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Abstract

Many computer aided diagnosis(CAD) problems can be best modelled as a
multiple-instance learning (MIL) problem with unbalanceddata:i.e. , the training
data typically consists of a few positive bags, and a very large number of nega-
tive instances. Existing MIL algorithms are much too computationally expensive
for these datasets. We describe CH, a framework for learninga Convex Hull
representation of multiple instances that is significantlyfaster than existing MIL
algorithms. Our CH framework applies to any standard hyperplane-based learning
algorithm, and for some algorithms, is guaranteed to find theglobal optimal solu-
tion. Experimental studies on two different CAD applications further demonstrate
that the proposed algorithm significantly improves diagnostic accuracy when com-
pared to both MIL and traditional classifiers. Although not designed for standard
MIL problems (which have both positive and negative bags andrelatively bal-
anced datasets), comparisons against other MIL methods on benchmark problems
also indicate that the proposed method is competitive with the state-of-the-art.

1 Introduction

In manycomputer aided diagnosisapplications, the goal is to detect potentially malignant tumors
and lesions in medical images (CT scans, X-ray, MRI etc). In an almost universal paradigm for CAD
algorithms, this problem is addressed by a 3 stage system: identification of potentially unhealthy
regions of interest (ROI) by a candidate generator, computation of descriptive features for each
candidate, and labeling of each candidate (e.g.as normal or diseased) by a classifier. The training
dataset for the classifier is generated as follows: Expert radiologists examine a set of images to mark
out tumors. Then, candidate ROIs (with associated computedfeatures) are marked positive if they
are sufficiently close to a radiologist mark, and negative otherwise. Many CAD datasets have fewer
than 1-10% positive candidates. In the CAD literature, standard machine learning algorithms—such
assupport vector machines(SVM), andFisher’s linear discriminant—have been employed to train
the classifier. In Section 2 we show that CAD data is better modeled in the multiple instance learning
(MIL) framework, and subsequently present a novel convex-hull-based MIL algorithm. In Section 3
we provide experimental evidence from two different CAD problems to show that the proposed
algorithm is significantly faster than other MIL algorithms, and more accurate when compared to
other MIL algorithms and to traditional classifiers. Further—although this is not the main focus of
our paper—on traditional benchmarks for MIL, our algorithmis again shown to be competitive with
the current state-of-the-art. We conclude with a description of the relationship to previous work,
review of our contributions, and directions for future research in Section 4.

2 A Novel Convex Hull MIL algorithm

Almost all the standard classification methods explicitly assume that the training samples (i.e., candi-
dates) are drawn identically andindependentlyfrom an underlying—thoughunknown—distribution.



This property is clearly violated in a CAD dataset, due to spatial adjacency of the regions identi-
fied by a candidate generator, both the features and the classlabels of several adjacent candidates
(training instances) are highly correlated. First, because the candidate generators for CAD problems
are trying to identify potentially suspicious regions, they tend to produce many candidates that are
spatially close to each other; since these often refer to regions that are physically adjacent in an
image, the class labels for these candidates are also highlycorrelated. Second, because candidates
are labelled positive if they are within some pre-determined distance from a radiologist mark, mul-
tiple positive candidates could correspond with the same (positive) radiologist mark on the image.
Note that some of the positively labelled candidates may actually refer to healthy structures that just
happen to be near a mark, thereby introducing an asymmetric labeling error in the training data.

In MIL terminology from previous literature, a “bag” may contain many observation instances of
the same underlying entity, and every training bag is provided a class label (e.g.positive or nega-
tive). The objective in MIL is to learn a classifier that correctly classifies at least one instance from
every bag. This corresponds perfectly with the the appropriate measure of accuracy for evaluating
the classifier in a CAD system. In particular, even if one of the candidates that refers to the underly-
ing malignant structure (radiologist mark) is correctly highlighted to the radiologist, the malignant
structure is detected;i.e. , the correct classification of every candidate instance is not as important
as the ability to detectat least onecandidate that points to a malignant region. Furthermore, we
would like to classify every sample that is distant from radiologist mark as negative, this is easily
accomplished by considering each negative candidate as a bag. Therefore, it would appear that MIL
algorithms should outperform traditional classifiers on CAD datasets.

