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1.1 Introduction

In hyperspectral data analysis, materials of practicar@st, such as agricultural crops, forest
plantations, natural vegetation, minerals, and fieldstefést in urban areas exist in a variety
of states and are usually observed in a number of conditibiilmination. That is, most
land-cover types do not have a single spectral responsexaonple a crop type will show
different spectral characteristics at different timesha tay and year. Similarly, roof tops
are usually made of a variety of different materials inchgdconcrete, tile, bricks, glass etc.
all of which have different spectral responses. The numbsuch examples can easily be
augmented.

One possible way to deal with this problem is to model eacésaffistribution data using
Finite Mixture models (McLachlan and Peel (2004)). Finitextdre Models usually leads to
competitive performance when there is enough labeled datvéal the underlying structure
of the class distributions. However, in most real worldiegt, this may not be the case. The
price one must pay for labeled data is usually prohibitivetpensive, as acquiring labeled
data requires a tedious and time consuming process of huabatirig.
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Another alternative for modeling multi-modal class disttions is kernel machines. Ker-
nel machines was first introduced with Support Vector Magbi(Vapnik (2000)) but later
adapted to several other classification algorithms inalgidtisher’'s Discriminant (Mika et
al. (1999)). Kernel concept provides the flexibility reaqudrto model complex data structures
that originate from a wide range of class conditional disttions. Earlier studies show that
Fisher’s discriminant when implemented with kernel maekigields favorable results for
the analysis of hyperspectral data with multimodal clasgrithutions and limited training
data (Dundar and Landgrebe (2004a)), (Dundar and Land¢péiodb)).

In the KFD algorithm the type of the kernel function and itsgraeters are usually esti-
mated from a designated set of kernel models by cross-validawith this approach the
tuning procedure becomes quite computational for traisitgsize larger than few hundred
samples. We propose an iterative classification algoritbmKernel Fisher’s discriminant
(KFD) using heterogeneous kernel models. In contrast wighstandard KFD that requires
the user to predefine a kernel function, we incorporate thle & choosing an appropriate
kernel into the optimization problem to be solved. The caatkernel is defined as a linear
combination of kernels belonging to a potentially large ifgraf different kernels.

Preliminary results with some benchmark datasets wereepted earlier (Fung et al.
(2004)). In this study additional experimental results ohyperspectral dataset are pre-
sented to further validate the effectiveness of the praghatgorithm inlearningthe optimal
combination of kernel functions. The results demonstitaé the prediction accuracy of the
proposed algorithm is not significantly different than thahieved by the standard KFD in
which the kernel parameters have been tuned using crosktiah yet the training with the
proposed algorithm is multiple folds faster than that ohderd KFD.

This chapter is organized as follows. In the next section wikebwefly review the Lin-
ear Fisher’s Discriminant (LFD). Then, we will present a heahatical formulation of the
Fisher’s Discriminant algorithm that will form the basig tbe Kernel Fisher’s Discriminant
(KFD). Next, we will discuss the implementation of KFD witleterogeneous kernel mod-
els and present an iterative algorithm for automaticallgcteng the kernels. Finally we will
present results to validate the applicability of the preubapproach on a real-world problem
with a hyperspectral dataset.

1.2 Linear Fisher’s Discriminant

It is well known that in supervised classification probleme probability of error due to a
Bayes classifier is the best that can be achieved. The Baa&sifer compares the a posteriori
probabilities of all classes, and assigns the sample tol#ss avith the highest probability.
However for most classes of distributions, designing annoyh Bayes classifier is very
difficult if not impractical. The primary problem stems frattme finite size of the training
set, leading to an imperfect estimate of the class prolaldinsity functions. The most
common way to mitigate this problem is to assume normalitligipns for all classes. Under
this hypothesis standard classifiers using quadratic aeddidiscriminant functions can be
designed.

