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Abstract. In this study we introduce a learning algorithm for dealing with dif-
ferent polyp morphologies in designing a Computer Aided Detection systemfor
Virtual Colonoscopy. The proposed approach takes advantage of thesubclass in-
formation available for polyp candidates in the training data and jointly optimizes
multiple hyperplane classifiers each of which is designed to classify negative can-
didates from a subclass of polyp candidates. This yields a polyhedral decision
surface with flat faces with the number of such faces equivalent to the number
of different polyp morphologies. Flat faces provides robustness to the classifier
whereas multiple faces contributes to the flexibility required to deal with differ-
ent polyp types. We evaluate the performance of the proposed technique on a
real-world Colon dataset and compare the proposed classifier againstthe state-
of-the-art linear classifier and a multi-class classifier in terms of the areaunder
the receiver operating characteristics (ROC) curves in the clinically admissible
range of 0-4fp/vol average.

1 Introduction

In this study we propose a learning algorithm that deals withthe multi-mode nature
of the training data. Even though the technique is mainly motivated by the existence
of different polyp morphologies in colorectal cancer and currently validated only with
our Colon dataset, we believe it can be applied to any target detection problem with
multi-mode data characteristics.

Typical examples of different polyp morphologies are givenin Fig. 1. A polyp with
a broad base is called “sessile”; if it has a separate stalk itis called “pedunculated”.
A polyp is considered “flat” if the width to height ratio is greater than 2 or the vertical
elevation above the colon wall is less than 3mm. Even though there are certain attributes
shared across all three polyp morphologies such as all protruding from the colon wall,
having certain thickness, and having similar intensity values, the dominant image and
shape characteristics that allow us to easily distinguish one polyp morphology from
other visually makes it very unrealistic to assume that candidates representing different
polyp morphologies all belong to the same distribution in the feature space.
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Fig. 1.Polyp morphologies (from left to right): Sessile, pedunculated, and flatpolyp

1.1 Related Work

Traditionally the classifier is trained by pooling all candidates representing different
subclasses, i.e. polyp morphologies into a single positiveclass and learning a classifier
that will distinguish as many members of the positive class from a large cluster of neg-
atives in the feature space while making sure certain regularization criteria are satisfied
to avoid overfitting. The classifier trained this way does notaddress the multi-mode
nature of the data and leaves room for potential improvements.

One way to tackle with this problem is finite mixture models (McLachlan & Peel,
2004). The positive class can be modeled by a mixture model, one mode for each sub-
class, and a maximum likelihood classifier can be designed toclassify positive candi-
dates from the negative ones. Given that the positive data isvery scarce and the number
of features are relatively large it is almost impractical toestimate mixture model para-
meters (covariance matrices and means of each mode in the case of a normal mixture
model) in the high dimensional feature space without encountering numerical issues.

Discriminative techiques such as Support Vector Machines (Vapnik, 1995), Kernel
Fisher Discriminant (Mika et al., 2000), Relevance Vector Machines (Tipping, 2000) to
name few are also used in this domain. These techniques deal with the unbalanced na-
ture of the data by assigning different cost factors to the negative and positive samples
in the objective function. The kernel evaluation of these techniques yields nonlinear de-
cision boundaries suitable for classifying multi-mode data. Even though kernel-based
classifiers have the capacity to learn higly nonlinear decision boundaries allowing great
flexibility, it is well-known that in real-world applications where feature noise and re-
dundancy is a problem, too much capacity usually hurts the generalizability of a classi-
fier. Previous studies in the CAD domain (undisclosed, 2004)shows that kernel-based
nonlinear classifiers are more prone to overfitting trainingdata and yielding poor gen-
eralization performance than linear classifiers.

One acceptable techique in this domain would be to design a series of hyperplane
classifiers one for each of different subclass, each trainedindependently to differentiate
candidates of a given subclass from the negative class. The final classification decision
is to assign a given candidate to the positive class, if the candidate is classified as posi-
tive by any one of the classifiers. The main problem with this approach is that since the
classifiers are trained independently, each classifier onlyutilizes a portion of the pos-
itive samples. That is to say already scarce positive data issplit among the classifiers
and as a result individual classifiers potentially become more prone to overfitting.

