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Abstract

We describe a method for sparse feature selection for a class

of problems motivated by our work in Computer-Aided De-

tection (CAD) systems for identifying structures of interest

in medical images. We propose a sparse formulation for

Fisher Linear Discriminant (FLD) that scales well to large

datasets; our method inherits all the desirable properties

of FLD, while improving on handling large numbers of

irrelevant and redundant features. We demonstrate that our

sparse FLD formulation outperforms conventional FLD and

two other methods for feature selection from the literature

on both an artificial dataset and a real-world Colon CAD

dataset.
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1 Problem Specification.

Over the last decade, Computer-Aided Detection
(CAD) systems have moved from the sole realm of aca-
demic publications, to robust commercial systems that
are used by physicians in their clinical practice to help
detect early cancer from medical images. The growth
has been fueled by the Food and Drug Administration’s
(FDA) decision to grant approval in 1998 for a CAD sys-
tem that detected breast cancer lesions from mammo-
grams (scanned x-ray images) [1]. Since then a number
of CAD systems have received FDA approval. Virtually
all these commercial CAD systems, focus on detection
(or more recently diagnosis [2]) of breast cancer lesions
for mammography.

Typically, CAD systems are used as ”second read-
ers” – the physician views the image to identify po-
tential cancers (the ”first read”), and then reviews the
CAD marks to determine if any additional cancers can
be found. In order to receive clinical acceptance and
to actually be used in the daily practice of a physician,
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it is immediately obvious that CAD systems must be
efficient (for instance, completing the detections in the
minutes taken by the physician during the ”first read”)
and have very high sensitivity (the whole point of CAD
is to boost the physician’s sensitivity, which is already
fairly high – 80%-90% for colon cancer – to the high
90’s).

Physicians detect cancers by visually extracting
shape and texture based features, that are often qualita-
tive rather than quantitative from the images (hereafter,
”image” and ”volume” are used interchangably in this
document). However, there are usually no definitive
image-processing algorithms that exactly correspond
to the precise, often subtle, features used intuitively
by physicians. To achieve high sensitivity and speci-
ficity, CAD researchers must necessarily consider a very
large number of experimental image processing features.
Therefore, a typical training dataset for a CAD classifier
is extremely unbalanced (significantly less than 1% of
the candidates are positive), contains a very large num-
ber of candidates (several thousand), each described by
many features (100+), most of which are redundant and
irrelevant.

A large number of features provides more control
over the discriminant function. However, even with our
”large” training sample, the high-dimensional feature
space is mostly empty [3]. This allows us to find many
classifiers that perform well on the training data, but
it is well-known that few of these will generalize well.
This is particularly true of nonlinear classifiers that
represent more complex discriminant functions. Fur-
thermore, many computationally expensive nonlinear
classification algorithms (e.g. nonlinear SVM, neural
networks, kernel-based algorithms) do not scale well to
large datasets. When the potential pitfalls of designing
a classifier and the characteristics of the data are con-
sidered, it appears safer to train a CAD system with a
linear classifier. This is empirically demonstrated in our
previous study [4] where we compare the generalization
capability of some linear and nonlinear classification al-



gorithms on a CAD dataset.
Fisher Linear Discriminant (FLD) [5] is a well-

known classification method that projects high-
dimensional data onto a line and performs classification
in this one dimensional space. This projection is ob-
tained by maximizing the ratio of between and within
class scatter matrices – the so called Rayleigh quotient.
As a linear classifier it is rather robust against feature
redundancy and noise and has an order of complex-
ity O

(

ld2
)

(l is the number of training samples in the
dataset and d is the number of features in the feature
set).

In this study we propose a sparse formulation of
FLD where we seek to eliminate the irrelevant and
redundant features from the original dataset within a
wrapper framework [6]. To achieve sparseness, earlier
studies focused on direct optimization of an objective
function consisting of two terms: the goodness of
fit and the regularization term. In order to avoid
overfitting by excessively maximizing the goodness of
fit, a regularization term commonly expressed as `0 −
norm [7], [8] or `1 − norm [9], [10] of the discriminant
vector is added to the objective function. Optimization
of this objective function generates sparse solutions, i.e.
a solution that depends only on a subset of the features.

Our approach achieve sparseness by introducing
regularity constraints into the problem of finding FLD.
Since we maintain the original formulation of FLD as we
introduce the regularization constraints, the proposed
technique can scale to very large datasets (on the order
of hundred thousand samples). Casting this problem as
a biconvex programming problem provides us a more
direct way of controlling the size of the feature subset
selected. This problem is iteratively solved and once
the algorithm stops the nonzero elements of the solution
indicates features that are relevant to classification task
at hand, and their value quantifies the degree of this
relevancy. The proposed algorithm inherits all desirable
characteristics of FLD while improving on handling
large number of redundant and irrelevant features.
This makes the algorithm numerically more stable and
improve its prediction performance.