The well-known Linear Fisher’s Discriminant (LFD) (Fukwg®a(1990)), arises in the
special case when the considered information classes ltararmon covariance matrix. LFD
is a classification method that projects the high dimensidata onto a line and performs
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classification in this one-dimensional space. This pr@ects chosen such that the ratio
of the scatter matrices (between and within classes) or ahealied Rayleigh quotienis
maximized. Even though LFD is mainly designed for binaryssification problems it is
extension to multiclass classification problems is alsaids. For multiclass problems the
ratio of between and within class scatter matrices can bémized by solving a generalized
eigenvalue problem. This leads to a projection matrix With- 1 eigenvectors wher& is
the number of classes in the dataset Fukunaga (1990).

In the rest of this chapter we will limit our discussion to #&ip classification problems.
More specifically, we are given a training datagét;, v;)};—,, wherez; € R¢ are input
variables andy; € {—1,1} are class labels. LeX € R¥™ be a matrix containing all the
training samples and let;, C X € R¥"™* be a matrix containing the;, training samples
for classwy, k € {£}. Then, the LFD is the projectiom, which maximizes,

wT Spw

= 1.1
J(w) = e (L.1)
where
Sp = (s — p=) (g — p=)” (1.2)
1 T 7 \T
Sw = Z o (Xk - Uk‘enk) (Xk - Mk-enk) (1.3)
ke{t}
are the between and within class scatter matrices resphctind
1
Iuk‘ = 7Xk'enk. (1.4)
ng

is the mean of class;. ande,,, is ann; dimensional vector of ones.

The above problem can be reformulated as follows. Firstadtiat ifw is a solution to
(1.1), then so is any scalar multiple of it. Therefore, toidvmultiplicity of solutions, we
impose an arbitrary constraint an’ Spw = 4, which is equivalent tav” (pu, — pu_) = 2.
Then the optimization problem of (1.1) becomes

min,, ¢ ga wT Syrw

s.t. wh (py —p_)=2 (1.5)

A closed-form solutionv* for (1.5) can be obtained by optimizing the Lagrange func-
tion associated with the above problem. This giugs= )\S;Vl (u+ — p—) where\ is the
Lagrange multiplier obtained as= (M+—/t7)T5171(u+—u7) .Ford > n,i.e. number of dimen-
sionality is greater than the number of sampﬁs, can be singular and thus the inverse does
not exist. To avoid such ill-conditioned settings it is a ¢coan practive to replacéy, by
Sw. = Sw + vI. Herev acts as a regularizer over the classifier.

When classes are normally distributed with equal covariamntés in the same direction
as the discriminant in the corresponding Bayes classifiendd, for this special case LFD
is equivalent to the Bayes optimal classifier. Although LFdlles heavily on assumptions
that are not true in most real world problems, it has provdreteery powerful. In particular
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when the distributions are unimodal and separated by thtesed means, LFD becomes
very effective. One reason why LFD may be preferred over raoraplex classifiers is that
asa linear classifier it is less prone to overfitting.

For most real world data, a linear discriminant is clearly camplex enough. Classical
techniques tackle these problems by using more sophistiaistributions in modeling the
optimal Bayes classifier; however, these often sacrificeltsed form solution and are com-
putationally more expensive. A relatively new approacthis tlomain is the kernel version
of Fisher’s Discriminant (Mika et al. (1999)) which is knows Kernel Fisher’s Discriminant
(KFD) in the literature. The main characteristic of this egazh is the kernel concept, which
was originally applied in Support Vector Machines and afidive efficient computation of
Fisher’s Discriminant in the kernel space. The linear distrant in the kernel space corre-
sponds to a powerful nonlinear decision function in the trgpace. Furthermore, different
kernels can be used to accommodate the wide-range of narities that may occur in the
data set. In the next section we derive the kernel versioheoFtsher’s Discriminant.

