the rest of this chapter we will limit our discussion to binary classification problems.
More specifically, we are given a training dataset{(xi, yi)}

n

i=1, wherexi ∈ ℜd are input
variables andyi ∈ {−1, 1} are class labels. LetX ∈ Rd×n be a matrix containing all the
training samples and letXk ⊆ X ∈ Rd×nk be a matrix containing thenk training samples
for classωk, k ∈ {±}. Then, the LFD is the projectionw, which maximizes,

J (w) =
wT SBw

wT SW w
(1.1)

where

SB = (µ+ − µ−) (µ+ − µ−)
T (1.2)

SW =
∑

k∈{±}

1

nk

(

Xk − µkeT
nk

) (

Xk − µkeT
nk

)T
(1.3)

are the between and within class scatter matrices respectively and

µk =
1

nk

Xkenk
(1.4)

is the mean of classωk andenk
is annk dimensional vector of ones.

The above problem can be reformulated as follows. First notice that ifw is a solution to
(1.1), then so is any scalar multiple of it. Therefore, to avoid multiplicity of solutions, we
impose an arbitrary constraint onwT SBw = 4, which is equivalent towT (µ+ − µ−) = 2.
Then the optimization problem of (1.1) becomes

minw∈Rd wT SW w

s.t. wT (µ+ − µ−) = 2
(1.5)

A closed-form solutionw∗ for (1.5) can be obtained by optimizing the Lagrange func-
tion associated with the above problem. This givesw∗ = λS−1

W (µ+ − µ−) whereλ is the
Lagrange multiplier obtained asλ = 1

(µ+−µ
−

)T S
−1

W
(µ+−µ

−
)
. Ford > n, i.e. number of dimen-

sionality is greater than the number of samples,SW can be singular and thus the inverse does
not exist. To avoid such ill-conditioned settings it is a common practive to replaceSW by
SW ν = SW + νI. Hereν acts as a regularizer over the classifier.

When classes are normally distributed with equal covariance, w∗ is in the same direction
as the discriminant in the corresponding Bayes classifier. Hence, for this special case LFD
is equivalent to the Bayes optimal classifier. Although LFD relies heavily on assumptions
that are not true in most real world problems, it has proven tobe very powerful. In particular
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when the distributions are unimodal and separated by the scatter of means, LFD becomes
very effective. One reason why LFD may be preferred over morecomplex classifiers is that
asa linear classifier it is less prone to overfitting.

For most real world data, a linear discriminant is clearly not complex enough. Classical
techniques tackle these problems by using more sophisticated distributions in modeling the
optimal Bayes classifier; however, these often sacrifice theclosed form solution and are com-
putationally more expensive. A relatively new approach in this domain is the kernel version
of Fisher’s Discriminant (Mika et al. (1999)) which is knownas Kernel Fisher’s Discriminant
(KFD) in the literature. The main characteristic of this approach is the kernel concept, which
was originally applied in Support Vector Machines and allows the efficient computation of
Fisher’s Discriminant in the kernel space. The linear discriminant in the kernel space corre-
sponds to a powerful nonlinear decision function in the input space. Furthermore, different
kernels can be used to accommodate the wide-range of nonlinearities that may occur in the
data set. In the next section we derive the kernel version of the Fisher’s Discriminant.

1.3 Kernel Fisher Discriminant

1.3.1 Mathematical programming formulation

The formulation in (1.5) is a parametric formulation of Fisher’s Discriminant. The discrim-
inative approach to the same problem can be obtained as follows. First, we defineξi :=
wT (xi − µk), ∀i ∈ ωk, k ∈ {±} and imposewT µ+ = 1, wT µ− = −1. Let ξk be a vector
containing all theξi for classωk and y be the vector of class labels. Then the problem in (1.5)
becomes

min
(w,γ,ξ)∈Rn+d+1

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2wT w

s.t. ξ = XT w − y

eT
nk

ξk = 0, k ∈ {±}

(1.6)

