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Abstract: Technologies for rapid detection of bacterial pathogens are crucial for securing the food supply. A light-scattering
sensor recently developed for real-time identification of multiple colonies has shown great promise for distinguishing bacteria
cultures. The classification approach currently used with this system relies on supervised learning. For accurate classification
of bacterial pathogens, the training library should be exhaustive, i.e., should consist of samples of all possible pathogens. Yet,
the sheer number of existing bacterial serovars and more importantly the effect of their high mutation rate would not allow for
a practical and manageable training. In this study, we propose a Bayesian approach to learning with a nonexhaustive training
dataset for automated detection of unmatched bacterial serovars, i.e., serovars for which no samples exist in the training library.
The main contribution of our work is the Wishart conjugate priors defined over class distributions. This allows us to employ the
prior information obtained from known classes to make inferences about unknown classes as well. By this means, we identify
new classes of informational value and dynamically update the training dataset with these classes to make it increasingly more
representative of the sample population. This results in a classifier with improved predictive performance for future samples. We
evaluated our approach on a 28-class bacteria dataset and also on the benchmark 26-class letter recognition dataset for further
validation. The proposed approach is compared against state-of-the-art involving density-based approaches and support vector
domain description, as well as a recently introduced Bayesian approach based on simulated classes. © 2010 Wiley Periodicals, Inc.
Statistical Analysis and Data Mining 3: 000–000, 2010
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1. INTRODUCTION

Outbreaks of methicillin-resistant Staphylococcus aureus

AQ1

[1], contamination of spinach and ground beef with Esch-
erichia coli O157:H7 [2,3], presence of Salmonella in
peanut butter [4,5], Listeria monocytogenes in ready-to-eat
meats [6], or Clostridium botulinum in canned chili sauce
are just a few examples of recent public-health threats.
Serious concerns about bioterrorism and the possibility of
intentional contamination of food products or agricultural
commodities are not limited to bad science-fiction movies
anymore [7–10].

Correspondence to: Murat Dundar (dundar@cs.iupui.edu)

Traditional bacteria recognition methods based on anti-
bodies or genetic matching remain labor intensive and time
consuming, and involve multiple steps. Moreover, samples
are usually destroyed by these types of tests and thus are
unavailable for further confirmatory assessment.

To perform classification of bacteria in a label-free man-
ner (i.e., without use of biochemical reagents or genetic
probes), a prototype system based on optical scattering
technology, called BActeria Rapid Detection using Optical
scattering Technology (BARDOT) has recently been devel-
oped [11]. In this system, bacterial colonies consisting of
the progeny of a single parent cell scatter 635-nm laser
light to produce unique forward-scatter signatures. Some

© 2010 Wiley Periodicals, Inc.
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(a) (b)

(d)(c)

Fig. 1 (a) Sample scatter pattern for Salmonella Typhimurium (Copenhagen). (b) Sample scatter pattern for Vibrio orientalis CECT629.
(c) Sample scatter pattern for Listeria seeligeri V45. (d) Sample scatter pattern for Staphylococcus aureus S-41.
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examples of these scatter patterns are shown in Fig. 1.
These scatter ‘fingerprints,’ which carry distinctive char-
acteristics of bacterial phenotypes, are used for the off-line
training of a supervised classifier. Subsequently this classi-
fier is employed to identify bacterial colonies obtained from
enriched samples submitted for testing. As currently imple-
mented the system shows remarkable accuracy for bacteria
belonging to numerous strains of Listeria, Staphylococcus,
Salmonella, Vibrio, and E. coli.

1.1. Nonexhaustive Training Data

The goal of machine learning is to build robust models
that, when deployed in a real-life application, generalize
well to as-yet unseen examples of the sample population.
Among the many factors that influence the generalizability
of a learning algorithm, an exhaustive training dataset is
perhaps the most critical. A training dataset is exhaustive if
it contains samples from all classes of informational value.
When some of the classes are not yet known and hence not
represented, the resulting training dataset is nonexhaustive.
A classifier trained using this dataset will misclassify a

sample of a yet unseen class with probability 1, making
the associated learning problem ill defined.

Generally, in applications with evolving datasets, the
existing set of known classes is by definition nonexhaus-
tive. To relate this to the bacterial detection application
considered in this study, for the purpose of training only
the most prevalent serovars of bacteria are used, as it is
impractical to assume the presence of all bacteria types
in the tested samples. This is because the sheer number
of serovars would not allow for a practical and manage-
able training: Salmonella alone has over 2400 serovars.
Additionally, bacteria are characterized by a high muta-
tion rate, which can influence their pathogenicity, and new
emerging pathogens may be rapidly introduced to a geo-
graphical area. Therefore, any training dataset for bacteria
is inherently nonexhaustive and collecting an exhaustive
set is impossible. On the other hand, classifying pathogenic
bacteria as nonpathogenic would have unfortunate conse-
quences. Therefore, the current traditional supervised clas-
sifier should be supplemented with a new rigorous machine-
learning approach capable of addressing the problem of the
nonexhaustive nature of available training libraries.