Unfortunately, in practice, most of the conventional MIL algorithms are computationally quite in-
efficient, and some of them have problems with local minima. In CAD we typically have several
thousand mostly negative candidates (instances), and a fewhundred positive bags; existing MIL
algorithms are simply unable to handle such large datasets due to time or memory requirements.

Notation: Let thei-th bag of classj be represented by the matrixBi
j ∈ ℜmi

j×n, i = 1, . . . , rj ,
j ∈ {±1}, n is the number of features. The rowl of Bi

j , denoted byBil
j represents the datapointl of

the bagi in classj with l = 1, . . . , mi
j . The binary bag-labels are specified by a vectord ∈ {±1}rj .

The vectore represent a vector with all its elements one.

2.1 Key idea: Relaxation of MIL via Convex-Hulls

The original MIL problem requires at least one of the samplesin a bag to be correctly labeled by the
classifier: this corresponds to a set of discrete constraints on the classifier. By contrast, we shall relax
this and require that at least one point in the convex hull of abag of samples (including, possibly one
of the original samples) has to be correctly classified. Figure 1 illustrates the idea using a graphical
toy example. This relaxation, (first introduced in [1]) eliminates the combinatorial nature of the MIL
problem, allowing algorithms that are more computationally efficient. As mentioned above, we will
consider that a bagBi

j is correctly classified if any point inside the convex hull ofthe bagBi
j (i.e.

any convex combination of points ofBi
j) is correctly classified. Letλ s.t. 0 ≤ λi

j , e
′λi

j = 1 be the
vector containing the coefficients of the convex combination that defines the representative point of
bagi in classj. Let r be the total number of representative points,i.e. r = r+ + r−. Let γ be the
total number of convex hull coefficients corresponding to the representative points in classj, i.e.
γj =

∑rj

i=1 mi
j , γ = γ+ + γ−. Then, we can formulate the MIL problem as,

min
(ξ,w,η,λ)∈Rr+n+1+γ

νE(ξ) + Φ(w, η) + Ψ(λ)

s.t. ξi = di − (λi
jB

i
jw − eη)

ξ ∈ Ω
e′λi

j = 1
0 ≤ λi

j

(1)

Whereξ = {ξ1, . . . , ξr} are slack terms (errors),η is the bias (offset from origin) term, andλ
is a vector containing all theλi

j for i = 1, . . . , rj , j ∈ {±}. E : ℜr ⇒ ℜ represents the loss
function,Φ : ℜ(n+1) ⇒ ℜ is a regularization function on the hyperplane coefficients[2] andΨ is
a regularization function on the convex combination coefficientsλi

j . Depending on the choice of
E, Φ, Ψ andΩ, (1) will lead to MIL versions of several well-known classification algorithms.
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Figure 1: A toy example illustrating the proposed approach.Positive and negative classes are repre-
sented by blue circles and red diamonds respectively. Cyan polyhedrons represent the convex hulls
for the three positives bags, the points chosen by our algorithm to represent each bag is shown by
blue stars. The magenta line represents the linear hyperplane obtained by our algorithm and the
black line represents the hyperplane for the SVM.

1. E(ξ) = ‖(ξ)+‖
2
2, Φ(w, η) = ‖(w, η)‖2

2 and Ω = ℜr+ , leads to MIL versions of the
Quadratic-Programming-SVM [3].

2. E(ξ) = ‖(ξ)‖
2
2, Φ(w, η) = ‖(w, η)‖

2
2 andΩ = ℜr, leads to MIL versions of the Least-

Squares-SVM.

3. ν = 1, E(ξ) = ‖ξ‖
2
2, Ω = {ξ : e′ξj = 0, j ∈ {±}} leads to MIL versions of the QP

formulation forFisher’s linear discriminant(FD) [4].

As an example, we derive a special case of the algorithm for the Fisher’s Discriminant, because this
choice (FD) brings us some algorithmic as well as computational advantages.

