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Multiple Instance Learning algorithms for Computel
Aided Detection

Murat Dundar, Glenn Fung, Balaji Krishnapuram, and R. Bh&adb

Abstract—Many computer aided diagnosis (CAD) problems can
be best modelled as a multiple-instance learning (MIL) problem
with unbalanced data: i.e. , the training data typically consists
of a few positive bags, and a very large number of negative
instances. Existing MIL algorithms are much too computationally
expensive for these datasets. We describe CH, a framework for
learning a Convex Hull representation of multiple instances that
is significantly faster than existing MIL algorithms. Our CH
framework applies to any standard hyperplane-based learning
algorithm, and for some algorithms, is guaranteed to find the
global optimal solution. Experimental studies on two different
CAD applications further demonstrate that the proposed algo-
rithm significantly improves diagnostic accuracy when compared
to both MIL and traditional classifiers. Although not designed for
standard MIL problems (which have both positive and negative
bags and relatively balanced datasets), comparisons against aeth
MIL methods on benchmark problems also indicate that the
proposed method is competitive with the state-of-the-art.

Index Terms—convex hull, multiple instance learning, fisher
discriminant, alternate optimization

I. INTRODUCTION

be assumed to be negativiee( normal) with high confidence.
However, if a candidate is close to a radiologist mark, algio
it is often positive é.g.malignant), this may not always be the
case, as we explain below. First, since they try to identify-s
picious regions, most of the candidate generation algosth
tend to produce several candidates that are spatially ¢tose
each other; since they often refer to regions that are phalgic
adjacent in an image, the class labels for these candidates
are also highly correlated. Second, even though at leas¢é som
of the candidates which are close to a radiologist mark are
truly diseased, often other candidates refer to structtiras
happen to be nearby but are healthy introducing an asynenetri
labeling error in the training data. As a result, we belidvat t
there is a form of stochastic dependence between the Igbelin
errors of a group of candidates, all of which are spatially
proximate to the radiologist mark.

In the CAD literature, standard machine learning
algorithms—such assupport vector machines(SVM),
and Fisher's linear discriminant-have been employed to
train the classifiers for the detection stage. However, atmo

In many Computer Aided Detection (CAD) applications, thall the standard methods for classifier design explicitiykena

goal is to detect potentially malignant tumors and lesions

tertain assumptions that are violated by the somewhatalpeci

medical images (CT scans, X-ray, MRI etc). In an almost unéharacteristics of the data as discussed above.

versal paradigm for CAD algorithms, this problem is addeess

In particular, most of the algorithms assume that the tngjni

by a 3 stage system: identification of potentially unhealthyamples or instances are drawn identically amtependently

regions of interest (ROI) by a candidate generator, contioata
of descriptive features for each candidate, and labelirepch
candidate €.g.as normal or diseased) by a classifier.

from an underlying—though unknown—distribution. How-
ever, as mentioned above, due to spatial adjacency of the
regions identified by a candidate generator, both the featur

In order to train a CAD system, a set of medical imagesnd the class labels of several adjacent candidates (tgaini
(eg CT scans, MRI, X-ray etc) is collected from archives ahstances) are highly correlated. In particular, the dataeg

community hospitals that routinely screen patier@sy. for

ation process gives rise to asymmetric and correlateditapel

colon cancer. Next, these medical images are read by expertrioise, wherein at least one of the positively labeled caatdil

diologists; the regions that they consider unhealthy anketa
as ground-truth in the images. After the data collectiogesta

is almost certainly positive (hence correctly labeledhalgh
a subset of the candidates that refer to other structurds tha

CAD algorithm is designed to learn to diagnose images basesbpen to be near the radiologist marks may be negative.
on the expert opinions of the radiologists on the databaserinally, the appropriate measure of accuracy for evalgatin

of training images. Next, domain knowledge engineering
employed to (a) identify all potentially suspicious regsoin

the classifier in a CAD system is slightly different from the
standard measures that are optimized by the conventional

a candidate generation stage, and (b) to describe each stleBsifier design methods. In particular, even if one of the

region quantitatively using a set of medically relevantdeas

candidates that refers to the underlying malignant strectu

based on for example, texture, shape, intensity and conlfascorrectly highlighted to the radiologist, tipatientis detected,
no radiologist mark is close to a candidate, the class ladiel Gso that correct classification of every candidate instascet
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as important as the ability to deteat least onecandidate that
points to a malignant region.