The Lagrangian of (1.6) is given by

L(w, ξ, λ1, λ2) =
1

2
(ξT Dξ + wT w) + λT

1 (ξ − XT w + y) + λT
2 BT ξ (1.7)

whereD is ann × n diagonal matrix with the firstn+ entries equal to 1
n+ν

and the remaining

n− ones equal to 1
n
−

ν
, B is ann × 2 indicator matrix with the firstn+ entries in the first

column and the lastn− entries in the second column are set to one with all others being zero.
Hereλ1 ∈ Rn andλ2 ∈ R2 are the lagrange multipliers corresponding toξ = XT w − y and
eT
nk

ξk = 0, respectively. Solving for the gradient of (1.7) equal to zero, we obtain the Karush-
Kuhn-Tucker (KKT) necessary and sufficient optimality conditions Mangasarian (1994) for
the FLD problem with equality constraints given by

w − Xλ1 = 0
Dξ + λ1 + Bλ2 = 0
BT ξ = 0
XT w − y − ξ = 0

(1.8)
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The first two equations of (1.8) give the following expressions for the original problem
variables(w, ξ) in terms of the Lagrange multipliersλ1 andλ2:

w = Xλ1, ξ = −D−1(λ1 + Bλ2) (1.9)

Substituting these in the last two equalities of (1.8) givesus an explicit expression forλ1

andλ2 in terms ofX andy as follows

[

XT X + D−1 D−1B

BT D−1 BT D−1BT

] [

λ1

λ2

]

=

[

y

BT y − BT XT X

]

(1.10)

Solving the linear system of equations (1.10) gives us the solution

[

λ∗
1

λ∗
2

]

which in turn

yieldsw∗ = Xλ∗
1 from (1.9). Here∗ denotes optimal solutions. In the rest of this chapter we

drop the subscript fromλ1 for notational simplicity.
The “kernelized” version of the Fisher’s Discriminant can be obtained in this framework

by replacing the primal variablew by its dual equivalentw = Xλ in (1.6) to obtain:

min
(λ,ξ)∈Rn+d

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2λT λ

s.t. ξ = XT Xλ − y

eT
nk

ξk = 0, k ∈ {±}

(1.11)

where the objective function has also been modified to minimize weighted 2-norm sums of
the dual variables. If we now replace theXT X by a nonlinear kernelK(XT ,X), we obtain
a formulation that is equivalent to the Kernel Fisher Discriminant described in (Mika et al.
(2000)).

min
(λ,ξ)∈Rn+d

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2λT λ

s.t. ξ = K(XT ,X)λ − y

eT
nk

ξk = 0, k ∈ {±}

(1.12)

Recent SVM formulations with least squares loss (Suykens and Vandewalle (1999)) are
much the same in spirit as the problem in (1.6). Using a similar duality analysis to the one
presented here, and then “kernelizing”, the authors obtainthe objective function

ν
1

2
‖ξ‖2 +

1

2
λT K(XT ,X)λ. (1.13)

The regularization termλT K(XT ,X)λ determines that the model complexity is regularized
in a reproducing kernel Hilbert space (RKHS) associated with the specific kernelK where
the kernel functionK has to satisfy Mercer’s conditions andK(XT ,X) has to be positive
semidefinite.

By comparing the objective function (1.13) to problem (1.12), we can see that problem
(1.12) does not regularize in terms of RKHS. Instead, the columns in a kernel matrix are sim-
ply regarded as new featuresK(XT ,X) of the classification task in addition to the original
featuresX. We can then construct classifiers based on the features introduced by a kernel in
the same way we build classifiers using original featuresX.
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1.4 Kernel Fisher’s Discriminant with Heterogeneous
Kernels

The kernelized version of the Fisher’s Discriminant (KFD) gives us the flexibility required to
model complex data structures that originate from a wide-range of class conditional dis-
tributions. Like its linear space counterpart, the statistics estimation is performed at full
dimensionality (no feature extraction is needed) allowingus to exploit all the separability
the data provides without having to deal with severe numerical issues.

Like most other kernel-based approaches KFD also suffers from the computational com-
plexity of working with kernel functions to a greater extent. The computational complexity
of the algorithm is on the order ofO(n3) making its use impractical for large datasets. A
common way around this problem is to expand the kernel matrixin terms of a random subset
of the training samples. However, the problem of selecting the best kernel function type and
parameters still remains. Usually, cross-validation is used to optimize the algorithm over a
large number of kernel parameters and the parameter set thatmaximizes the cross-validation
performance is chosen as the optimum set.

