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Abstract

Many computer aided diagnosi€CAD) problems can be best modelled as a
multiple-instance learning (MIL) problem with unbalanaata:i.e., the training
data typically consists of a few positive bags, and a vergdarumber of nega-
tive instances. Existing MIL algorithms are much too conapionally expensive
for these datasets. We describe CH, a framework for learai@pnvex Hull
representation of multiple instances that is significafabter than existing MIL
algorithms. Our CH framework applies to any standard hylpegbased learning
algorithm, and for some algorithms, is guaranteed to findjtbbal optimal solu-
tion. Experimental studies on two different CAD applicasdurther demonstrate
that the proposed algorithm significantly improves diadgic@ccuracy when com-
pared to both MIL and traditional classifiers. Although nesidjned for standard
MIL problems (which have both positive and negative bags ratatively bal-
anced datasets), comparisons against other MIL methodsrarhimark problems
also indicate that the proposed method is competitive Wigtstate-of-the-art.

1 Introduction

In manycomputer aided diagnosegpplications, the goal is to detect potentially malignamors
and lesions in medical images (CT scans, X-ray, MRI etc)nlalenost universal paradigm for CAD
algorithms, this problem is addressed by a 3 stage systesntifi¢ation of potentially unhealthy
regions of interest (ROI) by a candidate generator, contipmtaf descriptive features for each
candidate, and labeling of each candid&e(as normal or diseased) by a classifier. The training
dataset for the classifier is generated as follows: Expdiblagists examine a set of images to mark
out tumors. Then, candidate ROIs (with associated comgdetedres) are marked positive if they
are sufficiently close to a radiologist mark, and negatieenvise. Many CAD datasets have fewer
than 1-10% positive candidates. In the CAD literature,dtad machine learning algorithms—such
assupport vector machind$VM), andFisher’s linear discriminant—have been employed to train
the classifier. In Section 2 we show that CAD data is bettereteatin the multiple instance learning
(MIL) framework, and subsequently present a novel convalidbased MIL algorithm. In Section 3
we provide experimental evidence from two different CAD lgeons to show that the proposed
algorithm is significantly faster than other MIL algorithnand more accurate when compared to
other MIL algorithms and to traditional classifiers. Furthalthough this is not the main focus of
our paper—on traditional benchmarks for MIL, our algoritlagain shown to be competitive with
the current state-of-the-art. We conclude with a desaniptif the relationship to previous work,
review of our contributions, and directions for future & in Section 4.

2 A Novel Convex Hull MIL algorithm

Almost all the standard classification methods explicilguame that the training samples (i.e., candi-
dates) are drawn identically aimtlependentlfrom an underlying—though unknown—distribution.



This property is clearly violated in a CAD dataset, due totighadjacency of the regions identi-
fied by a candidate generator, both the features and thelalasis of several adjacent candidates
(training instances) are highly correlated. First, beedhe candidate generators for CAD problems
are trying to identify potentially suspicious regions,thiend to produce many candidates that are
spatially close to each other; since these often refer tmmegthat are physically adjacent in an
image, the class labels for these candidates are also highiglated. Second, because candidates
are labelled positive if they are within some pre-determidistance from a radiologist mark, mul-
tiple positive candidates could correspond with the samsitjpe) radiologist mark on the image.
Note that some of the positively labelled candidates mayadlgtrefer to healthy structures that just
happen to be near a mark, thereby introducing an asymmakrétihg error in the training data.

In MIL terminology from previous literature, a “bag” may dam many observation instances of
the same underlying entity, and every training bag is predid class labele(g.positive or nega-
tive). The objective in MIL is to learn a classifier that cantig classifies at least one instance from
every bag. This corresponds perfectly with the the appat@rneasure of accuracy for evaluating
the classifier in a CAD system. In particular, even if one eftandidates that refers to the underly-
ing malignant structure (radiologist mark) is correctlgliighted to the radiologist, the malignant
structure is detected.e. , the correct classification of every candidate instanceisas important
as the ability to detecat least onecandidate that points to a malignant region. Furthermoee, w
would like to classify every sample that is distant from cdoljist mark as negative, this is easily
accomplished by considering each negative candidate a3 & harefore, it would appear that MIL
algorithms should outperform traditional classifiers oniCdatasets.