The problem described above was first introduced in [4]
for Drug Activity Prediction problem. An axis parallelogna
approach was taken to learn molecule shapes with multiple
instances and was evaluated with two different sets of Musk
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Datasets with the goal of differentiating molecules thaebm a classifier that correctly classifies at least one instarama f
"musky” from the rest of the molecules. Later on this probleravery bag. This corresponds perfectly with the the appabgri
has been studied widely [1], [10], [13], [16] and the appilma measure of accuracy for evaluating the classifier in a CAD
domain was extended to include other interesting apptinati system. In particular, even if one of the candidates thatrsef
such as the image retrieval problem. The multiple instante the underlying malignant structure (radiologist mark) i
learning problem as described in this study is slightlyediéht correctly highlighted to the radiologist, the malignamtisture
than the previous descriptions for two reasons. First, irDCAis detectedj.e. , the correct classification of every candidate
we do not have the concept of negative bag, i.e. each negativ&ance is not as important as the ability to detaicteast
instance itself is a bag and second we don’t have a unigoee candidate that points to a malignant region. Furthermore,
target concept, i.e. the lesion can appear in different ehapve would like to classify every sample that is distant from
and characteristics. The convex-hull idea presented is thadiologist mark as negative, this is easily accomplished b
paper to represent each bag is similar in nature to the ormmnsidering each negative candidate as a bag. Therefore,
presented in [8]. However in contrast with [8] and many othevould appear that MIL algorithms should outperform tradi-
approaches in the literature [4], [1], [13] our formulatigads tional classifiers on CAD datasets.
to a strongly convex minimization problem that converges Unfortunately, in practice, most of the conventional MIL
to a unique minimizer. Since our algorithm considers eacligorithms are computationally quite inefficient, and soohe
negative instance as an individual bag, it is complexity ihem have problems with local minima. In CAD we typically
square proportional to the number of positive instanceg orilave several thousand mostly negative candidates (ireganc
which makes it scalable to large datasets with large numkj8f, and a few hundred positive bags; existing MIL algorigim
of negative examples. are simply unable to handle such large datasets due to time or
In Section Il we present a novel convex-hull-based Mlimemory requirements.
algorithm. In Section Il we provide experimental evidence Notation: Let the i-th bag of classj be represented by
from two different CAD problems to show that the proposethe matrixB;? € R =1,...,r; ,j € {1}, nis the
algorithm is significantly faster than other MIL algorithmsnumber of features;; is the number of bags in classi. The
and more accurate when compared to other MIL algorithmew [ of B, denoted byB;ﬁl represents the datapoihbf the
and to traditional classifiers. Further—although this is ndagi in classj with [ =1,... ,m;l. The binary bag-labels are
the main focus of our paper—on traditional benchmarks fegpecified by a vectod € {+1}". The vectore represent a
MIL, our algorithm is again shown to be competitive with theector with all its elements one.
current state-of-the-art. We conclude with a descriptibthe
relationship to previous work, review of our contributipasd
directions for future research in Section IV.

it

A. Key idea: Relaxation of MIL via Convex-Hulls

The original MIL problem requires at least one of the
samples in a bag to be correctly labeled by the classifies: thi
corresponds to a set of discrete constraints on the clas8fie