Cross-validation is a method for estimating predictive error of the classifier with the train-
ing data. It splits the training dataset intok equal-sized pieces called folds. At each stage one
fold is left out as testing data and the classifier is trained with the remainingk − 1 folds.
This process is repeated until allk folds are tested and aggregate test error is recorded as the
k − fold cross validation performance.

In this section, we propose a methodology for selecting the optimum kernel function as a
weighted summation of several other kernel functions wherethe weights of the kernel func-
tions are learned automatically through an alternating optimization technique. To be more
specific, let us suppose that instead of the kernelK being defined by a single kernel mapping
(i.e., Gaussian, polynomial, etc.), the kernelK is composed of a linear combination of kernel
functionsKj , j = 1, . . . , k, as below

K(XT ,X) =

k
∑

j=1

ajKj(X
T ,X), (1.14)

whereaj ≥ 0.
As it is pointed out in Lanckriet et al. (2003), the set{K1(A,A′), . . . ,Kk(XT ,X)} can

be seen as a predefined set of initial “guesses” of the kernel matrix and it could contain very
different kernel matrix models, (e.g., linear, Gaussian, polynomial) with different parame-
ter values. In this formulation parameters specific to each kernel are fixed a priori. Instead
of fine tuning the kernel parameters for a predetermined kernel via cross-validation, we can
optimize the set of valuesai ≥ 0 in order to obtain a positive semi-definite linear combination
K(XT ,X) =

∑k
j=1 ajKj(X

T ,X) suitable for the specific classification problem. Substi-
tuting equation (1.14) in equation (1.11) we obtain the KFD formulation with heterogeneous
linear combinations of kernels as follows
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min
(λ,ξ,a)∈Rn+d+k

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2λT λ

s.t. ξ =
∑k

j=1 ajKjλ − y

eT
nk

ξk = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k}

(1.15)

whereKj = Kj(X
T ,X). When considering linear combinations of kernels, the hypothesis

space may become larger, making the issue of capacity control an important one. It is known
that if two classifiers have similar training error, a smaller capacity may lead to better gener-
alization on future unseen data (Cherkassky and Mulier (1998); Vapnik (2000)). In order to
reduce the size of the hypothesis and model space and to gain strong convexity in all vari-
ables, an additional regularization term12a′a is added to the objective function of problem
(1.15). The problem then becomes

min
(λ,ξ,a)∈Rn+d+k

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2λT λ + 1

2aT a

s.t. ξ =
∑k

j=1 ajKjλ − y

eT
nk

ξk = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k}

(1.16)

A new samplex is then classified by the following classifier:





k
∑

j=1

(ajKj(x,X))



 λ =

{

≥ b, x ∈ ω+,

< b, x ∈ ω−

)

. (1.17)

whereb is a predefined threshold that adjusts the tradeoff between incorrectly classifying a
positive sample as negative, i.e. false negative, and incorrectly classifying a negative sample
as positive, i.e., false positive.

Even though the objective function in (1.16) is strictly convex in terms of the problem
variablesξ, λ anda, the problem itself is not convex due to the nonconvex equality con-
straintξ =

∑k

j=1 ajKjλ − y. However, the problem in (1.16) can be treated as a biconvex
programming problem first by fixinga = a∗ and solving (1.16) forξ andλ∗ and then fix-
ing λ = λ∗ and solving forξ anda∗. More specifically when we fixa = a∗ we obtain the
following subproblem

min
(λ,ξ)∈Rn+d

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2λT λ

s.t. ξ =
∑k

j=1 a∗
jKjλ − y

eT
nk

ξk = 0, k ∈ {±}

(1.18)

and similarly when we fixλ = λ∗ we obtain the subproblem

min
(ξ,a)∈Rn+k

1
2

∑

k∈{±}
1

nkν
ξkT

ξk + 1
2aT a

s.t. ξ =
∑k

j=1 ajKjλ
∗ − y

eT
nk

ξk = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k}

(1.19)
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Note that both problems in (1.18) and (1.19) are strongly convex with a unique optimizer,
which implies that the original objective function is guaranteed to improve at each iteration.
We are now ready to describe our proposed algorithm.