Statistical Analysis and Data Mining DOI:10.1002/sam
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1.2. Proposed Approach and Its Relation
to Early Work

One particular area of machine learning that is related
to the nonexhaustiveness problem is anomaly detection
[12–15]. Both anomaly detection and the problem of nonex-
haustive learning aim to detect samples that are not repre-
sented in the training data, and in that regard they can be
considered similar. However, an anomaly by definition is
something peculiar, irregular, abnormal, or difficult to clas-
sify. Therefore anomalies can be considered outliers, and
as such they could be as different from each other as they
are from ‘normal cases’ [15]. More specifically, anomalies
do not necessarily have informational value and it is very
difficult if not impractical to model them. In contrast, sam-
ples originating from an unknown class have informational
value, and just like any class available in the training set
they could be modeled, were they known during training.

Another line of work that is related to the current research
is developed for ‘novelty detection’ [16–18]. Unlike anoma-
lies, novelties originate from hidden, missing or not yet
known classes and thereby have informational value. Nov-
elty detection is also sometimes referred to in the litera-
ture as ‘novel class detection.’ Most of the early work on
novelty detection is developed around one-class classifica-
tion problems and uses either support estimation [19,20] or
density-based models to tackle the nonexhaustive nature of
training datasets.

Our earlier work [21] that attempts to discover novelties
in the presence of a large number of classes differs from
earlier studies by proposing an empirical Bayesian approach
to deal with nonexhaustive training datasets. In this method,
all classes (known and unknown) are assumed to have
Gaussian distributions with a common covariance matrix.
A prior is defined over the mean vectors of the classes and
its parameters are estimated using the training data acquired
from the known classes. A large number of samples are
generated from the prior to simulate the space of all
classes. A new instance is classified using a maximum
likelihood (ML) classifier and is considered a novelty if it
is classified into one of the simulated classes. This attempt,
although looks promising, has certain limitations. First, the
common covariance assumption is quite restrictive. Second,
the Gaussian prior defined for the mean vectors requires
a very large number of classes to be available in the
training dataset, to avoid numerical problems in estimating
the parameters of the prior. Third, as the dimensionality
increases, the number of simulated classes necessary to
achieve higher specificities increases exponentially.

What we present in the current study is a real-time system
that works in a multiclass setting, incorporates supervised
classification and novelty detection together, and evaluates
new samples sequentially. Our approach, which assumes
Gaussian distributions for all classes (known and unknown),

is based on Bayesian ML detection of novelties using a
dynamically updated training dataset. The assumption of
Gaussianity implies that the resulting sample covariance
matrices are distributed according to a Wishart distribution.
Since Wishart and inverted Wishart are conjugate priors,
we define an inverted Wishart distribution over the covari-
ance matrices as prior. Under this setting, the posterior
distribution given the sample covariance matrices is also an
inverted Wishart distribution. Covariance matrices for each
class are estimated using the posterior means. Then, a ML
classifier is designed using the class data in the training
set. When a new sample emerges, class-conditional like-
lihoods are computed and the sample is classified to the
class maximizing the likelihood provided that the maximum
value is above a designated threshold. If the likelihood lies
below that value, the sample is considered a novelty and
a new class is created. The mean vector of this new class
is the sample itself, and its covariance matrix is estimated
using the posterior mean. Once the parameters are esti-
mated, the existing set of known classes is augmented with
this newly created class. In this approach, the parameters
of the classes known before training are estimated once in
the beginning, whereas those of newly created classes are
recursively updated as more samples are assigned to these
classes via sequential classification.

The proposed nonexhaustive learning algorithm can be
confused with other algorithms developed around the lines
of the online/incremental learning concept. The current
study deals with the nonexhaustiveness of the classes and
proposes an approach to identify novelties before they are
incorrectly classified into existing classes. On the other
hand, incremental/online learning deals with the issue of
learning with the past and present data to improve the
classifier performance in general with no specific empha-
sis on novelty detection. The main conceptual difference
between our approach and incremental/online learning is
that we consider the initially existing set of classes as defini-
tive. Samples from these classes are obtained and validated
using thorough procedures involving manual processing. To
avoid updating class parameters with potentially incorrectly
classified samples, only newly defined classes for novel-
ties are updated as more samples are classified into these
classes. On the other hand, in incremental/online learning,
the present data are used to update all class definitions.

The rest of the article is organized as follows. Section 2
presents the technical details of our algorithm. Sectiton 2.1
reviews ML detection and density-based approaches for
identifying novelties. Section 2.2 discusses the Gaussianity
assumption for class-conditional distributions. Section 2.3
presents Wishart and inverted Wishart conjugate priors for
prior modeling and posterior estimation of the covariance
matrix. Section 2.4 introduces an algorithm for detecting
novelties and discovering new classes. Finally, experimental
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results are included in Section 3. Therein, we first present
results for the bacteria detection problem and then use
the benchmark letter recognition dataset for further valida-
tion of our approach. The proposed approach is compared
against other density-based approaches as well as support
vector domain description (SVDD) technique [19] and the
simulated Bayesian modeling approach presented by Dun-
dar et al. [21].

2. NOVELTY DETECTION SYSTEM

In this section, we present the details of the proposed
approach. Sections 2.1 and 2.2 briefly review ML detection
and its implementation with Gaussian class-conditional dis-
tributions. Sections 2.3 and 2.4 discuss our contributions to
novelty detection.