Almost all the standard classification methods explicitlgontrast, we shall relax this and require that at least onret po
assume that the training samples (i.e., candidates) avendran the convex hull of a bag of samples (including, possibly
identically and independentlyfrom an underlying—though one of the original samples) has to be correctly classified.
unknown—distribution. This property is clearly violatedan Figure 1 illustrates the idea using a graphical toy example.
CAD dataset, due to spatial adjacency of the regions idedtifiln this example there are three positive bags each with five
by a candidate generator, both the features and the cleals lamstances and displayed as circles. The goal is to distigui
of several adjacent candidates (training instances) ajelyhi these positive bags from the negative bags, all of whicht exis
correlated. First, because the candidate generators f@ CAs a single instance and are displayed by the diamonds in the
problems are trying to identify potentially suspiciousioe, figure. One of the instances in the positive bags happens to
they tend to produce many candidates that are spatiallg ttos be an outlier. These are the circles at the right side of the
each other; since these often refer to regions that aregdilysi figure farthest from the rest of the circles. The convex hulls
adjacent in an image, the class labels for these candidetesspanned by the instances of each of the bag are shown with the
also highly correlated. Second, because candidates akeldb polyhedrons in the figure. The MIL algorithm learns a point
positive if they are within some pre-determined distanagithin the convex hull of each of the bag (shown with the
from a radiologist mark, multiple positive candidates cbulstars) while maximizing the margin between the positive and
correspond with the same (positive) radiologist mark on threegative bags. This convex-hull relaxation (first introgldiin
image. Note that some of the positively labelled candidatf®]) eliminates the combinatorial nature of the MIL problem
may actually refer to healthy structures that just happepeto allowing algorithms that are more computationally efficien
near a mark, thereby introducing an asymmetric labelingrerrAs mentioned above, we will consider that a bﬁg' is
in the training data. correctly classified if any point inside the convex hull of

In MIL terminology from previous literature [4], a “bag” the bagBJ’i (i.e. any convex combination of points cB;i)
may contain many observation instances of the same undercorrectly classified. Let s.t. 0 < )\;'c,e’A;l = 1 be the
lying entity, and every training bag is provided a class labgector containing the coefficients of the convex combimatio
(e.0. positive or negative). The objective in MIL is to learnthat defines the representative point of bagclass;. Letr be

Il. NOVEL MIL ALGORITHMS
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programming algorithm for Fisher’s Linear Discriminant]1
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The number of variables to be optimized in (2)isn+1++:
this is computationally infeasible when the number of bags i
large ¢ > 10%). To alleviate the situation, we (a) replageby
d* — (\;Bjw — en) in the objective function, and (b) replace
Fig. 1. A toy example illustrating the proposed approachitResand nega- the equality constraints’gj =0 by w (uy —p_) = 2. This

tive classes are represented by circles and diamonds reghed®olyhedrons - - .
represent the convex hulls for the three positives bagspdirets chosen by substitution eliminates the variablgsn from the problem

our algorithm to represent each bag is shown by stars. Theligearepresents and also the corresponding equality constraints in (2).

the linear hyperplane obtained by our algorithm and thelblae represents Effectively, this results in the MIL version of the traditial FD

the hyperplane for the SVM. algorithm. As discussed later in the paper, in addition ® th
obvious computational gains, this manipulation resultsome
algorithmic advantages as well (For more information on the

the total number of representative points, r = r.+r_. Let equivalence between the single instance learning versibns

~ be the total number of convex hull coefficients correspogdir{2) and (3) see [11]). Thus, the optimization problem reduce

Tj

to the representative points in clagsi.e. v, = > .7, mj to:

011

v =+ +~—. Then, we can formulate the MIL problem as, ( Sﬂ% X wTSww +  ®(w)+ T
w, N ER+Y
. st w'(uy —p-) = b 3)
(g’w77]7A§Ié$~+r,L+1+w I/E(f) + (I)l(wa 7])' + | \I/()\) €/>\} _ |
s.t. & = d'—(N;Bjw—en) 0 < A
S Q T .
e,; _ where Sy = > ooy % (X, — pje’) (X; —pye’)” is the
6 < N within class scatter matriy,; = - X e is the mean for class
— 7 J