Unfortunately, in practice, most of the conventional Mllgatithms are computationally quite in-
efficient, and some of them have problems with local minimaCAD we typically have several
thousand mostly negative candidates (instances), and &diedred positive bags; existing MIL
algorithms are simply unable to handle such large datasetsodtime or memory requirements.

Notation: Let thei-th bag of clasg be represented by the mater- e R G =1,... T
j € {£1}, nis the number of features. The réwf B; denoted b)B;'-l represents the datapoinf
the bagi in classj with [ = 1, ..., mj. The binary bag-labels are specified by a vedter {+1}"/.
The vectore represent a vector with all its elements one.

2.1 Keyidea: Relaxation of MIL via Convex-Hulls

The original MIL problem requires at least one of the samplesbag to be correctly labeled by the
classifier: this corresponds to a set of discrete consgramthe classifier. By contrast, we shall relax
this and require that at least one point in the convex hulllidgof samples (including, possibly one
of the original samples) has to be correctly classified. fduillustrates the idea using a graphical
toy example. This relaxation, (first introduced in [1]) elivates the combinatorial nature of the MIL
problem, allowing algorithms that are more computatignefficient. As mentioned above, we will
consider that a ba@;'- is correctly classified if any point inside the convex hulltioé bagB;'- (i.e.

any convex combination of points @f}) is correctly classified. Lek s.t. 0 < A, e’A} = 1 be the
vector containing the coefficients of the convex combinatiat defines the representative point of
bagi in classj. Letr be the total number of representative points,r = r + r_. Let~ be the
total number of convex hull coefficients corresponding te tepresentative points in clagsi.e.
vi=300 m; v =4 + v—. Then, we can formulate the MIL problem as,

i E d (A
ot Y (E} + .(w,n).+l (A)
s.t. & = d'— (\N.Blw —en)
c e o 7 @
e’/\é- = 1
0 < X
Where{ = {£1,...,&,} are slack terms (errors); is the bias (offset from origin) term, ankl
is a vector containing all the fori = 1,...,7;, j € {£}. E : R" = R represents the loss

function,® : R(**1) = R is a regularization function on the hyperplane coeffici¢Blsand ¥ is
a regularization function on the convex combination coffits \.. Depending on the choice of
E, o, ¥ and(, (1) will lead to MIL versions of several well-known classiiion algorithms.



Figure 1: A toy example illustrating the proposed appro&dsitive and negative classes are repre-
sented by blue circles and red diamonds respectively. Cghedrons represent the convex hulls
for the three positives bags, the points chosen by our algorio represent each bag is shown by
blue stars. The magenta line represents the linear hyperplatained by our algorithm and the
black line represents the hyperplane for the SVM.

1. EE) = (6)4]3, @(w,n) = |(w,n)]5 andQ = %"+, leads to MIL versions of the
Quadratic-Programming-SVM [3].

2. E(¢) = |\(§)||§, O(w,n) = |\(w,n)||§ andQ2 = R", leads to MIL versions of the Least-
Squares-SVM.

.v=1E@¢ = ||§|\§, N ={:¢€¢ =0, j e {£}} leads to MIL versions of the QP
formulation forFisher’s linear discriminan{FD) [4].

As an example, we derive a special case of the algorithm &oFtbher’s Discriminant, because this
choice (FD) brings us some algorithmic as well as computatiadvantages.

2.2 Convex-Hull MIL for Fisher’sLinear Discriminant

Settingr = 1, E(§) = |\§||§, Q={:€e¢ =0, j € {£}}in (1) we obtain the following MIL
version of the quadratic programming algorithm for Fishé&ihear Discriminant [4].