2.1. Bayesian Maximum Likelihood Detection

Density-based approaches use class-conditional likeli-
hoods of samples to detect novelties. In short, if the
maximum of the class-conditional likelihoods is above a
designated threshold, then the sample belongs to one of
the classes in the training library and is assigned the corre-
sponding class label; otherwise the sample is identified as
belonging to an unrepresented class, hence a novelty.

More formally, let �, �, and � denote the set of
all, known, and unknown bacteria classes, respectively,
with � = � ∪ �; A, K , and M are their corresponding
cardinalities with A = K + M . The decision that minimizes
the Bayes risk under the 0/1 loss-function assumption
assigns a new sample x∗ to the class with the highest
posterior probability. More specifically,

x∗ ∈ ω∗
i s.t. p∗

i (θi |x∗) = max
i

{
pi(θi |x∗)

}
, (1)

where i = {1, . . . , A}. Here ωi represents the ith class and
θi the parameters of its distribution. The classifier obtained
by evaluating this decision rule is known as a maximum a
posteriori classifier (MAP) [22].

Using Bayes’ rule, the above decision rule can be rewrit-
ten as follows:

x∗ ∈ ω∗
i s.t. p∗

i (θi |x∗) = max
i

{
fi(x

∗|θi)πi(θi)

p(x∗)

}
, (2)

where fi(x
∗|θi) is the likelihood of x∗, π(θi) is the prior,

and p(x∗) is the evidence. The evidence p(x∗) is the same
for all classes, and hence can be removed from the above
formulation. When all classes are assumed a priori likely,

π(θi) can be dropped from (2) as well. This leaves us with
the ML decision function for classifying x∗:

x∗ ∈ ω∗
i s.t. f ∗

i (x∗|θi) = max
i

{fi(x
∗|θi)}, (3)

where x∗ is considered a novelty if ω∗
i ∈ �, and a sample

of a known class if ωi ∈ �.
Since the set of classes is nonexhaustive fi(x

∗|θi) cannot
be computed for all classes and as a result the decision
function in (3) cannot be evaluated explicitly. We can
express (3) in terms of ω∗

i and rewrite it by separating
fi(x

∗|θi) of known and unknown classes as

h(x∗) =
{

x∗ is known if ψ ≥ γ ,

x∗ is novelty if ψ < γ ,
(4)

where ψ = max{i:ωi∈�} {fi (x∗|θi)} and γ = max{i:ωi∈�}
{fi (z|θi)}.

Since no data are available for unknown classes, γ

cannot be explicitly estimated. In our experiments, we
consider γ as a tuning parameter to optimize sensitivity at
a desired specificity or vice versa. In other words, γ is the
parameter to adjust for the compromise between sensitivity
and specificity of the system.

To summarize, if the conditional likelihood of a known
class for a sample x∗ is less than γ , then x∗ is a sample
from an unrecognized class; otherwise x∗ is a sample from
a known class and thus can be assigned a known class label.

2.2. Gaussianity Assumption and Covariance
Estimation

The most common and effective way to treat data of
unknown nature is to assume Gaussian distributions for all
classes, ωi ∼ N(μi , �i ), θi = {

μi , �i

}
.

With this assumption in place, Eq. (4) becomes

h(x∗) =
{

x∗ is known if min{i:ωi∈�} gi(x
∗) ≤ γ ,

x∗ is novelty if min{i:ωi∈�} gi(x
∗) > γ ,

(5)

where gi(x
∗) = log(|�i |) + (x∗ − μi )

T �−1
i (x∗ − μi ) is

the negative log-likelihood of class ωi given x∗ and |�i |
is the determinant of �i . For {i : ωi ∈ �}, μi and �i can
be estimated from class-conditional data available in the
training set.

When dealing with datasets containing limited numbers
of training samples and high dimensionality, the covariance
estimator plays an important role in the modeling of the
class-conditional distributions. The sample covariance can
be obtained using the following formula:

�i = 1

ni − 1

(
Xi − μie

T
ni

) (
Xi − μie

T
ni

)T
, (6)

Statistical Analysis and Data Mining DOI:10.1002/sam
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where ni is the number of samples in class ωi , eni
is a vector

of ones of size ni and μi are the mean vectors estimated as

μi = 1

ni

Xieni
(7)

Here for notational simplicity all samples belonging
to class ωi are denoted in the matrix form as Xi =
[xi1 . . . xini

].
When the number of samples available for a given class is

less than d + 1, where d is the dimensionality, the sample
covariance becomes ill conditioned, i.e., the inverse does
not exist. In practice, a robust sample covariance requires
many more samples than d + 1 because the number of
parameters to estimate in a covariance matrix increases
as the square of the dimensionality. This phenomenon is
known as the curse of dimensionality [23].

Although the research in covariance estimators using
a limited number of samples with high dimensionality
has a long history with relatively well-established tech-
niques, two main approaches dominate the field. These are,
regularized discriminant analysis (RDA) [24] and empiri-
cal Bayes estimators [25]. RDA considers the mixture of
sample and pooled covariance and an identity matrix as
an estimator, with their weights empirically estimated by
cross-validation. On the other hand, the Bayesian approach
defines a pair of conjugate prior distributions over the
sample and true covariance matrices, and uses the mean
of the resulting posterior distribution as an estimator. In
RDA, multiple samples from each class are required to esti-
mate the mixing weights by cross-validation, and thus to
estimate the covariance matrix, whereas in the Bayesian
approach, the covariance estimator is a function of the
parameters of the prior distribution, which are estimated
using samples of the known classes.