2.2 Convex-Hull MIL for Fisher’s Linear Discriminant

Settingν = 1, E(ξ) = ‖ξ‖
2
2, Ω = {ξ : e′ξj = 0, j ∈ {±}} in (1) we obtain the following MIL

version of the quadratic programming algorithm for Fisher’s Linear Discriminant [4].

min
(ξ,w,η,λ)∈Rr+n+1+γ

‖ξ‖
2
2 + Φ(w, η) + Ψ(λ)

s.t. ξi = di − (λi
jB

i
jw − eη)

e′ξj = 0
e′λi

j = 1
0 ≤ λi

j

(2)

The number of variables to be optimized in (2) isr+n+1+γ: this is computationally infeasible when
the number of bags is large (r > 104). To alleviate the situation, we (a) replaceξi by di− (λi

jB
i
jw−

eη) in the objective function, and (b) replace the equality constraintse′ξj = 0 byw′ (µ+ − µ−) = 2.
This substitution eliminates the variablesξ, η from the problem and also the correspondingr equality
constraints in (2). Effectively, this results in the MIL version of the traditional FD algorithm. As
discussed later in the paper, in addition to the obvious computational gains, this manipulation results
in some algorithmic advantages as well (For more information on the equivalence between the single
instance learning versions of (2) and (3) see [4]). Thus, theoptimization problem reduces to:

min
(w, λ)∈Rn+γ

wT SW w + Φ(w) + Ψ(λ)

s.t. wT (µ+ − µ−) = b

e′λi
j = 1
0 ≤ λi

j

(3)

whereSW =
∑

j∈{±}
1
rj

(Xj − µje
′) (Xj − µje

′)
T is the within class scatter matrix,µj = 1

rj
Xje

is the mean for classj. Xj ∈ ℜrj×n is a matrix containing therj representative points onn-
dimensional space such that the row ofXj denoted bybi

j = Bi
jλ

i
j is the representative point of bag

i in classj wherei = {1, . . . , rj} andj ∈ {±}.



2.3 Alternate Optimization for Convex-Hull MIL Fisher’s Discriminant

The proposed mathematical program (3) can be solved used an efficient Alternate Optimization
(AO) algorithm [5]. In the AO setting the main optimization problem is subdivided in two smaller
or easier subproblems that depend on disjoints subsets of the original variables. WhenΦ(w) and
Ψ(λ) are strongly convex functions, both the original objectivefunction and the two subproblems
(for optimizing λ andw) in (3) are strongly convex, meaning that the algorithm converges to a
global minimizer [6]. For computational efficiency, in the remainder of the paper we will use the
regularizersΦ(w) = ǫ ‖w‖

2
2 andΨ(λ) = ǫ ‖λ‖

2
2, whereǫ is a positive regularization parameter. An

efficient AO algorithm for solving the mathematical program(3) is described below.

Sub Problem 1: Fix λ = λ∗: When we fixλ = λ∗, the problem becomes,

min
w∈Rn

wT SW w + Φ(w)

s.t. wT (µ+ − µ−) = b
(4)

which is the formulation for the Fisher’s Discriminant. Since SW is the sum of two covariance
matrices, it is guaranteed to be at least positive semidefinite and thus the problem in (4) is convex.
For datasets withr >> n, i.e. the number of bags is much greater than the number of dimen-
sionality,SW is positive definite and thus the problem in (4) is strictly convex. Unlike (1) where
the number of constraints is proportional to the number of bags, eliminatingξ andη leaves us with
only one constraint. This changes the order of complexity fromO(nr2) to O(n2r) and brings some
computational advantages when dealing with datasets withr >> n.

Sub Problem 2: Fix w = w∗: When we fixw = w∗, the problem becomes

min
λ∈Rγ

λT S̄W λ + Ψ(λ)

s.t. λT (µ̄+ − µ̄−) = b

e′λi
j = 1
0 ≤ λi

j

(5)

whereS̄W andµ̄ are defined as in (4) withXj replaced byX̄j whereX̄j ∈ ℜrj×γ is now a matrix
containing therj new points on theγ-dimensional space such that the row ofX̄j denoted bȳbi

j is a

vector with its nonzero elements set toBi
jw

∗. For the positive class elements
∑i−1

k=1 mk
+ +1 through

∑i

k=1 mk
+ of b̄i

j are nonzero, for the negative class nonzero elements are located at
∑r+

k=1 mk
+ +

∑i−1
k=1 mk

− + 1 through
∑r+

k=1 mk
+ +

∑i
k=1 mk

−. Note thatS̄W is also a sum of two covariance
matrices, it is positive semidefinite and thus the problem in(5) is convex. Unlike sub problem 1
the positive definiteness of̄SW does not depend on the data, since it always true thatr ≤ γ. The
complexity of (5) isO(nγ2).