(1) J. X; € X" is a matrix containing the; representative
Where¢ = {¢,,...,¢,} are slack terms (errors), is the bias Points onn-dimensional space such that the rowof denoted
(offset from origin) term, and\ is a vector containing all the by b; = B\’ is the representative point of bagn class;
Xifori=1,...,r;,j € {£}. E: R" = R represents the lossWherei = {1,...,r;} andj € {£}.
function, ® : R**tD) = R is a regularization function on the
hyperplane coefficients [14] anHl is a regularization function C. Alternate Optimization for Convex-Hull MIL Fisher’'s Bis
on the convex combination coeﬁicienﬂt@. Depending on the criminant
choice of £,®, ¥ and 2, (1) will lead to MIL versions of  The proposed mathematical program (3) can be solved using
several well-known classification algorithms. an efficient Alternate Optimization (AO) algorithm [2]. Ihe
1) B(¢) = ||(§)+||§- B(w,n) = H(’wﬂ?)Hg andQ = R+ AO setting the_main optimization problem is subd_iv_id_ed i tw
leads to MIL versions of the Quadratic—Programming§ma"er or easier sybproblems that depend on disjointsetaibs
SVM [9]. of the orlgmgl variables. Whgﬂf(w) and \1{(/\) are .strongly
2) E(¢) = H(ﬁ)Hi, O(w,n) = ||(w,77)||§ andQ — R, convex functions, both th_e (_)r!glnal oblngtlve function ahd
leads to MIL versions of the Least-Squares-SVM., WO subproblems (for optimizing andw) in (3) are strongly
3) v=1, B¢ = ”5”;, Q={€:ee =0, je{£}} convex, meaning that the glgorlthnj converges to a _global
leads to MIL versions of the QP formulation fBisher's Minimizer [15]. For computational efficiency, in the remden
linear discriminant(FD) [11]. of the paper \2Ne will use the reglullarlzek{w) = e.||wH2 and
U(A) = €[5, wheree is a positive regularization parame-
As an example, we derive a special case of the algorithm fi@r. An efficient AO algorithm for solving the mathematical
the Fisher’s Discriminant, because this choice (FD) brings program (3) is described below.
some algorithmic as well as computational advantages. Sub Problem 1: Fix A = A*; When we fixA = \*, the
problem becomes,
: T
o wTS wo + $(w) @)
B. Convex-Hull MIL for Fisher’s Linear Discriminant st wh(py —p-)=0b
which is the formulation for the Fisher’s Discriminant. &n
Settingy =1, E(&) = |\§||§, Q={¢:e¢; =0, je{£}} Sw is the sum of two covariance matrices, it is guaranteed
in (1) we obtain the following MIL version of the quadraticto be at least positive semidefinite and thus the problem in
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(4) is convex. For datasets with>> n, i.e. the number of K : ®* = R7 and then by optimizing (4) and (5) in this
bags is much greater than the number of dimensiondlityijs new space. Ideally is set toy. However wheny is large, for
positive definite and thus the problem in (4) is strictly oexiv computational reasons we can use the technique presented in
Unlike (1) where the number of constraints is proportiomal {7] to limit the number of datapoints spanning this new space
the number of bags, eliminatinggandn leaves us with only This corresponds to constrainingto lie in a subspace of the
one constraint. This changes the order of complexity frokernel space.

O(nr?) to O(n?r) and brings some computational advantages
when dealing with datasets with>> n.

. . Ill. EXPERIMENTAL RESULTS AND DISCUSSION
Sub Problem 2: Fix w = w*: When we fixw = w*, the

problem becomes For the experiments in section Ill-A , we compare four
. Ta technigues: naive Fisher’s Discriminnat (FD), CH-FD, END-D
AERY ATSwA 4T [16], IDAPR [4]. For IDAPR and EM-DD we used the Matlab
st AT (fs - /L) = b (5) implementation of these algorithms also used in [18]. Irhbot
er; =1 experiments we used the linear version of our algorithm.
0 < /\§ Hence the only parameter that requires tuning ighich is

- _ . . : tuned to optimize the 10-fold Patient Cross Validation oa th
where Sy and i are defined as in (4) wittk; replaced by training data,. All algorithms are trained on the trainiretal

ey . o
i{gww;;;?s)%neth:j di:né?\s?gr\:\;lasgitgxsf:hm;lglnt%;hrgv 0gnd t_hen tested_on the sequgs_tered test data. The res_ulting
X, denoted byb’ is a vector with its nonzero elements set t eceiver Operating Characteristics (ROC) plots are obthin