1.3 Kernel Fisher Discriminant

1.3.1 Mathematical programming formulation

The formulation in (1.5) is a parametric formulation of Fésk Discriminant. The discrim-
inative approach to the same problem can be obtained awkllBirst, we defing; :=
wT(x; — px,), Vi € wi, k € {£} and imposew? py =1, wTp_ = —1. Let ¢* be a vector
containing all the; for classwy, and y be the vector of class labels. Then the problemin (1.5)
becomes

1 1 1 kT ok 1,.T
(w,w,e?ggwﬂ 2 Lkeft) mpé &t qww

S.t. & = XTw—y (1.6)
el &8 = 0,ke {+}

The Lagrangian of (1.6) is given by

L&A1 0s) = (€7 DE+uTw) + AT (€~ XTw+y) + NIBTE ()

whereD is ann x n diagonal matrix with the first, entries equal t% and the remaining

n_ ones equal to—, B is ann x 2 indicator matrix with the firstx, entries in the first
column and the last_ entries in the second column are set to one with all othersylzgro.
Herel; € R™ and)\, € R? are the lagrange multipliers correspondingte X7 w — y and
efkg’f = 0, respectively. Solving for the gradient of (1.7) equal tmzeve obtain the Karush-
Kuhn-Tucker (KKT) necessary and sufficient optimality citiecths Mangasarian (1994) for
the FLD problem with equality constraints given by

w— X\ = 0
DE+ XM +Bh = 0
XTw—y—¢ = 0
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The first two equations of (1.8) give the following expressidor the original problem
variables(w, £) in terms of the Lagrange multiplieps; and\s:

w=XM\, £=—-D" A\ +B\) (1.9)

Substituting these in the last two equalities of (1.8) givesn explicit expression fov;
and); in terms ofX andy as follows

(1.10)

XX +DpD ! DB } { A }

y
BTD™' BTD'BT || X\ [ BTy — BTXTX }

*

Solving the linear system of equations (1.10) gives us thdisa i,{ which in turn
2

yieldsw* = X A} from (1.9). Here" denotes optimal solutions. In the rest of this chapter we
drop the subscript from; for notational simplicity.

The “kernelized” version of the Fisher’s Discriminant candbtained in this framework
by replacing the primal variable by its dual equivalenty = X X in (1.6) to obtain:

i T
s.t. & = XTX)\ — y (1.12)

el ¢k = 0,k e {£}

nk

where the objective function has also been modified to memveighted 2-norm sums of
the dual variables. If we now replace the” X by a nonlinear kernek' (X7, X), we obtain
a formulation that is equivalent to the Kernel Fisher Disiniant described in (Mika et al.
(2000y).

T
(A,érélﬁw %ZkG{:I:} ﬁfk &+ %)\T/\
s.t. € = KXT,X)A—y (1.12)
el ¢F = 0,ke{%}

Recent SVM formulations with least squares loss (Suykedsvandewalle (1999)) are
much the same in spirit as the problem in (1.6). Using a sindilelity analysis to the one
presented here, and then “kernelizing”, the authors oltte&mbjective function

1 1
y§||,5||2 - 5ATK(XT,X)A. (1.13)

The regularization term” K (X7, X') A determines that the model complexity is regularized
in a reproducing kernel Hilbert space (RKHS) associatetl tie specific kernekl’ where
the kernel functionk” has to satisfy Mercer’s conditions add(X*, X) has to be positive
semidefinite.

By comparing the objective function (1.13) to problem (3,3e can see that problem
(1.12) does not regularize in terms of RKHS. Instead, theroak in a kernel matrix are sim-
ply regarded as new featurés( X7, X) of the classification task in addition to the original
featuresX. We can then construct classifiers based on the featureslied by a kernel in
the same way we build classifiers using original featufes
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1.4 Kernel Fisher’s Discriminant with Heterogeneous
Kernels

The kernelized version of the Fisher’s Discriminant (KF)eg us the flexibility required to
model complex data structures that originate from a widgreaof class conditional dis-
tributions. Like its linear space counterpart, the staisestimation is performed at full
dimensionality (no feature extraction is needed) allowirsgto exploit all the separability
the data provides without having to deal with severe nurakissues.

Like most other kernel-based approaches KFD also suffens fhe computational com-
plexity of working with kernel functions to a greater extehhe computational complexity
of the algorithm is on the order @ (n?) making its use impractical for large datasets. A
common way around this problem is to expand the kernel mettirms of a random subset
of the training samples. However, the problem of selectirgldest kernel function type and
parameters still remains. Usually, cross-validation isdu® optimize the algorithm over a
large number of kernel parameters and the parameter seh&xamizes the cross-validation
performance is chosen as the optimum set.

