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Abstract. In this study we introduce a learning algorithm for dealing with dif-
ferent polyp morphologies in designing a Computer Aided Detection syfstem
Virtual Colonoscopy. The proposed approach takes advantage stiltiotass in-
formation available for polyp candidates in the training data and jointly optimizes
multiple hyperplane classifiers each of which is designed to classify negaitn-
didates from a subclass of polyp candidates. This yields a polyhedrisiate
surface with flat faces with the number of such faces equivalent touhder

of different polyp morphologies. Flat faces provides robustnesseeltssifier
whereas multiple faces contributes to the flexibility required to deal with differ
ent polyp types. We evaluate the performance of the proposed teehaiga
real-world Colon dataset and compare the proposed classifier atanstate-
of-the-art linear classifier and a multi-class classifier in terms of the ardar
the receiver operating characteristics (ROC) curves in the clinically adtgs
range of 0-4fp/vol average.

1 Introduction

In this study we propose a learning algorithm that deals Withmulti-mode nature
of the training data. Even though the technique is mainlyivated by the existence
of different polyp morphologies in colorectal cancer andently validated only with
our Colon dataset, we believe it can be applied to any targitction problem with
multi-mode data characteristics.

Typical examples of different polyp morphologies are giirefig. 1. A polyp with
a broad base is called “sessile”; if it has a separate statkagalled “pedunculated”.
A polyp is considered “flat” if the width to height ratio is grer than 2 or the vertical
elevation above the colon wall is less than 3mm. Even tholigitetare certain attributes
shared across all three polyp morphologies such as allygtioy from the colon wall,
having certain thickness, and having similar intensityeal the dominant image and
shape characteristics that allow us to easily distinguist polyp morphology from
other visually makes it very unrealistic to assume that ichatds representing different
polyp morphologies all belong to the same distribution i fésature space.
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Fig. 1. Polyp morphologies (from left to right): Sessile, pedunculated, angdligp

1.1 Related Work

Traditionally the classifier is trained by pooling all cadalies representing different
subclasses, i.e. polyp morphologies into a single posifiass and learning a classifier
that will distinguish as many members of the positive claseifa large cluster of neg-
atives in the feature space while making sure certain reigat#on criteria are satisfied
to avoid overfitting. The classifier trained this way does address the multi-mode
nature of the data and leaves room for potential improvesnent

One way to tackle with this problem is finite mixture modelsc{Mchlan & Peel,
2004). The positive class can be modeled by a mixture modelymode for each sub-
class, and a maximum likelihood classifier can be designethssify positive candi-
dates from the negative ones. Given that the positive daterysscarce and the number
of features are relatively large it is almost impracticaéttimate mixture model para-
meters (covariance matrices and means of each mode in ta@tasormal mixture
model) in the high dimensional feature space without entaring numerical issues.

Discriminative techiques such as Support Vector Machilagprik, 1995), Kernel
Fisher Discriminant (Mika et al., 2000), Relevance Vect@dtines (Tipping, 2000) to
name few are also used in this domain. These techniques iteahe& unbalanced na-
ture of the data by assigning different cost factors to thgatiee and positive samples
in the objective function. The kernel evaluation of thesdteques yields nonlinear de-
cision boundaries suitable for classifying multi-modead&iven though kernel-based
classifiers have the capacity to learn higly nonlinear decisoundaries allowing great
flexibility, it is well-known that in real-world applicatits where feature noise and re-
dundancy is a problem, too much capacity usually hurts thergdizability of a classi-
fier. Previous studies in the CAD domain (undisclosed, 26ddws that kernel-based
nonlinear classifiers are more prone to overfitting trairdata and yielding poor gen-
eralization performance than linear classifiers.

One acceptable techique in this domain would be to designiessaf hyperplane
classifiers one for each of different subclass, each tramggbendently to differentiate
candidates of a given subclass from the negative class. ihlecfassification decision
is to assign a given candidate to the positive class, if theidate is classified as posi-
tive by any one of the classifiers. The main problem with tpisraach is that since the
classifiers are trained independently, each classifier atiliges a portion of the pos-
itive samples. That is to say already scarce positive dagplisamong the classifiers
and as a result individual classifiers potentially becomeenpoone to overfitting.