- 7 i1k %y trying different values of the parametdrs ¢) for IDAPR,
Bjw*. For the positive class elemens;_, m? +1 through 5,4 1 thresholding the corresponding output for each of the
> ey mb of b; are nonzero, for the negative class nonzeie\m.-pp, FD and CH-FD.
elements are located &%, m% + 2,_, m* + 1 through
Sl mk + 37, m”. Note thatSy is also a sum of two
covariance matrices, it is positive semidefinite and thues t X
problem in (5) is convex. Unlike sub problem 1 the positiv®€tection
definiteness ofy does not depend on the data, since it always Next, we present the problems that mainly motivated this
true thatr < ~. The complexity of (5) isO(n~?). work. Pulmonary embolism (PE), a potentially life-threwtey

As it was mentioned before, in CAD applications, a bagondition, is a result of underlying venous thromboembolic
is defined as a set of candidates that are spatially cladisease. An early and accurate diagnosis is the key to siirviv
to the radiologist marked ground-truth. Any candidate th&@omputed tomography angiography (CTA) has emerged as
is spatially far from this location is considered negative ian accurate diagnostic tool for PE, and However, there are
the training data, therefore the concept of bag for negatitiendreds of CT slices in each CTA study and manual reading
examples does not make any practical sense in this scenagolaborious, time consuming and complicated by various
Moreover, since ground truth is only available on the tragni PE look-alikes. Several CAD systems are being developed
set, there is no concept of a bag on the test set for bathassist radiologists to detect and characterize embal; [1
positive and negative examples. The classifier trained i; thi17]. At four different hospitals (two North American sites
framework classifies and labels test instances indiviguall and two European sites), we collected 72 cases with 242
the bag information in the training data is only used as RE bags comprised of 1069 positive candidates marked by
prior information to obtain a more robust classifier. Hencexpert chest radiologists. The cases were randomly divided
the problem in (5) can be simplified to account for thesato two sets: training (48 cases with 173 PE bags and 3655
practical observations resulting in an optimization peobl candidates) and testing (24 cases with 69 PE bags and 1857
with O(nv?) complexity. The entire algorithm is summarizectandidates). The test group was sequestered and only used
below for clarity. to evaluate the performance of the final system. A combined

total of 70 features are extracted for each candidate. These

D. CH-FD: An Algorithm for Learning Convex Hull Reme_feature; were aII_image-based fea_tl_Jres and were normalized
to a unit range, with a feature-specific mean. The features ca
be categorized into those that are indicative of voxel isitgn

. Two CAD Datasets: Pulmonary Embolism & Colon Cancer

sentation of Multiple Instances

(0) Choose as initial guess for® = &, Vi = 1,...,7, Set  yicrip dions within the candidate, those summarizingritis-
counter ¢=0. tions in neighborhood of the candidate, and those that iftescr
(i) Forfixed A", Vi =1,...,r solve forw® in (4). the 3-D shape of the candidate and enclosing structures. When
(i) Fixing w = w* solve forA", vi=1,...,7in (5). combined these features can capture candidate propdrées t
(iii) Stop if [[AMeTD —Nle, . At —are|Lis less than can disambiguate typical false positives such as dark #heas
some desired tolerance. Else replace by A1) and  result from poor mixing of bright contrast agents with bldond
c by c+1 and go to(i). veins, and dark connective tissues between vessels, frgn tr

The nonlinear version of the proposed algorithm can be obmboli. These features are not necessarily independedt, an
tained by first transforming the original datapoints to ankér may be correlated with each other, especially with features
space spanned by all datapoints through a kernel operagor, the same group.
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Colorectal cancer is the third most common cancer in bothere are 2 volumes per patient). In the region of clinical
men and women. It is estimated that in 2004, nearly 147,00@erest (AUC-RCI), Table | shows that CH-FD significantly
cases of colon and rectal cancer will be diagnosed in the Usiitperforms all other methods.
and more than 56,730 people would die from colon cancerExecution times for all the methods tested are shown in
[5]. CT colonography is emerging as a new procedure to helpble |. As expected, the computational cost is the cheapest
in early detection of colon polyps. However, reading thiougfor the traditional non-MIL based FD. Among MIL algorithms,

a large CT dataset, which typically consists of two CT serider the PE data, CH-FD was roughly 2-times and 9-times as
of the patient in prone and supine positions, each with sévefast than IAPR and EMDD respectively, and for the much
hundred slices, is time-consuming. Colon CAD [3] can plalarger colon dataset was roughly 85-times and 2000-times
a critical role to help the radiologist avoid the missing ofaster, respectively(see Table I).