Cross-validation is a method for estimating predictiveeof the classifier with the train-
ing data. It splits the training dataset irk@qual-sized pieces called folds. At each stage one
fold is left out as testing data and the classifier is trainéith the remainingk — 1 folds.
This process is repeated until &lfolds are tested and aggregate test error is recorded as the
k — fold cross validation performance.

In this section, we propose a methodology for selecting gterum kernel function as a
weighted summation of several other kernel functions whieeeveights of the kernel func-
tions are learned automatically through an alternatingndpation technique. To be more
specific, let us suppose that instead of the kefdeing defined by a single kernel mapping
(i.e., Gaussian, polynomial, etc.), the kerhgls composed of a linear combination of kernel
functionskKj,j =1,...,k, as below

k
K(XT,X)=> a; K;(X", X), (1.14)
j=1

wherea; > 0.

As it is pointed out in Lanckriet et al. (2003), the gét; (A, A'), ..., Kx(XT, X)} can
be seen as a predefined set of initial “guesses” of the keragboand it could contain very
different kernel matrix models, (e.g., linear, Gaussiaslypomial) with different parame-
ter values. In this formulation parameters specific to eaainéd are fixed a priori. Instead
of fine tuning the kernel parameters for a predetermineddtetin cross-validation, we can
optimize the set of values > 0 in order to obtain a positive semi-definite linear combioiati
K(XT X)= Zle a;K;(XT, X) suitable for the specific classification problem. Substi-
tuting equation (1.14) in equation (1.11) we obtain the KBbrfulation with heterogeneous
linear combinations of kernels as follows
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. 1 1 kT ok AT
(\sa) ERnHa+ 32 ke{r) mas &+ FATA
> € = TiaKA-y (1.15)
el eh = 0ke{x}
a; = 0,j€{l,....k}

whereK; = K;(XT, X). When considering linear combinations of kernels, the Hygsit
space may become larger, making the issue of capacity ¢amtioportant one. It is known
that if two classifiers have similar training error, a smadlepacity may lead to better gener-
alization on future unseen data (Cherkassky and Mulierg&};9%apnik (2000)). In order to
reduce the size of the hypothesis and model space and to tgaiirg £onvexity in all vari-
ables, an additional regularization te%n’a is added to the objective function of problem
(1.15). The problem then becomes

. 1 T 1
(A,&,a?ehz?wdw 2 Zke{i} %fk gk + 5)\T)\ + %aTa
st ¢ = YiaakA-y (1.16)
e,Tkak = 0,ke{zx}
a; > O,jE{l,...,k}

A new sampler is then classified by the following classifier:

i >b, x€wy,
;(ajKj(x,X)) A= { b rew ) : (1.17)
whereb is a predefined threshold that adjusts the tradeoff betwemnrrectly classifying a
positive sample as negative, i.e. false negative, andriectly classifying a negative sample
as positive, i.e., false positive.

Even though the objective function in (1.16) is strictly gex in terms of the problem
variables¢, A anda, the problem itself is not convex due to the nonconvex etyuatin-
straint§ = Z?Zl a; IK{;\ — y. However, the problem in (1.16) can be treated as a biconvex
programming problem first by fixing = a* and solving (1.16) fo£ and \* and then fix-
ing A = \* and solving for¢ anda*. More specifically when we fix. = a* we obtain the
following subproblem

. 1 1 kT ek AT
(A GeRnta 3 2ke(sy mpS € FATA

s.t. ¢ = Zle @K —y (1.18)

el ¢F = 0,ke {+}

Nk

and similarly when we fixA = \* we obtain the subproblem

. T
emn o Ykersy matt &+ gala
st € = YF a KN —y (1.19)
e,Tkak' = 0,ke{x}
a; = O,jE{l,...,k‘}
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Note that both problems in (1.18) and (1.19) are stronglyermvith a unique optimizer,
which implies that the original objective function is guated to improve at each iteration.
We are now ready to describe our proposed algorithm.