Creating a new class for each detected novelty and defin-
ing the class by its mean and covariance matrix form the
core component of the proposed approach. The Bayesian
approach assumes a common prior for all classes (known
and unknown) and estimates the covariance matrix using
the posterior mean. In that regard, the use of the Bayesian
approach makes intuitive sense in the nonexhaustive set-
ting, mainly because we assume that there is a common
pattern among the class distributions of all classes and that
it can be captured with known classes only, provided that a
sufficiently large number of them are available for training.
In the bacterial detection problem, although our training
dataset represents only a small portion of a potentially
very large number of bacterial serovars, unlike traditional
machine learning problems, the number of available classes
is still large enough to allow for a reasonably robust estima-
tion of the prior distribution. This facilitates the estimation
of the covariance matrices for the new classes, which is
especially important when defining a class for the first

time using the sample detected as novelty. In the following
section, we will present a special family of conjugate priors
for covariance estimation under the Bayesian framework.

2.3. Family of Wishart and Inverted-Wishart
Conjugate Priors

The assumption of Gaussian samples, i.e., ωi ∼
N(μi , �i ), implies that, the sample covariance matrices
Si , i = {1, . . . , K}, where K is the number of known
classes, are mutually independent with fiSi ∼ W(�i , fi).
Here fi = ni − 1 and W(�i , fi) denotes the Wishart distri-
bution with fi degrees of freedom and a parameter matrix
�i . The inverted Wishart distribution is conjugate to the
Wishart distribution and thus provides a convenient prior
for �i .

We assume that �i is distributed according to an inverted
Wishart distribution with m degrees of freedom as:

�i ∼ W−1((m − d − 1)
, m), m > d + 1. (8)

The scaling constant (m − d − 1) before 
 is chosen to
satisfy E {�i} = 
. Under this setting, the posterior dis-
tribution of �i | {S1, . . . , SK} is obtained as described by
Anderson [26]:

�i |(S1, . . . , SK) ∼ W−1 (fiSi + (m − d − 1)
,

fi + m). (9)

The mean of this posterior distribution is

�̂i (
, m) = fi

fi + m + d − 1
Si

+ m − d − 1

fi + m + d − 1

. (10)

Under squared-error loss, the posterior mean is the Bayes
estimator of �i . The estimator is a weighted average of Si

and 
, and it shifts toward Si for large fi and approaches

 for large m. For a class with just one sample, the
estimator returns 
, which implies that no matter what
the dimensionality is, a nonsingular covariance estimate
can be obtained using this estimator, provided that 
 is
nonsingular. The estimator is a function of 
 and m,
which are the parameters of the inverted Wishart prior
for �i . The closed-form estimates for 
 and m do not
exist. Greene and Rayens [25] suggest estimating 
 by
the unbiased and consistent estimate Sp, i.e., the pooled
covariance, and maximizing the marginal likelihood of Si

for m > d + 1 numerically to estimate m. In this study, we
set 
 to Sp but estimate m to maximize the classification
accuracy for the known classes by cross-validating over the

Statistical Analysis and Data Mining DOI:10.1002/sam
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freedom, m, in the inverted Wishart distribution.

training samples. Here, Sp is the pooled covariance matrix
defined by

Sp = f1S1 + f2S2 + · · · + fKSK

N − K
, (11)

where N is the total number of samples available in the
training dataset.

Figure 2 illustrates the effect of m on the modeling of
the classes. In this example, ten classes are generated.
Their mean vectors are chosen randomly from a normal
distribution with mean at the origin and covariance matrix
equal to 10I, where I denotes the 2D identity matrix.
The covariance matrices of the classes are obtained from
an inverted Wishart distribution with the first parameter

 = 0.3I, which is designed to yield relatively circular
distributions. The parameter m, the degree of freedom,
takes the values 3, 5, 10, and 20, respectively, in the
four cases shown in Fig. 2. As m increases, initially the
classes transform from more elongated distributions to
more circular ones but only slight changes in shape and
orientation are observed beyond a certain m value.

So far, we have discussed a framework for detecting nov-
elties in real time based on ML evaluation of samples using
known classes. Our approach employs a pair of conjugate
Wishart priors to estimate the covariance matrices of known
classes and detects novelties by thresholding the ML eval-
uated with known classes. We will refer to this approach as
ML-Wishart. In traditional novelty detection algorithms, no
immediate action is taken for novelties. Once detected, they
are left for a follow-up analysis. However, novelties orig-
inate from classes of informational value which were not
known at the time of training. Pooling novelties showing

similar characteristics to individual clusters may potentially
recover some of these classes, and as more classes of infor-
mational value are introduced, the training dataset becomes
more representative. This helps improve the predictive per-
formance of the system not only for detecting novelties
but also for classifying future samples of newly discovered
classes. Our proposed algorithm, referred as BayesNoDe,
combines novelty detection with new class discovery and
will be presented next.

2.4. Real-time Discovery of New Classes

As formulated in Eq. (5), a new sample x∗ ∈ �d is
detected as a novelty if min{i:ωi∈�} gi(x

∗) > γ . In other
words, if the negative log-likelihoods of known classes
given x∗ are all greater than the designated threshold γ ,
then the sample is considered a novelty.