The rest of this paper is organized as follows. In
the next section, we discuss the need for a linear classi-
fier and briefly review the Fisher Linear Discriminant
(FLD). We also introduce our notion of spare FLD,
where we seek to eliminate the redundant and irrele-
vant features from the original training set using a wrap-
per approach. In Section 3 we review the concept and
formulation of FLD. In Section 4 we modify the con-
ventional FLD problem so as to achieve sparseness and
propose an iterative feature selection algorithm based on
our the sparse formulation. Finally we present experi-

mental results on an artificial dataset and a ColonCAD
dataset, and compare our approach with conventional
FLD and also with two well-known methods from the
literature for feature selection.

2 Fisher’s Linear Discriminant

Let Xi ∈ Rd×l be a matrix containing the l training
data points on d-dimensional space and li the number
of labeled samples for class wi, i ∈ {±}. FLD is the
projection α, which maximizes,

J (α) =
αT SBα

αT SW α
(2.1)

where

SB = (m+ − m−) (m+ − m−)
T

SW =
∑

i∈{±}

1

li

(

Xi − mie
T
li

) (

Xi − mie
T
li

)T

are the between and within class scatter matrices re-
spectively and

mi =
1

li
Xieli

is the mean of class wi and eli is an li dimensional vector
of ones.

Transforming the above problem into a convex
quadratic programming problem provides us some algo-
rithmic advantages. First notice that if α is a solution
to (2.1), then so is any scalar multiple of it. Therefore to
avoid multiplicity of solutions, we impose the constraint
αT SBα = b2, which is equivalent to αT (m+ − m−) = b

where b is some arbitrary positive scalar. Then the op-
timization problem of (2.1) becomes,

Problem 1 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

For binary classification problems the solution of

this problem is α∗ =
bS

−1

W
(m+−m

−
)

(m+−m
−

)T S
−1

W
(m+−m

−
)
. In what

follows we propose a sparse formulation of FLD. The
proposed approach incorporates a regularization con-
straint on the conventional algorithm and seeks to elim-
inate those features with limited impact on the objective
function.

3 Sparse Fisher Discriminant Analysis

If we require α to be nonnegative, the 1-norm of α can be
calculated as αT el. With the new constraints Problem
1 can be updated as follows,



Problem 2 : minα∈Rd αT SW α

s.t. αT (m+ − m−) = b

αT el ≤ γ, α ≥ 0

We denote the feasible set associated with
Problem 1 by Ω1 =

{

α ∈ Rd, αT (m+ − m−) = b
}

and that associated with Problem 2 by Ω2 =
{

α ∈ Rd, αT (m+ − m−) = b, αT el ≤ γ, α ≥ 0
}

and observe that Ω2 ⊂ Ω1. Then we define δmax =
maxi

b
(m+−m

−
)
i

and δmin = mini
b

(m+−m
−

)
i

where

i = {1, . . . , d}. The set Ω2 is empty whenever δmax < 0
or δmin > γ. In addition to the feasibility constraints
γ < δmax should hold in order to achieve a sparse
solution. In what follows we introduce a linear trans-
formation which will ensure δmax > 0 and standardize
the sparsity constraint.

We define a linear transformation such that x 7→
Dx. With this transformation Problem 2 takes the
following form,

Problem 3 : minα∈Rd αT DSW Dα

s.t. αT D (m+ − m−) = b

αT el ≤ γ, α ≥ 0

Note that both δ̄min and δ̄max are nonnegative
and hence both feasibility constraints are satisfied when
γ > δ̄min. For γ > d the globally optimum solution α∗

to Problem 3 is α∗ = [1, . . . , 1]
T
, i.e nonsparse solution.

For γ < d sparse solutions can be obtained. Unlike
Problem 2 where the upper bound on γ depends on
mean vectors here the upper bound is d, i.e. the number
of features.

The above sparse formulation is indeed a biconvex
programming problem.

Problem 4 : minα, a∈Rd αT
(

SW ∗
(

aaT
))

α

s.t. αT
(

(m+ − m−) ∗ aT
)

= b

αT el ≤ γ, α ≥ 0

where ∗ is an element-wise product. We first
initialize α = [1, . . . , 1]

T
and solve for a∗, i.e. the

solution to Problem 1, then we fix a∗ and solve for α∗,
i.e. the solution to Problem 3.

4 The Iterative Feature Selection Algorithm

Successive feature elimination can be obtained by iter-
atively solving the above biconvex programming prob-
lem.

(0) Set α0 = en, d0 = d, γ << d

For each iteration i do the following:

(i) Select the di features with αi
j values greater than

ε, di ≤ di−1.

(ii) Calculate the class scatter matrices and means in
the di − dimensional feature space.

(iii) Solve Problem 4 to obtain ai.

(iv) Fix a to ai and update the class scatter matrices
and means.

(v) Solve Problem 4 to obtain αi.

Stop when all αi
j , for j = 1, 2, . . . , di are greater

than ε = 1e − 16.
Since at each iteration we truncate α the above

algorithm is not guaranteed to converge. However
at any iteration i when di ≤ γ no sparseness would
be achieved and hence all αi

j would be equal to one.
Therefore the algorithm is guaranteed to stop at the
latest when di ≤ γ.