As it was mentioned before, in CAD applications, a bag is defined as a set of candidates that are
spatially close to the radiologist marked ground-truth. Any candidate that is spatially far from this lo-
cation is considered negative in the training data, therefore the concept of bag for negative examples
does not make any practical sense in this scenario. Moreover, since ground truth is only available on
the training set, there is no concept of a bag on the test set for both positive and negative examples.
The learned classifier labels (ie classifies) individual instances - the bag information for positive
examples is only used to help learn a better classifier from the training data. Hence, the problem in
(5) can be simplified to account for these practical observations resulting in an optimization problem
with O(nγ2

+) complexity. The entire algorithm is summarized below for clarity.

2.4 CH-FD: An Algorithm for Learning Convex Hull Representation of Multiple Instances

(0) Choose as initial guess forλi0 = e
mi , ∀i = 1, . . . , r, set counter c=0.

(i) For fixedλic, ∀i = 1, . . . , r solve forwc in (4).

(ii) Fixing w = wc solve forλic, ∀i = 1, . . . , r in (5).

(iii) Stop if
∥

∥λ1(c+1) − λ1c, . . . , λr(c+1) − λrc
∥

∥

2
is less than some desired tolerance. Else re-

placeλic by λi(c+1) andc by c + 1 and go to(i).



The nonlinear version of the proposed algorithm can be obtained by first transforming the original
datapoints to a kernel space spanned by all datapoints through a kernel operator, i.e.K : ℜn ⇒ ℜγ̄

and then by optimizing (4) and (5) in this new space. Ideallyγ̄ is set toγ. However whenγ is
large, for computational reasons we can use the technique presented in [7] to limit the number of
datapoints spanning this new space. This corresponds to constrainingw to lie in a subspace of the
kernel space.

3 Experimental Results and Discussion

For the experiments in section 3.1 , we compare four techniques: naive Fisher’s Discriminnat (FD),
CH-FD, EM-DD [8], IDAPR [9]. For IDAPR and EM-DD we used the Matlab implementation of
these algorithms also used in [10]. In both experiments we used the linear version of our algorithm.
Hence the only parameter that requires tuning isν which is tuned to optimize the 10-fold Patient
Cross Validation on the training data,. All algorithms are trained on the training data and then
tested on the sequestered test data. The resulting ReceiverOperating Characteristics (ROC) plots
are obtained by trying different values of the parameters(τ, ǫ) for IDAPR, and by thresholding the
corresponding output for each of the EM-DD, FD and CH-FD.

3.1 Two CAD Datasets: Pulmonary Embolism & Colon Cancer Detection

Next, we present the problems that mainly motivated this work. Pulmonary embolism (PE), a po-
tentially life-threatening condition, is a result of underlying venous thromboembolic disease. An
early and accurate diagnosis is the key to survival. Computed tomography angiography (CTA) has
emerged as an accurate diagnostic tool for PE, and However, there are hundreds of CT slices in each
CTA study and manual reading is laborious, time consuming and complicated by various PE look-
alikes. Several CAD systems are being developed to assist radiologists to detect and characterize
emboli [11], [12]. At four different hospitals (two North American sites and two European sites),
we collected 72 cases with 242 PE bags comprised of 1069 positive candidates marked by expert
chest radiologists. The cases were randomly divided into two sets: training (48 cases with 173 PE
bags and 3655 candidates) and testing (24 cases with 69 PE bags and 1857 candidates). The test
group was sequestered and only used to evaluate the performance of the final system. A combined
total of 70 features are extracted for each candidate.