I+ @(w,m)+ ¥

min
(§w,n,A)€RrTntity

s.t. & = di— (A;B;w —en)
Ny = 1
0 < X

The number of variables to be optimized in (2)#sn+1++: this is computationally infeasible when
the number of bags is large ¢ 10*). To alleviate the situation, we (a) replagedy d' — (X Blw —

en) in the objective function, and (b) replace the equality t@istse’s; = 0 by w’ (4 — p—) = 2.
This substitution eliminates the variableg from the problem and also the correspondiregjuality
constraints in (2). Effectively, this results in the MIL g&n of the traditional FD algorithm. As
discussed later in the paper, in addition to the obvious egatnal gains, this manipulation results
in some algorithmic advantages as well (For more infornmagiothe equivalence between the single
instance learning versions of (2) and (3) see [4]). Thuspfitgnization problem reduces to:

., WTSv s w0 90
s.t. wT(;u—u,l) = b A3)
N = 1
0 < X

1 T . L . 1
whereSy =374y > (X5 — pje’) (X; — pje’)” is the within class scatter matrip, = —Xje
is the mean for clasg. X; € R™7*" is a matrix containing the; representative points om-
dl_menS|onaI space such that the row’of denoted by; = B} is the representative point of bag
iinclassj where: = {1,...,r;} andj € {£}.



2.3 Alternate Optimization for Convex-Hull MIL Fisher’s Discriminant

The proposed mathematical program (3) can be solved usefficierg Alternate Optimization
(AO) algorithm [5]. In the AO setting the main optimizationgblem is subdivided in two smaller
or easier subproblems that depend on disjoints subset afrtinal variables. Whem®(w) and

¥ (\) are strongly convex functions, both the original objecfivection and the two subproblems
(for optimizing A andw) in (3) are strongly convex, meaning that the algorithm ewges to a
global minimizer [6]. For computational efficiency, in thermainder of the paper we will use the
regularizersb(w) = € Hng and¥(\) =€ ||)\|\§, wheree is a positive regularization parameter. An
efficient AO algorithm for solving the mathematical progrésis described below.

Sub Problem 1: Fix A = A*: When we fix\ = \*, the problem becomes,

min  wT Syw + ®(w
we R v (w) (4)

st wl (up —p_) =0

which is the formulation for the Fisher's Discriminant. &nSy, is the sum of two covariance
matrices, it is guaranteed to be at least positive semidefamd thus the problem in (4) is convex.
For datasets withr >> n, i.e. the number of bags is much greater than the number oérdim
sionality, Sy is positive definite and thus the problem in (4) is stricthneex. Unlike (1) where
the number of constraints is proportional to the number gibaliminatings andn leaves us with
only one constraint. This changes the order of complexagf© (nr?) to O(n?r) and brings some
computational advantages when dealing with datasetsmwitk n.

Sub Problem 2: Fix w = w*: When we fixw = w*, the problem becomes

min MSwA  + TN
AERY
st. AT (‘L_LJr — ﬂ,) = b (5)
e’/\;- = 1
0 < M\

J

whereSyy andf are defined as in (4) witl; replaced byX; whereX; € %77 is now a matrix
containing the-; new points on the-dimensional space such that the row’of denoted b)b;'- isa

vector with its nonzero elements setR¢w*. For the positive class eleme .. m” +1through
> 1 m% of bl are nonzero, for the negative class nonzero elements atetbaty " m* +

i mE + 1 throughY 1t mk + 371, m*. Note thatSy is also a sum of two covariance
matrices, it is positive semidefinite and thus the probler(binis convex. Unlike sub problem 1
the positive definiteness dfy; does not depend on the data, since it always truerthaty. The

complexity of (5) isO(nv?).