Multiple linear classifiers brings us the flexibility to model multi-mode data with-
out refering to nonlinear classifiers whereas the linearityof each individual classifier
provides robustness, i.e. potentially makes the classifiermore resistant to overfitting. In
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Fig. 2. A schematic example demonstrating the proposed algorithm. Dark circles depicting neg-
ative samples, numbers representing positive samples. The decision boundary is shown with the
solid lines.

that regard this is a promising approach. However having to train each classifier inde-
pendently and making use of only a small portion of the positive samples at each time
makes this approach less desirable from a machine learning perspective.

2 Proposed Approach

In this study we propose a methodology to jointly optimize multiple hyperplane classi-
fiers to learn a polyhedral decision surface. The number of such hyperplane classifiers
is equivalent to the number of subclasses identified in the positive class. Each of these
classifiers is designed to classify candidates belonging tothe corresponding subclass
from all of the negative candidates.

In Figure 2 the proposed algorithm is demonstrated with a toyexample. Negative
samples are depicted by the dark circles in the middle, whereas positive samples are
depicted with the numbers with each number corresponding toa different subclass. All
eight classifiers are optimized simultaneously and polygonshown with dark lines is
obtained as a decision boundary that classifies positive samples from the negative ones.

We are now ready to formulate the proposed algorithm. We firststart with a brief
overview of hyperplane classifier with hinge-loss, which isalso the foundation for Sup-
port Vector Machines.

2.1 Hyperplane Classifiers

We are given a training dataset{(xi, yi)}
ℓ

i=1, wherexi ∈ ℜd are input variables and
yi ∈ {−1, 1} are class labels. We consider a class of models of the formf(x) = αT x,
with the sign off(x) predicting the label associated with the pointx. An hyperplane
classifier with hinge loss can be designed by minimizing the following cost function.

J (α) = Φ(α) +

ℓ
∑

i=1

wi

(

1 − αT yixi

)

+
(1)
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where the functionΦ : ℜ(d) ⇒ ℜ is a regularization function or regularizer on the hy-
perplane coefficients and(k)+ = max(0, k) represents the hinge loss, and{wi : wi ≥ 0,∀i}
is the weight preassigned to the loss associated withxi. For balanced data usually
wi = ν, but for unbalanced data it is a common practice to weight positive and negative
classes differently, i.e.{wi = ν1, ∀i ∈ C+} and{wi = ν2, ∀i ∈ C−} whereC+ and
C− are the corresponding sets of indices for the positive and negative classes respec-
tively.

The function
(

1 − αT yixi

)

+
is a convex function. The weighted sum of convex

functions is also convex. Therefore for a convex functionΦ(α) (1) is also convex. The
problem in (1) can be formulated as a mathematical programming problem as follows:

min
(α,ξ)∈Rd+ℓ

Φ(α) +
∑ℓ

i=1 wiξi

s.t. ξi ≥ 1 − αT yixi

ξi ≥ 0, ∀i

(2)

ForΦ(α) = ‖α‖
2
2, where‖.‖2 is the 2-norm, (2) results in the conventional Quadratic-

Programming-SVM, and forΦ(α) = |α|, where|.| is the 1-norm it yields the sparse
Linear-Programming-SVM.

2.2 Polyhedral Decision Boundaries

Joint learning of multiple hyperplanes can be achieved by optimizing the following cost
function

J (α1, . . . αK) =

K
∑

k=1

Φk(αk) + ν1

K
∑

k=1

∑

i∈C
+

k

(eik)+ + ν2

∑

i∈C−

max (0, ei1, . . . , eiK)(3)

whereeik = 1 − αT
k yixik, and (eik)+, ∀i ∈ C+

k , defines the hinge loss of thei-
th training example{(xik, yik)} in subclass-k induced by classifierk. C+

k is the set of
indices of the positive samples in subclass-k. Note that classifierk is designed to classify
positive examples in the subclass-k from the negative examples. The first term in (3) is
a summation of the regularizers for each of the classifiers and the second and third
terms accounts for the losses induced by the positive and negative samples respectively.
Unlike (1) the loss function here is different for the negative samples. The loss induced
by a negative samplei, i ∈ C− is zero only if∀k : 1 + αT