Colorectal cancer is the third most common cancer in both menand women. It is estimated that in
2004, nearly 147,000 cases of colon and rectal cancer will bediagnosed in the US, and more than
56,730 people would die from colon cancer [13]. CT colonography is emerging as a new procedure
to help in early detection of colon polyps. However, readingthrough a large CT dataset, which
typically consists of two CT series of the patient in prone and supine positions, each with several
hundred slices, is time-consuming. Colon CAD [14] can play acritical role to help the radiologist
avoid the missing of colon polyps. Most polyps, therefore, are represented by two candidates; one
obtained from the prone view and the other one from the supineview. Moreover, for large polyps,
a typical candidate generation algorithm generates several candidates across the polyp surface. The
database of high-resolution CT images used in this study were obtained from seven different sites
across US, Europe and Asia. The 188 patients were randomly partitioned into two groups, training
comprised of: 65 cases with 127 volumes, 50 polyps bags (179 positive candidates) were identified
in this set with a total number of 6569 negative candidates and testing comprised of 123 patients
with 237 volumes, a total of 103 polyp bags (232 positive candidates) were identified in this set
with a total number of 12752 negative candidates. The test group was sequestered and only used to
evaluate the performance of the final system. A total of 75 features are extracted for each candidate.

The resulting Receiver Operating Characteristics (ROC) curves are displayed in Figure 2. Although
for the PE dataset Figure 2 (left) IDAPR crosses over CH-FD and is more sensitive than CH-FD for
extremely high number of false positives, Table 1 show that CH-FD is more accurate than all other
methods over the entire space (AUC). Note that CAD performance is only valid in the clinically
acceptable range,< 10fp/patient for PE,< 5fp/volume for Colon (generally there are 2 volumes
per patient). In the region of clinical interest (AUC-RCI),Table 1 shows that CH-FD significantly
outperforms all other methods.



Table 1: Comparison of 3 MIL and one traditional algorithms:Computation time, AUC, and nor-
malized AUC in the region of clinical interest for PE and Colon test data

Algorithm Time Time AUC AUC AUC-RCI AUC-RCI
PE Colon PE Colon PE Colon

IAPR 184.6 689.0 0.83 0.70 0.34 0.26
EMDD 903.5 16614.0 0.67 0.80 0.17 0.42
CH-FD 97.2 7.9 0.86 0.90 0.50 0.69
FD 0.19 0.4 0.74 0.88 0.44 0.57

Execution times for all the methods tested are shown in Table1. As expected, the computational
cost is the cheapest for the traditional non-MIL based FD. Among MIL algorithms, for the PE data,
CH-FD was roughly 2-times and 9-times as fast than IAPR and EMDD respectively, and for the
much larger colon dataset was roughly 85-times and 2000-times faster, respectively(see Table 1).
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Figure 2: ROC curves obtained for (left) PE Testing data and (right) COLON testing Data

3.2 Experiments on Benchmark Datasets

We compare CH-FD with several state-of-the-art MIL algorithms on 5 benchmark MIL datasets:
2 Musk datasets [9] and 3 Image Annotation datasets [15]. Each of these datasets contain both
positive and negative bags. CH-FD (and MICA) use just the positive bag information and ignore the
negative bag information, in effect, treating each negative instance as a separate bag. All the other
MIL algorithms use both the positive and negative bag information.

The Musk datasets contains feature vectors describing the surfaces of low-energy shapes from
molecules. Each feature vector has 166 features. The goal isto differentiate molecules that smell
”musky” from the rest of the molecules. Approximately half of the molecules are known to smell
musky. There are two musk datasets. MUSK1 contains 92 molecules with a total of 476 instances.
MUSK2 contains 102 molecules with a total of 6598 instances.72 of the molecules are shared
between two datasets but MUSK2 dataset contain more instances for the shared molecules.

The Image Annotation data is composed of three different categories, namelyTiger, Elephant, Fox.
Each dataset has 100 positive bags and 100 negative bags.

We setΦ(w) = ν |λ|. For the musk datasets our results are based on a Radial BasisFunction
(RBF) kernelK(xi, xj) = exp(−σ ‖x − y‖

2
). The kernel space is assumed to be spanned by all

the datapoints in MUSK1 dataset and a subset of the datapoints in MUSK2 dataset (one tenth of
the original training set is randomly selected for this purpose). The width of the kernel function
andν are tuned over a discrete set of five values each to optimize the 10-fold Cross Validation
performance. For the Image Annotation data we use the linearversion of our algorithm. We follow
the benchmark experiment design and report average accuracy of 10 runs of 10-fold Cross Validation



Table 2: Average accuracy on Benchmark Datasets. The numberin parenthesis represents the rela-
tive rank of each of the algorithms (performance-wise) in the corresponding dataset