As it was mentioned before, in CAD applications, a bag is @efias a set of candidates that are
spatially close to the radiologist marked ground-truthy &andidate that is spatially far from this lo-
cation is considered negative in the training data, theedfte concept of bag for negative examples
does not make any practical sense in this scenario. Morggimee ground truth is only available on
the training set, there is no concept of a bag on the test sbbtb positive and negative examples.
The learned classifier labels (ie classifies) individuatanses - the bag information for positive
examples is only used to help learn a better classifier frantreining data. Hence, the problem in
(5) can be simplified to account for these practical obsematesulting in an optimization problem
with O(n~1) complexity. The entire algorithm is summarized below farity.

2.4 CH-FD: An Algorithm for Learning Convex Hull Representation of Multiple I nstances

(0) Choose as initial guess faf’ = -, Vi = 1,...,r, set counter ¢=0.

(i) Forfixed\i, Vi =1,...,r solve forwe in (4).
(i) Fixing w = w® solve forA®, Vi =1,...,7in (5).
(iii) Stop if ||ALFD) — Ate . Ar(etD) — Ar¢||is less than some desired tolerance. Else re-
place)® by \¥(¢*1) andc by ¢ 4+ 1 and go to(7).



The nonlinear version of the proposed algorithm can be pbthby first transforming the original
datapoints to a kernel space spanned by all datapointsghrmblernel operator, i.€€ : R = 7
and then by optimizing (4) and (5) in this new space. ldealig set toy. However wheny is
large, for computational reasons we can use the technigsepted in [7] to limit the number of
datapoints spanning this new space. This corresponds &iragringw to lie in a subspace of the
kernel space.

3 Experimental Resultsand Discussion

For the experiments in section 3.1, we compare four tectesiguaive Fisher’s Discriminnat (FD),
CH-FD, EM-DD [8], IDAPR [9]. For IDAPR and EM-DD we used the Mab implementation of
these algorithms also used in [10]. In both experiments wee tise linear version of our algorithm.
Hence the only parameter that requires tuning ishich is tuned to optimize the 10-fold Patient
Cross Validation on the training data,. All algorithms arairted on the training data and then
tested on the sequestered test data. The resulting Re€perating Characteristics (ROC) plots
are obtained by trying different values of the parameters) for IDAPR, and by thresholding the
corresponding output for each of the EM-DD, FD and CH-FD.

3.1 Two CAD Datasets. Pulmonary Embolism & Colon Cancer Detection

Next, we present the problems that mainly motivated thiskw&ulmonary embolism (PE), a po-

tentially life-threatening condition, is a result of uniy@mg venous thromboembolic disease. An
early and accurate diagnosis is the key to survival. Comtbtaienography angiography (CTA) has

emerged as an accurate diagnostic tool for PE, and Howéeee are hundreds of CT slices in each
CTA study and manual reading is laborious, time consumintjcamplicated by various PE look-

alikes. Several CAD systems are being developed to assiistiogists to detect and characterize
emboli [11], [12]. At four different hospitals (two North Aenican sites and two European sites),
we collected 72 cases with 242 PE bags comprised of 1069ymsidndidates marked by expert
chest radiologists. The cases were randomly divided intod®is: training (48 cases with 173 PE
bags and 3655 candidates) and testing (24 cases with 69 REahddl857 candidates). The test
group was sequestered and only used to evaluate the perfoernéthe final system. A combined

total of 70 features are extracted for each candidate.

Colorectal cancer is the third most common cancer in both amelhwomen. It is estimated that in
2004, nearly 147,000 cases of colon and rectal cancer wilidgnosed in the US, and more than
56,730 people would die from colon cancer [13]. CT colonpfseis emerging as a new procedure
to help in early detection of colon polyps. However, readimgpugh a large CT dataset, which
typically consists of two CT series of the patient in prond anpine positions, each with several
hundred slices, is time-consuming. Colon CAD [14] can playitical role to help the radiologist
avoid the missing of colon polyps. Most polyps, therefore,r@presented by two candidates; one
obtained from the prone view and the other one from the sugawe Moreover, for large polyps,