1.5 Automatic kernel selection KFD Algorithm

Algorithm 1.5.1 Automatic kernel selection KFD Algorithm (AKFD)
Givenn data points inRd represented by thed × n matrix X and vectory of ±1 labels
denoting the class of each data point (i.e., each column ofX), the parameterν and an initial
a0 ∈ Rk, we generate the nonlinear classifier (1.17) as follows:

(0) CalculateK1, . . . ,Kk , thek kernels on the kernel family, where for eachj, Kj =
Kj(X

T ,X).

For each iterationi do:

(i) Givena(i−1) calculate the linear combinationK =
∑k

j=1 a
(i−1)
j Kj .

(i) Solve subproblem (1.18) to obtainλ(i).

(ii) CalculateKjλ
(i) for j = 1, . . . , k.

(iii) Solve subproblem (1.19) to obtainai.

Stop when a predefined maximum number of iterations is reached or when the change in
value of the objective function (1.16) evaluated in successive iterations is less thanǫ.

The most common cases arise whenk << n (i.e., the number of kernels functions consid-
ered on the kernel family is much smaller than the number of data points). In such situations,
the complexity of the AKFD algorithm 1.5.1 is approximatelyO(n3).

Since each of the two optimization problems ( (1.18) and (1.19)) that are required to be
solved by the AKFD algorithm are strongly convex and thus each of them have a unique
minimizer, the AKFD algorithm can also be interpreted as an Alternate Optimization (AO)
problem (Bezdek and Hathaway (2003)). Alternate Optimization divides the entire variable
space into a predefined number of subspaces and optimizes onegroup of variables at a time
while the remaining variables are fixed. Classical instances of AO problems include fuzzy
regression c-models and fuzzy c-means clustering.

The AKFD algorithm then, inherits the convergence properties and characteristics of AO
problems. As stated in (Bezdek and Hathaway (2002)), the setof points for which Algorithm
1.5.1 can converge may include certain type of saddle points(i.e. points behaving like local
minimizers only when projected along a subset of the variables, see Figure 1.1). However,
it is also stated that is extremely difficult to find examples where convergence occurs to a
saddle point rather than to a local minimizer. If the initialestimate is chosen sufficiently near
a solution, AO is shown to converge linearly to a local minimizer (Bezdek and Hathaway
(2002)). In practice, we found that Algorithm 1.5.1 typically converges in 3-4 iterations (3 or
4) to a local solution of problem (1.16).
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Figure 1.1 A saddle point for the functionz = x2 − y2. It behaves like a local minimizer
when projected along the x-axis.

1.6 Numerical Results

1.6.1 Dataset Used: Purdue Campus Data

This data set is a flightline over the Purdue University West Lafayette Campus. The hyper-
spectral data used was collected on September 30, 1999 with the airborne HYMAP system
(Kruse et al. (2000)), providing image data in 126 spectral bands in the visible and IR regions
(0.4µ-2.4µ). The system was flown at an altitude such that the pixel size is about 5 meters.
The data set contains 358 scan lines with 390 pixels in each scan line. The list of classes and
number of labeled samples for each class is given in Table 1.1. The image of the scene and
the corresponding ground-truth regions of interest are shown in Figure 1.2 and Figure 1.3.

1.6.2 Classifier Design

We designed three different versions of Fishers discriminant. As a baseline classifier Linear
Fishers Discriminant (LFD) is considered. To find out if the kernel version of the Fish-
ers Discriminant improves our baseline, we implemented theKernel Fishers Discriminant
(KFD). Finally we design the automatic kernel selection algorithm for the Fishers discrimi-
nant (AKFD) to see how much we save from the training time and if this is achieved while
maintaining the similar performance levels achieved by KFD.