5 Experimental Results and Discussion

5.1 A Toy Example This experiment is adapted
from [11]. The probability of y = 1 or y = −1 is
equal. The first three features x1, x2, x3 are drawn as
xi = yN (i, 5). Note that only one of these features is
relevant for discriminating one class from the other, the
other two are redundant. The rest of the features are
drawn as xi = N (0, 20). Note that these features are
noise. The noise features are added to the feature set
one by one allowing us to observe the gradual change in
the prediction capability of both approaches.

We initialize d = 3, i.e. start with the first
three features and proceed as follows. We generate
200 samples for training and 1000 samples for testing.
Then we train and test both approaches and record the
corresponding prediction errors. Next we increase d
by one and repeat the above procedure until we reach
d = 20. For the proposed approach we select the best
two features. The error bars in Figure 1 are obtained
by repeating the above process 100 times for each d each
time using a different training and testing set.

Looking at the results, as d gets larger and noise
features are added to the feature set the performance of
the conventional FLD deteriorates significantly whereas
the average prediction error for the proposed formula-
tion remains around its initial level with some increase
in the standard deviation. Also 90% of the time the
proposed formulation selects feature two and three to-
gether. These are the two most powerful features in the
set.

5.2 Example 2: Colon Cancer
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Figure 1: Testing Error vs l for the Artificial Data. Full
dimensionality and two-dimensional feature subset com-
pared. The dotted curve corresponds to Conventional
FLD, the solid curve corresponds to proposed sparse
appraoch

5.2.1 Data Sources and Domain Description

The database of high-resolution CT images used in
this study were obtained from NYU Medical Center,
Cleveland Clinic Foundation, and two EU sites in
Vienna and Belgium. The 163 patients were randomly
partitioned into two groups: training (n=96) and test
(n=67). The test group was sequestered and only used
to evaluate the performance of the final system.

Training Data Patient and Polyp Info: There were
96 patients with 187 volumes. A total of 76 polyps
were identified in this set with a total number of 9830
candidates.

Testing Data Patient and Polyp Info: There were
67 patients with 133 volumes. A total of 53 polyps
were identified in this set with a total number of 6616
candidates. A combined total of 207 features are
extracted for each candidate by three imaging scientists.

5.2.2 Feature Selection and Classification: In
this experiment we consider three feature selection al-
gorithms in a wrapper framework and compare their
prediction performance on the Colon Dataset. These
techniques are namely, the sparse formulation proposed
in this study (SFLD), the sparse formulation introduced
in [9] for Kernel Fisher Discriminant with linear loss
and linear regularizer (SKFD) and a greedy sequential
forward-backward feature selection algorithm [12] im-
plemented with FLD (GFLD).

5.3 Results and Discussion: Even though we
choose the computationally least expensive model for
SKFD this approach failed to run with the original
training set. Thus we were forced to run SKFD on a
smaller subset of the training dataset where we included
all the positive candidates and a random subset of size
1000 of the negative candidates. The 5 algorithms we
ran were

1. SFLD on the original training set.

2. GFLD on the original training set.

3. Conventional on the original training set.

4. SKFD on the subset training set.

5. SFLK on the subset training set (denoted as SFLD-
sub).

The ROC curves in Figure 2 demonstrates the
LOPO performance of the each algorithm and those in
Figure 3 show the performance on the test data set.
Table 1 shows the number of features selected (d), the
area of the ROC curve scaled by 100 (Area) and the
sensitivity corresponding to 90% specificity (Sens) for
all algorithms considered in this study.
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Figure 2: ROC curves for Training Results (LOPO
results)

These results show that Sparse (SFLD) and SFLD-
sub clearly outperform the greedy and conventional
FLD and SKFD both on the training and testing
datasets. Although SFLD-sub performs better than
SFLD on the training data, SFLD generalizes slightly
better on the testing data. This is not surprising be-
cause SFLD-sub uses a subset of the original training
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Figure 3: ROC curves for Testing Results

Table 1: The number of features selected (d), the area of
the ROC curve scaled by 100 (Area) and the sensitivity
corresponding to 90% specificity (Sens) is shown for
all algorithms considered in this study. The values
in parenthesis show the corresponding values for the
testing results.

Algorithm d Area Sens (%)

SFLD 25 94.8 (94.9) 89 (87)
SFLD-sub 17 94.7 (94.1) 92 (85)
GFLD 17 94.3 (94.7) 85 (83)
SKFD 18 88.0 (82.0) 65 (60)
FLD 207 80.3 (89.1) 63 (77)

data. GFLD performs almost equally well with SFLD-
sub and SFLD algorithms but the difference is hidden
in the computational cost required to select the features
in GFLD. The computational cost of GFLD is propor-
tional to d3 whereas that of SFLD is proportional to
d2.

6 Conclusions

In this study we proposed a sparse formulation of
famous Fisher Linear Discriminant and applied this
technique to a Colon dataset. Experimental results
favor the proposed algorithm over two other feature
selection/regularization techniques implemented in the
FLD framework both in terms of prediction accuracy
and the computational cost for large data sets. Future
study will focus on obtaining sparse solutions in an
iterative scheme without truncating the discriminant
vector which will in turn guarantee convergence.
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