a typical candidate generation algorithm generates sesamndidates across the polyp surface. The
database of high-resolution CT images used in this studg wbtained from seven different sites
across US, Europe and Asia. The 188 patients were randomiltigraed into two groups, training
comprised of: 65 cases with 127 volumes, 50 polyps bags (&3®iywe candidates) were identified
in this set with a total number of 6569 negative candidatektasting comprised of 123 patients
with 237 volumes, a total of 103 polyp bags (232 positive ddate:s) were identified in this set
with a total number of 12752 negative candidates. The testmwas sequestered and only used to
evaluate the performance of the final system. A total of 7&ufes are extracted for each candidate.

The resulting Receiver Operating Characteristics (RO®)eziare displayed in Figure 2. Although
for the PE dataset Figure 2 (left) IDAPR crosses over CH-Fiamore sensitive than CH-FD for
extremely high number of false positives, Table 1 show th&tRD is more accurate than all other
methods over the entire space (AUC). Note that CAD perfoaas only valid in the clinically
acceptable range; 10fp/patient for PE < 5fp/volume for Colon (generally there are 2 volumes
per patient). In the region of clinical interest (AUC-RCTgble 1 shows that CH-FD significantly
outperforms all other methods.



Table 1: Comparison of 3 MIL and one traditional algorithr@mputation time, AUC, and nor-
malized AUC in the region of clinical interest for PE and Qotest data

Algorithm ~ Time Time AUC AUC AUC-RCI AUC-RCI

PE Colon PE Colon PE Colon
IAPR 184.6 689.0 0.83 0.70 0.34 0.26
EMDD 903.5 16614.0 0.67 0.80 0.17 0.42
CH-FD 97.2 7.9 0.86 0.90 0.50 0.69
FD 0.19 0.4 0.74 0.88 0.44 0.57

Execution times for all the methods tested are shown in TablAs expected, the computational
cost is the cheapest for the traditional non-MIL based FDoAgWMIL algorithms, for the PE data,
CH-FD was roughly 2-times and 9-times as fast than IAPR andBEMespectively, and for the
much larger colon dataset was roughly 85-times and 2008stiaster, respectively(see Table 1).
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Figure 2: ROC curves obtained fdeft) PE Testing data andight) COLON testing Data
3.2 Experimentson Benchmark Datasets

We compare CH-FD with several state-of-the-art MIL aldaris on 5 benchmark MIL datasets:
2 Musk datasets [9] and 3 Image Annotation datasets [15].h BA¢hese datasets contain both
positive and negative bags. CH-FD (and MICA) use just thétipesag information and ignore the
negative bag information, in effect, treating each negatigtance as a separate bag. All the other
MIL algorithms use both the positive and negative bag infation.

The Musk datasets contains feature vectors describing utfaces of low-energy shapes from
molecules. Each feature vector has 166 features. The gtuabifferentiate molecules that smell
"musky” from the rest of the molecules. Approximately halftbe molecules are known to smell
musky. There are two musk datasets. MUSK1 contains 92 mieleuith a total of 476 instances.
MUSK?2 contains 102 molecules with a total of 6598 instancé®.of the molecules are shared
between two datasets but MUSK2 dataset contain more iretdocthe shared molecules.

The Image Annotation data is composed of three differemgmates, nameliiger, Elephant Fox.
Each dataset has 100 positive bags and 100 negative bags.

We set®(w) = v|\|. For the musk datasets our results are based on a Radial Basition
(RBF) kernelK (z;, z;) = exp(—o ||z — y||*). The kernel space is assumed to be spanned by all
the datapoints in MUSK1 dataset and a subset of the datapioifMlUSK2 dataset (one tenth of
the original training set is randomly selected for this msg). The width of the kernel function
andv are tuned over a discrete set of five values each to optimae @fold Cross Validation
performance. For the Image Annotation data we use the livexaion of our algorithm. We follow
the benchmark experiment design and report average agafra@ runs of 10-fold Cross Validation