The classifier parameters, namely, the regularization parameter,ν, and the type of the ker-
nel function and the corresponding parameter are optimizedusing a 10-fold cross-validation
approach. For the regularization parameter a discrete set of 10 values are considered, i.e.
ν = [10−10 10−8 10−6 10−5 10−4 10−3 5 × 10−2 10−2 5 × 10−1 10−1 1]. For the kernel
function we considered linear and radial basis function (RBF Gaussian Functions) kernels.
For the width of the rbf we consideredσ = [10−2 10−1 1 10]. The data is normalized such
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Table 1.1

Classes Number of Samples

Roof Tops 10182
Streets 4571
Grass 1539
Trees 1743
Paths 907

Shadow 434
Cars 934

Fields 608

Total 20918

Number of labeled samples available
for each class identified in the Purdue
Campus Dataset.

that each feature is between -1 and 1. One-Agains-All multi-class strategy is used throughout
the experiments Hsu and Lin (2002).

To be more specific for the KFD algorithm a single RBF Gaussiankernel is used. The
width σ of this kernel is chosen from one of the 4 different values considered via cross-
validation. However, for the AKFD algorithm a linear combination of 5 kernel functions
(i.e., a linear and 4 RBF Gaussian functions one for each of theσ considered) is used.

The AKFD algorithm is initialized witha set to all ones (i.e., initially all kernels are
assumed to contribute equally). The algorithm is terminated when the improvement in the
objective function at any iteration over the previous iteration is less than 0.1% or a maximum
number of 20 iterations is reached. We ran our experiments for four different sizes of training
sets, i.e. r=0.01 (n=209), r=0.02 (n=418), r=0.03 (n=627),r=0.04 (n=836) where r denotes
the ratio of the training to labeled samples. Training samples are selected randomly and each
experiment is repeated 10 times. The size of the expansion set S for the kernel matrices is
limited to 250 randomly selected samples, i.e. kernel matrices are computed usingK(XT , S)
instead ofK(XT ,X) whereS ⊂ X and size of S is 250. The labeled samples that are not
used for training are used for testing.

1.6.3 Analysis of the results

Table 1.2 and Table 1.3 show the percentage average classification accuracies averaged over
10 runs achieved and the total time taken by each algorithm respectively. The following
conclusions can be drawn from these results. When the training size is small linear version
performs as well as the kernel version. As the training size increases linear version is no
longer competent yet the prediction accuracy for kernel version increases with increasingr.
The proposed AKFD algorithm generates results comparable to the KFD algorithm yet it is
multiple folds faster than the KFD algorithm. Forr = 0.04 (roughly 800 samples) the entire
training plus testing took roughly 21 hours of running time.The same task is completed in 7
hours by the AKFD algorithm. The computer used for these experiments was equipped with
intel core 2 duo CPU with a 1.8GHz clock speed.
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Figure 1.2 RGB image of Purdue Campus Dataset. Bands 32, 16 and 8 are used respectively
for the R, G and B values.

The classification maps obtained forr = 0.04 (for one of the iterations) are displayed
in Figures 1.4, 1.5, 1.6 for LFD, KFD and AKFD respectively. As the classification maps
corresponding to KFD and AKFD suggest, the difference between the predictive accuracies
of KFD and AKFD is quite negligible, (i.e., test accuracy forAKFD is 90.6% and for KFD
is 90.5%). The areas of the image where LFD performs poorly are annotated by the red
rectangles.

The optimized values of the kernel weights,a obtained by the AKFD algorithm and the
value of the kernel parameter,σ selected by cross-validation for KFD are shown in Table
1.4 for each one-against-all classification task. The results suggest that AKFD favors a linear
combination with mostly non-zero weights for the individual kernel functions as opposed to
KFD, which uses only one kernel function selected from several others available. Despite
seemingly different kernel models being used by the two algorithms, we observe almost
identical predictive accuracies for the two classifiers.
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Table 1.2

Classifiers n=209 n=418 n=627 n=836

LFD 81.0 84.1 84.2 84.6
(5.2) (1.0) (0.4) (0.8)

KFD 82.5 86.5 89.3 89.9
(3.2) (2.9) (1.9) (1.5)

AKFD 80.6 85.8 87.9 90.1
(2.9) (1.6) (1.4) (0.9)

Percentage overall classification accuracies averaged
over 10 runs. Numbers in parenthesis are standard
deviations.