When a new sample is detected as a novelty, a new
class is generated and defined by the parameters, (μ, �),
*****where μ is the mean vector of this class and � is the
covariance matrix, both of which are not known. With just
one sample, since S is not defined and f = 0, the posterior
mean in Eq. (10) is equivalent to 
 and thus the Bayesian
estimator for � becomes �̂ = 
. The mean vector, μ is
estimated by μ̂ = x∗, i.e. the sample itself, which follows
from Eq. (7).

The set of known classes is augmented with this new
class. So for the next sample available, the decision function
in Eq. (5) is evaluated for classes known initially as well
as for the newly created classes. If the sample is detected
as a novelty, the above procedure is repeated to generate
another class. Otherwise, if the sample is classified into
one of the existing classes, then we check for the class
that minimizes the negative log-likelihood. If the sample is
assigned to a previously discovered class, then we update
the class parameters μ and � using Eqs. (7) and (10) for
that class. Since, there is more than one sample available
now, �̂ becomes a mixture of the sample covariance and

. If, on the other hand, the sample is assigned to a class
known initially, then no class update is necessary.

Pseudocode for the algorithm capable of detecting nov-
elties and discovering new classes is presented in Algo-
rithm 1.

It is important to note that the Gaussianity assumption
made throughout the study is not much of a limitation for
either the set of initially known classes or the newly dis-
covered ones, for the following reason. The theory of finite
mixture models [27] states that given enough components
and under fairly weak assumptions, a mixture model can
approximate a given density arbitrarily closely, allowing
great flexibility. In other words, even if the initially known
classes are not Gaussian, the class-conditional distributions
can still be estimated arbitrarily closely, using a mixture of

Statistical Analysis and Data Mining DOI:10.1002/sam
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Algorithm 1 BayesNoDe: An Algorithm for Bayesian Nov-
elty Detection and Class Discovery

INITIALIZATION
Initialize � with the set of initially known classes
K ⇐ |�| {Define K as the number of initially known classes}
for each class i in the set of known classes do

Estimate Si , μ̂i , �̂i

end for

 ⇐ Sp {estimate 
 by the pooled covariance matrix}
m ⇐ mOpt {estimate m by cross-validation from a prede-
fined range of m values}
c ⇐ 0 {initialize the counter for the newly created classes}
ONLINE DETECTION & DISCOVERY
while there exists a new sample x∗ do

for i from 1 to (K + c) do {each i in the current set of
known classes}

Compute gi(x
∗) {compute the negative log-likelihood

for class i}
end for
j ⇐ argmini {gi(x

∗)} {find the class that minimizes the
negative log-likelihood for x∗}
if gj (x

∗) > γ then
Increment c, generate a new class ωK+c

Mark x∗ as novelty and assign it to the new class ωK+c

μ̂K+c ⇐ x∗ {initialize the mean vector}
�̂K+c ⇐ 
 {initialize the covariance matrix with 
,
note Si = 0}

else {gj (x
∗) is less than the threshold}

if j > K then {ωj is a newly generated class}
Mark x∗ as novelty and assign it to class ωj

Update Sj , μ̂j , �̂j

else {j is an initially known class}
Assign x∗ to class ωj , it is not a novelty
NO update is done to class parameters

end if
end if

end while

Gaussians. A mixture of Gaussian subclasses can be learned
for each class data through a process involving expectation
maximization [28] and model selection. Once the Gaussian
subcomponents are identified for each class data, the pro-
posed approach can be implemented at the subclass level
by considering each subclass as an independent Gaussian
class.

Similarly, when discovering new classes, only clusters
with Gaussian patterns will be created for novelties. How-
ever, true classes with informational value can still be
recovered by grouping newly discovered clusters under a
higher-level class using domain/expert knowledge.

Next, we present an illustrative example demonstrating
the proposed algorithm detecting novelties and creating
classes with a 2-D simulated dataset. Similar to our previous
example we generate ten classes with their covariance
matrices obtained from an inverted Wishart distribution
with parameters 
 = 0.3I and m = 10 and their mean
vectors are chosen randomly from a normal distribution

with mean at the origin and covariance matrix equal to
10I. Here, I denotes the 2-D identity matrix.

Panel (a) of Fig. 3 shows all ten classes. Known classes
are depicted by solid lines, unknown classes by dashed
lines. The square sign locates the mean of each class. The
ellipses represent the class boundaries as defined by the
three standard deviation distance from the class means.
A total of 80 samples are generated from the ten classes:
5 from each of the known classes and 20 from each of the
unknown classes. Test samples are classified sequentially
using the proposed BayesNoDe algorithm. Panels (b)–(d)
of Fig. 3 illustrate cases where 16/80, 48/80, and 80/80
samples are classified, respectively. Red solid lines indicate
the estimated distribution contours for newly discovered
classes in each subfigure with the diamond signs locating
their estimated means. The blue + signs and red × signs
in each subfigure show the samples classified to known
and unknown classes, respectively. Panel (e) of Fig. 3
demostrates novelty detection using ML-Wishart, i.e., with
a fixed set of classes in the training dataset, and panel (f)
of Fig. 3 illustrates the case where no novelty detection is
performed at all. In these two figures, the samples marked
with red circles indicate samples from the unknown classes
misclassified as known. Also in panel (e) of Fig. 3, blue
solid lines correspond to g(z) = γ as defined in Eq. (5)
and indicate the classification boundaries for the unknown
samples.