Multiple linear classifiers brings us the flexibility to mddeulti-mode data with-
out refering to nonlinear classifiers whereas the lineaftgach individual classifier
provides robustness, i.e. potentially makes the classif@e resistant to overfitting. In
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Fig. 2. A schematic example demonstrating the proposed algorithm. Dark cirgféstitig neg-
ative samples, numbers representing positive samples. The deasioddyy is shown with the
solid lines.

that regard this is a promising approach. However havingaio each classifier inde-
pendently and making use of only a small portion of the pesisiamples at each time
makes this approach less desirable from a machine learensp@ctive.

2 Proposed Approach

In this study we propose a methodology to jointly optimizdtiple hyperplane classi-
fiers to learn a polyhedral decision surface. The number di syperplane classifiers
is equivalent to the number of subclasses identified in tis#ipe class. Each of these
classifiers is designed to classify candidates belongingdacorresponding subclass
from all of the negative candidates.

In Figure 2 the proposed algorithm is demonstrated with aet@mple. Negative
samples are depicted by the dark circles in the middle, velsepesitive samples are
depicted with the numbers with each number correspondiagdiierent subclass. All
eight classifiers are optimized simultaneously and polysfoown with dark lines is
obtained as a decision boundary that classifies positivplssnfrom the negative ones.

We are now ready to formulate the proposed algorithm. We dtest with a brief
overview of hyperplane classifier with hinge-loss, whichlso the foundation for Sup-
port Vector Machines.

2.1 Hyperplane Classifiers

We are given a training datasé(txi,yi)}le, wherez; € R? are input variables and
y; € {—1,1} are class labels. We consider a class of models of the fgim = a”z,
with the sign off(x) predicting the label associated with the paintAn hyperplane
classifier with hinge loss can be designed by minimizing theding cost function.

¢
J(a) = ®&(a) + Zwl (1- aTyixi)Jr (1)
i1
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where the functiord : (9 = R is a regularization function or regularizer on the hy-
perplane coefficients arié) , = max(0, k) represents the hinge loss, and; : w; > 0, Vi}
is the weight preassigned to the loss associated wjithH-or balanced data usually
w; = v, but for unbalanced data it is a common practice to weightigesand negative
classes differently, i.fw; = vy, Vi € C*T} and{w; = v», Vi € C~} whereC* and
C~ are the corresponding sets of indices for the positive agatie classes respec-
tively.

The function(l — aTyixi)+ is a convex function. The weighted sum of convex
functions is also convex. Therefore for a convex functign) (1) is also convex. The
problem in (1) can be formulated as a mathematical prograigmioblem as follows:

min ~ é(a) + 25:1 wi&;

(o,§)eRITE
st. & >1-alyua 2)

Ford(a) = ||aH§, where]|.||, is the 2-norm, (2) results in the conventional Quadratic-
Programming-SVM, and fo®(a) = |a|, where|.| is the 1-norm it yields the sparse
Linear-Programming-SVM.

2.2 Polyhedral Decision Boundaries

Joint learning of multiple hyperplanes can be achieved hiyroping the following cost
function

J(a,...ak Z@k (o) —|—1/12 Z elk + vy Zmax(o,eil,...,eiK(B)

k=1icc,t ieC—

wheree;, = 1 — ak YiTik, and (e;x)+, Vi € C,j, defines the hinge loss of the
th training exampl€ (z;x, i)} in subclass-k induced by cIassuﬁl@‘erC+ is the set of
indices of the positive samples in subclass-k. Note thasdiark is deS|gned to classify
positive examples in the subclass-k from the negative elesnphe first term in (3) is
a summation of the regularizers for each of the classifietstha second and third
terms accounts for the losses induced by the positive aratimegamples respectively.
Unlike (1) the loss function here is different for the negatsamples. The loss induced
by a negative samplgi € C~ is zero only ifVk : 1 + o} z; < 0, which corresponds