k xi ≤ 0, which corresponds
to the “AND” operation. The problem (3) can be formulated as follows

min
(α,ξ)∈RKd+ℓ

∑K

k=1 Φk(αk) + ν1

∑K

k=1

∑

i∈C
+

k

ξik

+ ν2

∑

i∈C−
ξi

s.t. ξik ≥ 1 − αT
k xik

ξik ≥ 0
ξi ≥ 1 + αT

k xi

ξi ≥ 0

(4)
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where the first two constraints are imposed for∀i ∈ C+
k , k = 1, ...,K and the last two

constraints are imposed for∀i ∈ C−, k = 1, ...,K. Note that for a convex function
Φ(α) the problem in (4) is convex. In a nutshell we designedK classifiers, one for each
of the binary classification problems, i.e. subclass-k of the positive class vs negative
class. Then we construct a learning algorithm to jointly optimize these classifiers such
that the cost induced by a negative sample is zero if and only if all of the K classifiers
classifies this sample correctly, i.e.∀k : 1 + αT

k xi ≤ 0. Since each positive sample is
only used once for training the classifierk, the cost induced for a positive sample is zero
as long as it is classified correctly by the corresponding classifierk, i.e.1−αT

k xik ≤ 0.

3 Experimental Results

We validate the proposed polyhedral classifier denoted aspolyhedral with respect to
its generalization performance. We compared its performance against two other tech-
niques. The first one is a hyperplane classifier with hinge loss denoted assparse svm
and the second one is a classifier obtained by multiple hyperplane classifiers each
trained independently, denoted asmulti-class. Throughout the experiments we set the
Φk(αk) = |αk| for all three techniques.

3.1 Data and Experimental Settings

The database of high-resolution CT images used in this studywere obtained from two
different sites across US. The 370 patients were randomly partitioned into two groups:
training (n=167) and test (n=199). The test group was sequestered and only used to
evaluate the performance of the final system.

Training Data Patient and Polyp Info: There were 170 patients with 340 volumes.
A total of 185 polyps were identified as ground truth at the volume level in the 6-25mm
range. The candidate generation algorithm generates a total of 67436 false positives or
on the average 198 false positives per volume (fp/vol).
Testing Data Patient and Polyp Info: There were 201 patients with 395 volumes. A total
of 223 polyps were identified as ground truth at the volume level in the 6-25mm range.
The candidate generation algorithm generates a total of 79057 false positives or 200
false positives per volume (fp/vol).

A total of 101 features are extracted to capture shape and intensity characteristics
of each candidate. Three different polyp types are identified, namely flat, pedunculated
and sessile. Sparse SVM is trained using all three polyp categories as one class. Polyhe-
dral and Multi-class techniques each learn a hyperplane classifier for each of the three
polyp types with the former one learning these classifiers jointly and the latter one in-
dependently. The classifier paramatersν1 andν2 are jointly estimated through 10-fold
patient-wise cross validation technique over the trainingdata such that the area under
the receiver operating characteristics (ROC) curve definedby the average false positive
per volume values of 0 to 4 is optimized. For bothν1 andν2 a discrete set of five values
are considered.
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Fig. 3. FROC curves obtained by the three classifiers on the test data.

3.2 Performance Evaluation

As shown in Figure 3 the Free-response ROC (FROC) curve corresponding to the pro-
posedpolyhedral classifier is consistently dominating the other two curves across al-
most the entire region of interest indicating superior prediction performance. At the
same fp/vol we see that the polyhedral classifier detects as many as 15 polyps more
than the multi-class classifier, and 10 polyps more than the sparse SVM.

4 Conclusions

In this study we have presented a methodology to take advantage of the subclass in-
formation available in the positive class while training a classifier. The subclass infor-
mation which is neglected in conventional binary classifiers provides a better insight
of the dataset and when incorporated into the learning mechanism acts as an implicit
regularizer on the classifier coefficients. We believe this is an important contribution
for applications where the number of positive candidates islimited and feature noise is
prevalent.
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