As panels (b)–(d) of Fig. 3 demonstrate, the algorithm
gradually recovers the unknown classes as more test sam-
ples are introduced, converging to almost ideal distributions
after all 80 test samples are classified.

Comparing panels (d) and (e) of Fig. 3 shows the
improvement achieved by the BayesNoDe algorithm over
the ML-Wishart as a result of the dynamically updated
training dataset. When no novelty detection is used, all
samples are misclassified as illustrated in panel (f) of
Fig. 3.

3. EXPERIMENTS

3.1. Experiment 1: Bacteria Detection

A total of 28 strains (subclasses) from five different
bacteria species were considered in this study. The species
available are E. coli, Listeria, Salmonella, Staphylococcus
and Vibrio. Table 1 shows the list of 28 strains from 5
species considered in this study together with the number of
samples collected for each one using the BARDOT system
described in Section 1. In our experiments, we treated each
strain as a separate class and used the number of samples
listed in Table 1 from each class for training.

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 3 Illustration of the proposed algorithm with an artificial dataset. Pink dashed lines indicate unknown classes with 20 samples each.
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Black solid lines indicate known classes with five samples each. Red solid lines indicate newly discovered classes. Mean vectors for the
original classes are depicted by the blue squares. Mean vectors for the newly discovered classes are depicted by the red diamonds. Blue
+ signs, indicate samples from known classes, red × signs indicate samples from unknown classes. Encircled + signs indicate samples
from unknown classes incorrectly classified as known. (a) Classes with dashed lines are assumed unknown; (b) 16 out of 80 samples are
classified; (c) 48 out of 80 samples are classified; (d) all samples are classified—BayesNoDe; (e) all samples are classified—ML-Wishart;
(f) all samples are classified—no novelty detection.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

3.1.1. Feature selection

Scatter patterns of the bacteria are characterized by a total
of 50 features involving moment invariants and Haralick
texture descriptors. Details of the feature extraction process
are available in Ref. [29].

3.1.2. Classifier design

The classification methods considered are the SVDD
[19], which is the benchmark technique for detecting
anomalies and novelties, ML using common covariance
(ML-Common), ML using common covariance with
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Table 1. The 28 subclasses from five species (classes) consid-
ered in this study.

Species ID Strain (Subclass) # Samples

1 O25:K98:NM ETEC 67
2 O78:H11 ETEC 58

E. Coli sp. 3 O157:H7 01 64
4 O157:H7 6458 87
5 O157:H7 G5295 68
6 K12 ATCC 29425 65
7 L. innocua F4248 59
8 L. ivanovii 19119 81

Listeria spp. 9 L. monocytogenes
19118 (4e)

94

10 L. monocytogenes
7644 (1/2c)

91

11 L. monocytogenes
V7 (1/2a)

98

12 L. welshimeri 35897 47
13 S. Typhimurium

(Copenhagen)
95

Salmonella spp. 14 S. Enteritidis 13096 89
15 S. Enteritidis PT28 90
16 S. Tennessee 825-94 78
17 S. aureus 13301 46
18 S. aureus PS103 50

Staphylococcus spp. 19 S. aureus S-41 67
20 S. epidermidis

PS302
31

21 S. epidermidis 35547 45
22 S. hyicus T6346 69
23 V. alginolyticus

CECT521
88

24 V. campbellii
CECT523

71

Vibrio spp. 25 V. cincinnatiensis
CECT4216

89

26 V. hollisae
CECT5069

79

27 V. orientalis
CECT629

96

28 V. parahaemolyticus
CECT511

92

Total 2054

Notes: The last column lists the number of samples collected for
each strain using the Bardot system.

simulated subclass generation (MLS) [21], ML with the
covariance matrix estimated by the posterior mean of
the inverted-Wishart distribution (ML-Wishart), and the
BayesNoDe algorithm. The ML classifier using sample
covariance is not considered here, because sample covari-
ances were ill conditioned for most classes.

As explained in Sections 2.1 and 2.2, the general idea
of ML classifiers is based on the ML decision function
in Eq. (3) and works according to the formulation in Eq.
(4). ML-Wishart and ML-Common are the special cases
of ML. They differ in estimating the covariance matrices

of the training classes. Corresponding mean vectors, μi ,
are all calculated by (7). More specifically, ML-Common
implements (5), where �i = � for all i, and � represents
the common covariance matrix estimated by the average
of the sample covariances. As described in Ref. [21], MLS
extends ML-Common by simulating the space of all classes.
This approach assumes a Gaussian prior for the mean
vectors, and its parameters are estimated using the estimates
of the mean vectors for each class. Lastly, for the proposed
ML-Wishart and BayesNoDe, the covariance matrices are
estimated for each class using the posterior mean defined
in Eq. (10). The parameters m and 
 are estimated as
described in Section 2.3.