to the “AND” operation. The problem (3) can be formulated @lfofvs

Zk 1 Pr(ar) + 11 25:1 Zieclj §ik

(a, 5)€RK"’+’/
T2 icc- &
S.t. gzk 1-— ak Tik (4)
gzk >0

& >1+ala;
& >0
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where the first two constraints are imposedYor= C;F, k = 1, ..., K and the last two
constraints are imposed foi € C—, k = 1,..., K. Note that for a convex function
&(«) the problem in (4) is convex. In a nutshell we desigiédlassifiers, one for each
of the binary classification problems, i.e. subclass-k ef plositive class vs negative
class. Then we construct a learning algorithm to jointlyimjte these classifiers such
that the cost induced by a negative sample is zero if and 6éalyof the K classifiers
classifies this sample correctly, i¥k : 1 + ol z; < 0. Since each positive sample is
only used once for training the classifigrthe cost induced for a positive sample is zero
as long as it is classified correctly by the correspondingsiferk, i.e.1 — a7} x;; < 0.

3 Experimental Results

We validate the proposed polyhedral classifier denotepobgedral with respect to
its generalization performance. We compared its perfoomagainst two other tech-
nigues. The first one is a hyperplane classifier with hinge tenoted asparse svm
and the second one is a classifier obtained by multiple hyguegpclassifiers each
trained independently, denoted mslti-class. Throughout the experiments we set the
P () = |ay| for all three techniques.

3.1 Data and Experimental Settings

The database of high-resolution CT images used in this stugatg obtained from two
different sites across US. The 370 patients were randonmtitipaed into two groups:
training (n=167) and test (n=199). The test group was seeueztand only used to
evaluate the performance of the final system.

Training Data Patient and Polyp Info: There were 170 patients with 340 volumes.
A total of 185 polyps were identified as ground truth at theuaoé level in the 6-25mm
range. The candidate generation algorithm generateslaf@#436 false positives or
on the average 198 false positives per volume (fp/vol).

Testing Data Patient and Polyp Info: There were 201 patients with 395 volumes. A total
of 223 polyps were identified as ground truth at the volumellgvthe 6-25mm range.
The candidate generation algorithm generates a total db7®flse positives or 200
false positives per volume (fp/vol).

A total of 101 features are extracted to capture shape ardsity characteristics
of each candidate. Three different polyp types are idediifiamely flat, pedunculated
and sessile. Sparse SVM is trained using all three polymosits as one class. Polyhe-
dral and Multi-class techniques each learn a hyperplarssifier for each of the three
polyp types with the former one learning these classifidrgljpand the latter one in-
dependently. The classifier paramatersaandv, are jointly estimated through 10-fold
patient-wise cross validation technique over the trairdata such that the area under
the receiver operating characteristics (ROC) curve defiyettie average false positive
per volume values of 0 to 4 is optimized. For bothandw, a discrete set of five values
are considered.
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Fig. 3. FROC curves obtained by the three classifiers on the test data.

3.2 Performance Evaluation

As shown in Figure 3 the Free-response ROC (FROC) curvesporeling to the pro-
posedpolyhedral classifier is consistently dominating the other two curve®ss al-
most the entire region of interest indicating superior ésh performance. At the
same fp/vol we see that the polyhedral classifier detectsas/ ras 15 polyps more
than the multi-class classifier, and 10 polyps more thanphess SVM.

4 Conclusions

In this study we have presented a methodology to take adyamhthe subclass in-
formation available in the positive class while traininglassifier. The subclass infor-
mation which is neglected in conventional binary classfigrovides a better insight
of the dataset and when incorporated into the learning rmésfmaacts as an implicit
regularizer on the classifier coefficients. We believe thian important contribution
for applications where the number of positive candidatéimised and feature noise is
prevalent.
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