Datasets MUSK1 MUSK2 Elephant Tiger Fox Average Rank
CH-FD 88.8 (2) 85.7 (2) 82.4 (2) 82.2 (2) 60.4 (2) 2
IAPR 87.2 (5) 83.6 (6) - (-) - (-) - (-) 5.5
DD 88.0 (3) 84.0 (5) - (-) - (-) - (-) 4
EMDD 84.8 (6) 84.9 (3) 78.3 (5) 72.1 (5) 56.1 (5) 4.8
mi-SVM 87.4 (4) 83.6 (6) 82.2 (3) 78.4 (4) 58.2 (3) 4
MI-SVM 77.9 (8) 84.3 (4) 81.4 (4) 84.0 (1) 57.8 (4) 4.2
MI-NN 88.9 (1) 82.5 (7) - (-) - (-) - (-) 4
MICA 84.4 (7) 90.5 (1) 82.5 (1) 82.0(3) 62.0(1) 3.25

in Table 2. Results for other MIL algorithms from the literature are also reported in the same
table. Iterated Discriminant APR (IAPR), Diverse Density (DD) [16], Expectation-Maximization
Diverse Density (EM-DD) [8], Maximum Bag Margin Formulation of SVM (mi-SVM, MI-SVM)
[15], Multi Instance Neural Networks (MI-NN) [17] are the techniques considered in this experiment
for comparison purposes. Results for mi-SVM, MI-SVM and EM-DD are taken from [15].

Table 2 shows that CH-FD is comparable to other techniques onall datasets, even though it ignores
the negative bag information. Furthermore, CH-FD appears to be the most stable of the algorithms,
at least on these 5 datasets, achieving the most consistent performance as indicated by the ”Aver-
age Rank” column. We believe that this stable behavior of ouralgorithm is due in part because it
converges to global solutions avoiding the local minima problem.

4 Discussions

Relationship to previous literature on MIL: The Multiple Instance Learning problem described in
this paper have been studied widely in the literature [9, 15,16, 17, 8]. The convex-hull idea presented
in this paper to represent each bag is similar in nature to theone presented in [1]. However in contrast
with [1] and many other approaches in the literature [9, 15, 17] our formulation leads to a strongly
convex minimization problem that converges to a unique minimizer. Since our algorithm considers
each negative instance as an individual bag, it is complexity is square proportional to the number
of positive instances only which makes it scalable to large datasets with large number of negative
examples.

Principal contributions of the paper: This paper makes three principal contributions. First, we
have identified the need for multiple-instance learning in CAD applications and described the spa-
tial proximity based inter-sample correlations in the label noise for classifier design in this setting.
Second, building on an intuitive convex-relaxation of the original MIL problem, this paper presents
a new approach to multiple-instance learning. In particular, we dramatically improve the run time
by replacing a large set of discrete constraints (at least one instance in each bag has to be correctly
classified) with infinite but continuous sets of constraints(at least one convex combination of the
original instances in every bag has to be correctly classified). Further, the proposed idea for achiev-
ing convexity in the objective function of the training algorithm alleviates the problems of local
maxima that occurs in some of the previous MIL algorithms, and often improves the classification
accuracy on many practical datasets. Third, we present a practical implementation of this idea in
the form of a simple but efficient alternate-optimization algorithm for Convex Hull based Fisher’s
Discriminant. In our benchmark experiments, the resultingalgorithm achieves accuracy that is com-
parable to the current state of the art, but at a significantlylower run time (typically several orders
of magnitude speed ups were observed).

Related work: Note that as the distance between candidate ROI increases, the correlations between
their features and labels decreases. In another study, we model the spatial-correlation among neigh-
boring samples. Thus we jointly classify entire batches of correlated samples both during training
and testing. Instead of classifying each sample independently, we use this spatial information along
with the features of each candidate to simultaneously classify all the candidate ROIs for a single
patient/volume in a joint operation [18].
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[16] Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. In Michael I. Jor-
dan, Michael J. Kearns, and Sara A. Solla, editors,Advances in Neural Information Processing Systems,
volume 10. The MIT Press, 1998.

[17] J. Ramon and L. De Raedt. Multi instance neural networks, 2000.

[18] V. Vural, G. Fung, B. Krishnapuram, J. G. Dy, and R. B. Rao. Batch classification with applications in
computer aided diagnosis. InProceedings of the ECML’06, Berlin, Germany, 2006.