1.5 Automatic kernel selection KFD Algorithm

Algorithm 1.5.1 Automatic kernel selection KFD Algorithm (AKFD)

Givenn data points inR? represented by thé x n matrix X and vectory of +1 labels
denoting the class of each data point (i.e., each columk)pthe parameter and an initial
a® € R*, we generate the nonlinear classifier (1.17) as follows:

(0) CalculateKs, ..., Ky , thek kernels on the kernel family, where for eaghk; =
Ki(XTvX)'

For each iteratiorn: do:

(i) Givena(*~Y calculate the linear combinatioR’ = 3%, o\ VK.

(i) Solve subproblem (1.18) to obtai®).
(i) Calculate K\ forj =1,..., k.
(iii) Solve subproblem (1.19) to obtairi.

Stop when a predefined maximum number of iterations is relachevhen the change in
value of the objective function (1.16) evaluated in suduesterations is less thaa

The most common cases arise whea < n (i.e., the number of kernels functions consid-
ered on the kernel family is much smaller than the number & gaints). In such situations,
the complexity of the AKFD algorithm 1.5.1 is approximatélyn?).

Since each of the two optimization problems ( (1.18) and9)).that are required to be
solved by the AKFD algorithm are strongly convex and thusheafcthem have a unique
minimizer, the AKFD algorithm can also be interpreted as derfiate Optimization (AO)
problem (Bezdek and Hathaway (2003)). Alternate Optinzatiivides the entire variable
space into a predefined number of subspaces and optimizepane of variables at a time
while the remaining variables are fixed. Classical instarafeAO problems include fuzzy
regression c-models and fuzzy c-means clustering.

The AKFD algorithm then, inherits the convergence propsrénd characteristics of AO
problems. As stated in (Bezdek and Hathaway (2002)), thef stints for which Algorithm
1.5.1 can converge may include certain type of saddle p@ietspoints behaving like local
minimizers only when projected along a subset of the vagmbtee Figure 1.1). However,
it is also stated that is extremely difficult to find exampldsene convergence occurs to a
saddle point rather than to a local minimizer. If the inigatimate is chosen sufficiently near
a solution, AO is shown to converge linearly to a local mirderi (Bezdek and Hathaway
(2002)). In practice, we found that Algorithm 1.5.1 typlgadonverges in 3-4 iterations (3 or
4) to a local solution of problem (1.16).
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saddle point

Figure 1.1 A saddle point for the function= z? — 3. It behaves like a local minimizer
when projected along the x-axis.

1.6 Numerical Results

1.6.1 Dataset Used: Purdue Campus Data

This data set is a flightline over the Purdue University Wesfalette Campus. The hyper-
spectral data used was collected on September 30, 1999heithiborne HYMAP system
(Kruse et al. (2000)), providing image data in 126 spectaalds in the visible and IR regions
(0.4u-2.4u). The system was flown at an altitude such that the pixel sizbdout 5 meters.
The data set contains 358 scan lines with 390 pixels in eahlsee. The list of classes and
number of labeled samples for each class is given in TableThd image of the scene and
the corresponding ground-truth regions of interest arevatino Figure 1.2 and Figure 1.3.

1.6.2 Classifier Design

We designed three different versions of Fishers discrintin&s a baseline classifier Linear
Fishers Discriminant (LFD) is considered. To find out if therkel version of the Fish-
ers Discriminant improves our baseline, we implementedkiamel Fishers Discriminant
(KFD). Finally we design the automatic kernel selectioroailthm for the Fishers discrimi-
nant (AKFD) to see how much we save from the training time dnlis$ is achieved while
maintaining the similar performance levels achieved by KFD

The classifier parameters, namely, the regularizatiompeatier,, and the type of the ker-
nel function and the corresponding parameter are optimizédy a 10-fold cross-validation
approach. For the regularization parameter a discretefsHd walues are considered, i.e.
v =[10"110"8 1076 107° 10=* 1073 5 x 1072 1072 5 x 10~ 10~* 1]. For the kernel
function we considered linear and radial basis functionkRBaussian Functions) kernels.
For the width of the rbf we considered= [10~2 10~! 1 10]. The data is normalized such
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Table 1.1

Classes = Number of Samples

Roof Tops 10182
Streets 4571
Grass 1539
Trees 1743
Paths 907
Shadow 434
Cars 934
Fields 608
Total 20918

Number of labeled samples available
for each class identified in the Purdue
Campus Dataset.

that each feature is between -1 and 1. One-Agains-All nuldiss strategy is used throughout
the experiments Hsu and Lin (2002).