As for the SVDD algorithm, optimization involves two
sets of parameters. These are C, the cost of leaving a train-
ing sample outside the support, and σ , the width of the
Gaussian radial basis function (RBF) kernel. These param-
eters are estimated by 10-fold cross-validation at the class
level. When optimizing parameters for a given class, the
training samples of the given class are considered posi-
tive and the samples of remaining classes are considered
negative. At each fold of the cross-validation algorithm,
SVDD is trained using positive samples only but tested
on both positive and negative samples. The parameter set
(C∗, σ∗) that optimizes the area under the receiver operating
characteristic (ROC) curve is chosen as the optimum set for
the given class. This process is repeated for all classes.

3.1.3. Classifier validation and evaluation

Since the training dataset is nonexhaustive, the goal is
to design a classifier that accurately detects samples of
known classes as known and those of unknown classes as
novelty. In this framework, classifiers can be more properly
evaluated using ROC curves. Here sensitivity is defined
as the number of samples from known classes classified
as known divided by the total number of samples from
known classes. Specificity is defined as the number of
samples from unknown classes detected as novelty, divided
by the total number of samples from unknown classes.
Multiple sensitivity and specificity values are obtained
for each classifier to plot the ROC curves. For the ML-
based approaches, different operating points are obtained
by varying the threshold γ in Eq. (5). For SVDD, the
distances from the center of each class is normalized by
the radius of the corresponding sphere. For a new sample,
the minimum of the normalized class distances is computed
and thresholded to obtain different operating points.

To evaluate the classifiers the 2054 samples are randomly
split into two sets, as train and test, with 80% of the samples
going into the training set and the remaining 20% into the
test. Stratified sampling is used to make sure that each
subclass is represented in both sets. This process is repeated
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ten times to obtain ten different pairs of train-test sets.
Then, one subclass from each of the five bacteria species
is randomly selected, so a total of 5 subclasses out of the
28 available are identified. All samples of these five classes
are removed from the training datasets making these classes
unknown. The classifiers are trained with the resulting
nonexhaustive training sets and tested on the corresponding
test sets. For each data split, the area under the ROC curve,
i.e., Az value is computed. The Az values averaged over
the ten different train-test splits are recorded along with the
standard deviation.

3.1.4. Results and analysis

To account for the possible bias introduced by the set of
removed classes the above process is repeated 20 times each
time removing a randomly selected set of five classes from
the training set. Each such repetition involves running the
same experiment with a different nonexhaustive subset of
the original data. Az values achieved for each classifier are
included in Table 2 for all 20 experiments. As described
earlier, these values are the average of the ten runs each
executed with a different train-test split and the values in
parantheses indicate standard deviations. The mean Az val-
ues across all 20 runs are listed in Table 3. These results
clearly favor the proposed BayesNoDe algorithm, which
generated the best area under the curve (AUC) in all 20 rep-
etitions. Standard deviations indicate that the differences are
statistically significant in most of the 20 experiments. The
BayesNoDe algorithm is an extension of the ML-Wishart
algorithm, both of which are proposed in this study. ML-
Wishart ranked second, but the results indicate that creating
new classes and augmenting the set of known classes with
these new classes makes a considerable impact on the pre-
diction accuracy of the classifier and gives the BayesNoDe
algorithm a significant advantage over the ML-Wishart.
SVDD ranked third along with ML-Common and MLS.

Next, we picked four sample cases out of the 20 using the
overall Az values achieved by the classifiers as the selec-
tion criteria. Largest Az value among all 20 repetitions is
recorded in repetition 10 (Fig. 4, panel (a)). Repetitions
13 and 16 represent two average cases (Fig. 4, panels (b)
and (c)). Repetition 20 is included to show results for a
relatively poor case (Fig. 4, panel (d)). The ROC curves
corresponding to the proposed BayesNoDe algorithm dom-
inate the other curves in all cases. We also analyzed the
classification accuracy of the known samples and observed
that the known samples are assigned to classes with over
95% accuracy across all operating points for all four cases
considered here. These results indicate that the proposed
approach not only performs well in identifying samples
of the unknown classes as novelties but yields promising
results in classifying samples of the known classes as well.

3.2. Experiment 2: Letter Recognition

To show that improvements achieved by the proposed
BayesNoDe algorithm is not specific to the Bacterial detec-
tion application that motivated this research, we used the
benchmark letter recognition dataset from the UCI repos-
itory [30] for further validation of the proposed approach
for novelty detection. This dataset is mainly selected for its
large number of classes. The dataset contains 20 000 sam-
ples for 26 classes, one for each letter of the alphabet. Each
sample is characterized using 16 features.

This dataset is different than the bacteria detection dataset
in that, it is not susceptible to the curse of dimensionality
as much. There is an average of 770 samples for each
class as opposed to an average of 80 samples for each
bacteria subclasses. The dimensionality of the data (d = 16)
is also much lower than the 50 features used in the bacteria
detection dataset.

We followed an experiment design similar to the bacteria
detection experiment. The 20 000 samples are randomly
splitted into train and test sets, with 80% of the samples
going into the training set and the remaining 20% in the
test. Stratified sampling is used to make sure each class
is represented in both the training and the test sets. This
process is repeated five times to obtain five different pairs
of train-test sets. Then, five classes are randomly selected
and their samples are removed from the training datasets.
The classifiers are trained with the resulting nonexhaustive
training sets, and tested on the corresponding test sets. For
each case, Az value is computed. The Az values averaged
over the five different train-test splits are recorded along
with the standard deviation.