Table 2: Average accuracy on Benchmark Datasets. The numparenthesis represents the rela-
tive rank of each of the algorithms (performance-wise) m¢brresponding dataset

Datasets MUSK1 MUSK2 Elephant Tiger Fox Average Rank

CHFD 888(2) 8572 824(2) 822(2) 60402 2
IAPR 87.2(5) 836(6)  -() -(9) -(-) 5.5
DD 88.0(3) 840(5)  -() -(9) -(-) 4
EMDD  84.8(6) 84.9(3) 783() 721(5) 56.1(5) 4.8
mi-SVM  87.4(4) 83.6(6) 82.2(3) 78.4(4) 58.2(3) 4
MI-SVM 77.9(8) 84.3(4) 81.4(4) 84.0(l) 57.8(4) 4.2
MI-NN  88.9(1) 825(7)  -() -() () 4
MICA 84.4(7) 90.5(1) 825(1) 820(@3) 62.0(1) 3.25

in Table 2. Results for other MIL algorithms from the litareg¢ are also reported in the same
table. Iterated Discriminant APR (IAPR), Diverse DensiBD() [16], Expectation-Maximization
Diverse Density (EM-DD) [8], Maximum Bag Margin Formulati@f SVM (mi-SVM, MI-SVM)
[15], Multi Instance Neural Networks (MI-NN) [17] are thecteniques considered in this experiment
for comparison purposes. Results for mi-SVM, MI-SVM and END-are taken from [15].

Table 2 shows that CH-FD is comparable to other techniqued! alatasets, even though it ignores
the negative bag information. Furthermore, CH-FD apperbgtthe most stable of the algorithms,
at least on these 5 datasets, achieving the most consigtdotmpance as indicated by the "Aver-
age Rank” column. We believe that this stable behavior ofadgorithm is due in part because it
converges to global solutions avoiding the local minimaoem.

4 Discussions

Relationship to previousliteratureon MIL: The Multiple Instance Learning problem described in
this paper have been studied widely in the literature [918517, 8]. The convex-hullidea presented
in this paper to represent each bag is similar in nature tortlegoresented in [1]. However in contrast
with [1] and many other approaches in the literature [9, I,dur formulation leads to a strongly
convex minimization problem that converges to a unique mirér. Since our algorithm considers
each negative instance as an individual bag, it is compléxisquare proportional to the number
of positive instances only which makes it scalable to largiskts with large number of negative
examples.

Principal contributions of the paper: This paper makes three principal contributions. First, we
have identified the need for multiple-instance learning &DCapplications and described the spa-
tial proximity based inter-sample correlations in the lati@se for classifier design in this setting.
Second, building on an intuitive convex-relaxation of thigimal MIL problem, this paper presents
a new approach to multiple-instance learning. In particwe dramatically improve the run time
by replacing a large set of discrete constraints (at leastmstance in each bag has to be correctly
classified) with infinite but continuous sets of constraatsleast one convex combination of the
original instances in every bag has to be correctly clas8ifieurther, the proposed idea for achiev-
ing convexity in the objective function of the training atgbm alleviates the problems of local
maxima that occurs in some of the previous MIL algorithms] afien improves the classification
accuracy on many practical datasets. Third, we presentaigabhimplementation of this idea in
the form of a simple but efficient alternate-optimizatiogaithm for Convex Hull based Fisher’s
Discriminant. In our benchmark experiments, the resultilggrithm achieves accuracy that is com-
parable to the current state of the art, but at a significdatler run time (typically several orders
of magnitude speed ups were observed).

Related work: Note that as the distance between candidate ROl increasasitrelations between

their features and labels decreases. In another study, welrtie spatial-correlation among neigh-
boring samples. Thus we jointly classify entire batchesarfelated samples both during training
and testing. Instead of classifying each sample indepélydem use this spatial information along
with the features of each candidate to simultaneously if§jaall the candidate ROIs for a single

patient/volume in a joint operation [18].
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