To be more specific for the KFD algorithm a single RBF Gauskemel is used. The
width o of this kernel is chosen from one of the 4 different valuesstered via cross-
validation. However, for the AKFD algorithm a linear comaiion of 5 kernel functions
(i.e., alinear and 4 RBF Gaussian functions one for eacheof tonsidered) is used.

The AKFD algorithm is initialized withe set to all ones (i.e., initially all kernels are
assumed to contribute equally). The algorithm is termuhatben the improvement in the
objective function at any iteration over the previous itiemrais less than 0.1% or a maximum
number of 20 iterations is reached. We ran our experimenfeto different sizes of training
sets, i.e. r=0.01 (n=209), r=0.02 (n=418), r=0.03 (n=62%).04 (n=836) where r denotes
the ratio of the training to labeled samples. Training s@®pke selected randomly and each
experiment is repeated 10 times. The size of the expanstafi &e the kernel matrices is
limited to 250 randomly selected samples, i.e. kernel m@drare computed usidg(X 7, S)
instead of K (X7, X) whereS C X and size of S is 250. The labeled samples that are not
used for training are used for testing.

1.6.3 Analysis of the results

Table 1.2 and Table 1.3 show the percentage average classifiaccuracies averaged over
10 runs achieved and the total time taken by each algorittepectively. The following
conclusions can be drawn from these results. When the tgagize is small linear version
performs as well as the kernel version. As the training simeeiases linear version is no
longer competent yet the prediction accuracy for kernediearincreases with increasimg
The proposed AKFD algorithm generates results comparaltleet KFD algorithm yet it is
multiple folds faster than the KFD algorithm. For= 0.04 (roughly 800 samples) the entire
training plus testing took roughly 21 hours of running tiniee same task is completed in 7
hours by the AKFD algorithm. The computer used for these ixpEnts was equipped with
intel core 2 duo CPU with a 1.8GHz clock speed.
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Figure 1.2 RGB image of Purdue Campus Dataset. Bands 32,d18 are used respectively
for the R, G and B values.

The classification maps obtained fore= 0.04 (for one of the iterations) are displayed
in Figures 1.4, 1.5, 1.6 for LFD, KFD and AKFD respectivelys fhe classification maps
corresponding to KFD and AKFD suggest, the difference betwtbe predictive accuracies
of KFD and AKFD is quite negligible, (i.e., test accuracy fKFD is 90.6% and for KFD
is 90.5%). The areas of the image where LFD performs pooeyamnotated by the red
rectangles.

The optimized values of the kernel weighispbtained by the AKFD algorithm and the
value of the kernel parameter, selected by cross-validation for KFD are shown in Table
1.4 for each one-against-all classification task. The tesuiggest that AKFD favors a linear
combination with mostly non-zero weights for the indivitisarnel functions as opposed to
KFD, which uses only one kernel function selected from savethers available. Despite
seemingly different kernel models being used by the two ritlyms, we observe almost
identical predictive accuracies for the two classifiers.
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Table 1.2
Classifiers n=209 n=418 n=627 n=836

LFD 81.0 841 842 846
(52) (1.0) (0.4) (0.8)

KFD 825 865 89.3 899
(32 (9 (19 (15

AKFD 806 858 87.9 90.1
(29 (@6 (14 (0.9

Percentage overall classification accuracies averaged
over 10 runs. Numbers in parenthesis are standard

deviations.