3.2.1. Classifier design

The same set of classifiers considered in Experiment
3.1 are also considered here. SVDD and MLS are trained
the same way as in Experiment 3.1. For the ML-based
classifiers, since classes contain a relatively larger num-
ber of samples, a single Gaussian might not fit class data
well. In this case, as discussed in Section 2.4, the actual
class distributions can be modeled more effectively using a
mixture of Gaussians. We fit up to five components for each
class distribution using standard expectation maximization
algorithm [28] with the optimum number of components
selected using the Bayesian Information Criterion [31].
Once mixture models are obtained, each subclass is consid-
ered as an independent class and all ML-based classifiers
are run with the new set of known classes. On the average
for each class data mixture fitting returned three subclasses.

3.2.2. Results and analysis

The experiment is repeated twice each time removing a
randomly selected set of five classes from the training set.
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Table 2. Az values averaged over ten iterations for all 20 experiments run with the bacteria dataset.

Repetition # 1 2 3 4 5 6 7 8 9 10

BayesNoDe 0.97 0.92 0.98 0.92 0.93 0.95 0.98 0.96 0.95 0.99
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ML-Wishart 0.95 0.88 0.96 0.90 0.89 0.92 0.95 0.94 0.94 0.98
(0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ML-Common 0.88 0.71 0.90 0.82 0.79 0.83 0.83 0.87 0.89 0.94
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

MLS 0.87 0.80 0.82 0.81 0.80 0.84 0.92 0.86 0.78 0.85
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SVDD 0.87 0.77 0.90 0.81 0.76 0.81 0.86 0.84 0.86 0.89
(0.01) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01)

Repetition # 11 12 13 14 15 16 17 18 19 20

BayesNoDe 0.91 0.98 0.97 0.93 0.89 0.95 0.95 0.82 0.92 0.88
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ML-Wishart 0.87 0.96 0.94 0.88 0.85 0.92 0.91 0.79 0.87 0.85
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ML-Common 0.80 0.90 0.88 0.76 0.78 0.83 0.81 0.72 0.77 0.81
(0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.02)

MLS 0.78 0.82 0.87 0.81 0.86 0.85 0.84 0.80 0.74 0.84
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SVDD 0.83 0.90 0.82 0.76 0.77 0.83 0.81 0.73 0.81 0.80
(0.01) (0.01) (0.06) (0.03) (0.03) (0.01) (0.01) (0.03) (0.02) (0.02)

Notes: A set of five subclasses is randomly selected and considered unknown during each of the 20 experiments. BayesNoDe results in
the best AUC values for all 20 experiments. Values in parentheses indicate standard deviations.
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Table 3. Average Az values over 20 experiments.

Methods Avg. AUC

BayesNoDe 0.94
(0.05)

ML-Wishart 0.91
(0.06)

ML-Common 0.83
(0.04)

MLS 0.83
(0.04)

SVDD 0.82
(0.05)

The ROC curves are plotted in panels (a) and (b) of Fig. 5.
For this experiment SVDD seems to model the data well
and becomes the sole competitor to BayesNoDe and ML-
Wishart. ML-Wishart performs slightly better than SVDD.
The detection accuracy of BayesNoDe is almost perfect and
as the error bars indicate the improvements achieved over
other methods are statistically significant.

4. CONCLUSION

The current research is mainly motivated by the impracti-
cality of the exhaustiveness assumption in defining the num-
ber of classes in a training dataset. In this study, we propose

a novelty detection scheme, which makes two distinct
contributions: novelty detection and modeling. Evaluated
samples are identified either as novelty or classified into
one of the known classes.

The proposed technique is based on the Bayesian mod-
eling of the distribution of the classes via a pair of con-
jugate Wishart priors. The resultant posterior distribution
is used to obtain robust estimates of the covariance matri-
ces of the class-conditional distributions for known as well
as newly created classes with limited number of samples.
Novelties are detected by evaluating the ML with known
classes. Samples are labeled as novelty or known based
on whether the ML is smaller or larger than a predefined
threshold. Effective modeling of the prior distribution of the
classes in this approach requires a relatively large number
of known classes. Our research is motivated by a biode-
tection application. We have performed experiments with
a 28-class bacteria dataset and presented results favoring
the proposed algorithm over the state-of-the-art for novelty
detection. Additional experiments are performed with a 26-
class benchmark dataset to further validate the proposed
approach and show that improvements are not application
specific.

Future research will focus on modeling of the known
classes by nonparametric Bayesian approaches involv-
ing Gaussian processes, which we believe will allow for
more robust modeling of the classes and will improve
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Fig. 4 (a) Repetition 10. Removed subclass ids are: 6, 12, 15, 18, and 27. (b) Repetition 13. Removed subclass ids are: 1, 11, 16, 22, and

C
ol

or
Fi

gu
re

-O
nl

in
e

on
ly

23. (c) Repetition 16. Removed subclass ids are: 2, 8, 16, 21, and 28. (d) Repetition 20. Removed subclass ids are: 5, 8, 15, 22, and 26.
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Fig. 5 (a) Removed subclass ids are: 7, 9, 12, 14, and 24. (b) Removed subclass ids are: 2, 9, 11, 12, and 22.
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prediction performance of the proposed novelty detection
algorithm.
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