Table 1.3

Classifiers r=0.01 r=0.02 r=0.03 r=0.04

LFD 99 114 147 176
KFD 3967 26276 35667 74773

AKFD 2125 5902 11834 26133

Total computational time (in seconds) for 10 iterations
of each algorithm.

Table 1.4

model,σ linear rbf, 0.01 rbf, 0.1 rbf, 1 rbf, 10

Roof tops 1.3 0.3 0.2 0.3 0.3 σ = 0.01
Roads 0 0.8 0 1.1 1.2 σ = 0.1
Grass 0 0.7 0 0.5 0.9 σ = 0.01
Trees 0 0.3 0 0.1 0.5 σ = 0.01
Paths 0 1.1 0 0.8 1.0 σ = 0.01

Shadow 0.9 1.0 1.2 0.9 1.0 σ = 0.1
Cars 1.2 1.1 0 0.6 0.9 σ = 0.1

Fields 1.3 0.5 0.4 0.9 1.1 σ = 0.1

The optimized values of the kernel weights,a obtained by the AKFD algorithm.
The last column shows the value of theσ selected by cross-validation for the
KFD algorithm.
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Figure 1.3 Ground Truth Fields for the Purdue Campus Data

1.7 Conclusion

In this chapter we first reviewed the basics of Fisher’s Discriminant, then presented a mathe-
matical programming approach for kernelizing the algorithm so as to obtain nonlinear classi-
fiers and finally proposed an alternating optimization algorithm for automatically learning the
kernel function. Unlike LFD, KFD has the potential to deal with data of complex structures
such as multimodal data. However, this comes at the cost of increased computational time.
The computational time for training increases, at the orderof O(n3) for KFD. Moreover,
to optimize the algorithm for different kernel functions and parameters, a cross-validation
scheme is required. More specifically, if one is consideringp different parameters for the
kernel function and using ak − fold cross-validation approach, the algorithm needs to run
for p × k times to find the optimum kernel parameter. The proposed AKFDalgorithm on the
other hand eliminates the need for the cross-validation by automatically learning the weights
of different kernel functions considered. Let the number ofiterations before convergence be
N ; then, forN << p × k the computational gain could be significant.

In our experimental setting the AKFD algorithm usually converged in less than 5 iter-
ations. We considered 5 different values for the kernel width and adopted a 10-fold cross
validation framework. So instead of running the KFD algorithm5 × 10 = 50 times to select
the optimum kernel parameter, we just run the AKFD algorithmonce. Each iteration of the
AKFD algorithm roughly takes the same amount of time as KFD. Thus in the AKFD algo-
rithm the optimum kernel is selected in around 5 iterations whereas in KFD this task takes 50
iterations. As for the online testing the AKFD algorithm is slower because all of the kernel
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Figure 1.4 Classification map obtained for LFD for r=0.04. Test accuracy 86.5%

matrices needs to be computed during testing which takes more time than computing just one
kernel matrix as in KFD. As the numbers in Table 1.3 suggest even when the testing times
are included, the overall computational times clearly favors AKFD over KFD.

As the experimental results suggest the predictive accuracy of the proposed algorithm is
not significantly different than that obtained by the KFD algorithm. That is, the computational
gain is achieved while maintaining similar predictive performance.

The results in Table 1.4 indicate that the kernel functions obtained by KFD and AKFD
could be significantly different yet both algorithms yield similar predictive performance.
We believe further research is required to investigate how the kernel selected by the KFD
algorithm correlates with that obtained by AKFD. Another area that needs attention is the
initialization of the weights,a in Section 1.5. In this study we assumed all kernel models are
a priori likely and thus assigned equal weights for each of them. However it is worthwhile to
analyze the impact of initialization on the final weights optimized and how this in turn affects
the predictive performance of the algorithm.
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Figure 1.5 Classification map obtained for KFD for r=0.04. Test accuracy 90.5%
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Figure 1.6 Classification map obtained for KFD for r=0.04. Test accuracy 90.6%
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