Table 1.3
Classifiers r=0.01 r=0.02 r=0.03 r=0.04
LFD 99 114 147 176

KFD 3967 26276 35667 74773
AKFD 2125 5002 11834 26133

Total computational time (in seconds) for 10 iterations
of each algorithm.

Table 1.4
model,c linear rbf, 0.01 rbf, 0.1 rbf,1 rbf, 10

Rooftops 1.3 0.3 0.2 0.3 0.3 0=0.01
Roads 0 0.8 0 1.1 1.2 o0=0.1
Grass 0 0.7 0 0.5 0.9 o=0.01
Trees 0 0.3 0 0.1 0.5 o0=0.01
Paths 0 1.1 0 0.8 1.0 o=0.01

Shadow 0.9 1.0 1.2 0.9 1.0 o0=0.1
Cars 1.2 1.1 0 0.6 09 o=01
Fields 1.3 0.5 0.4 0.9 1.1 o0=0.1

The optimized values of the kernel weighiibtained by the AKFD algorithm.
The last column shows the value of theselected by cross-validation for the

KFD algorithm.
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Figure 1.3 Ground Truth Fields for the Purdue Campus Data

1.7 Conclusion

In this chapter we first reviewed the basics of Fisher’s Disicrant, then presented a mathe-
matical programming approach for kernelizing the algoni$o as to obtain nonlinear classi-
fiers and finally proposed an alternating optimization athar for automatically learning the
kernel function. Unlike LFD, KFD has the potential to deatiwilata of complex structures
such as multimodal data. However, this comes at the costcoéased computational time.
The computational time for training increases, at the oafe®(n?) for KFD. Moreover,

to optimize the algorithm for different kernel functionsdaparameters, a cross-validation
scheme is required. More specifically, if one is considepmgjfferent parameters for the
kernel function and using & — fold cross-validation approach, the algorithm needs to run
for p x k times to find the optimum kernel parameter. The proposed AEIgorithm on the
other hand eliminates the need for the cross-validatiorubyraatically learning the weights
of different kernel functions considered. Let the numbeiterfations before convergence be
N; then, forN << p x k the computational gain could be significant.

In our experimental setting the AKFD algorithm usually cerged in less than 5 iter-
ations. We considered 5 different values for the kernel kvigitd adopted a 10-fold cross
validation framework. So instead of running the KFD aldamit5 x 10 = 50 times to select
the optimum kernel parameter, we just run the AKFD algorittrmee. Each iteration of the
AKFD algorithm roughly takes the same amount of time as KFBudlin the AKFD algo-
rithm the optimum kernel is selected in around 5 iteratiohgemgas in KFD this task takes 50
iterations. As for the online testing the AKFD algorithm Ievger because all of the kernel
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Figure 1.4 Classification map obtained for LFD for r=0.04stTe&ccuracy 86.5%

matrices needs to be computed during testing which takes time than computing just one
kernel matrix as in KFD. As the numbers in Table 1.3 suggesh evhen the testing times
are included, the overall computational times clearly fav®KFD over KFD.

As the experimental results suggest the predictive acguwihe proposed algorithm is
not significantly different than that obtained by the KFDalthm. That is, the computational
gain is achieved while maintaining similar predictive penfiance.

The results in Table 1.4 indicate that the kernel functiooimimed by KFD and AKFD
could be significantly different yet both algorithms yielungar predictive performance.
We believe further research is required to investigate Hmvkernel selected by the KFD
algorithm correlates with that obtained by AKFD. Anotheeathat needs attention is the
initialization of the weightsg in Section 1.5. In this study we assumed all kernel models are
a priori likely and thus assigned equal weights for each efithHowever it is worthwhile to
analyze the impact of initialization on the final weightsiopzed and how this in turn affects
the predictive performance of the algorithm.



KERNEL FISHER'’S DISCRIMINANT WITH HETEROGENEOUS KERNELS 15

Trees
Cars
Paths
{Fields
1Shadow

1 Roads

Grass

Roof Tops

Figure 1.5 Classification map obtained for KFD for r=0.04stTeccuracy 90.5%
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Figure 1.6 Classification map obtained for KFD for r=0.04stTeccuracy 90.6%
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