colon polyps. Most polyps, therefore, are represented loy tw
candidates; one obtained from the prone view and the ¢
one from the supine view. Moreover, for large polyps, a tgp
candidate generation algorithm generates several caedi
across the polyp surface. The database of high-resolutioi
images used in this study were obtained from seven diffe
sites across US, Europe and Asia. The 188 patients
randomly partitioned into two groups, training comprisdd
65 cases with 127 volumes, 50 polyps bags (179 pos
candidates) were identified in this set with a total numbe
6569 negative candidates and testing comprised of 123yps I
with 237 volumes, a total of 103 polyp bags (232 posil i
candidates) were identified in this set with a total numbe 4
12752 negative candidates. The test group was sequestete 7
only used to evaluate the performance of the final systen - i i ) W B ®

A total of 75 features are extracted for each candidate.er
imaging scientists contributed to this stage. These featcan
be grouped into three. The first group of features are der
from properties of patterns of curvature to characterize
shape, size, texture, density and symmetry. These fea
aim at capturing a general class of mostly symmetrical
round structures protruding inward into the lumen (air it
the colon), having smooth surface and density and tex
characteristics of muscle tissue. These kinds of strust
exhibit symmetrical change of curvature sign about a ckl
axis perpendicular to the objects surface. Colonic folds,
the other hand, have shapes that can be characterized a:
cylinders or paraboloids and hence do not present sir
symmetry about a single axis [6]. The second group of feat
are based on a concept called tobogganing. Fast Tobogg ‘ ‘ ‘ ‘ ‘
aims to quickly form a toboggan cluster, which contains e
given pixel without scanning the whole volume. It consisw
of two steps; for a given point the algorithm slides/climbs tFig. 2. ROC curves obtained foujf) PE Testing data andi¢wn) COLON
its concentration and then expands from the concentration'¢sting Data
form a toboggan cluster. The third group of features aredase
on a concept called diverging gradient. In this techniqus fir .
the gradient field of the image is computed. Then a filter E Experiments on Benchmark Datasets
convolved with the gradient field at different scales to gatee = We compare CH-FD with several state-of-the-art MIL al-
multiple response images. Features are extracted by furtgerithms on 5 benchmark MIL datasets: 2 Musk datasets [4]
processing of these response images at different scales. and 3 Image Annotation datasets [1]. Each of these datasets

The resulting Receiver Operating Characteristics (ROCpntain both positive and negative bags. CH-FD (and MICA)
curves are displayed in Figure 2. Although for the PE datasaege just the positive bag information and ignore the negativ
Figure 2 (left) IDAPR crosses over CH-FD and is morbag information, in effect, treating each negative instaas
sensitive than CH-FD for extremely high number of falsa separate bag. All the other MIL algorithms use both the
positives, Table | show that CH-FD is more accurate than glbsitive and negative bag information.
other methods over the entire space (AUC). Note that CAD The Musk datasets contains feature vectors describing the
performance is only valid in the clinically acceptable rangsurfaces of low-energy shapes from molecules. Each feature
< 10fp/patient for PE,< 5fp/volume for Colon (generally vector has 166 features. The goal is to differentiate mddscu

Sensitivity

e

~ = crH-rD|
ENDD
——IAPR

2}
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TABLE |
COMPARISON OF3 MIL AND ONE TRADITIONAL ALGORITHMS: COMPUTATION TIME, AUC, AND NORMALIZED AUC IN THE REGION OF CLINICAL
INTEREST FORPEAND COLON TEST DATA

Algorithm  Time (PE) Time (Colon) AUC (PE) AUC (Colon) AUC-RCI (PE) AJRCI (Colon)

IAPR 184.6 689.0 0.83 0.70 0.34 0.26
EMDD 903.5 16614.0 0.67 0.80 0.17 0.42
CH-FD 97.2 7.9 0.86 0.90 0.50 0.69
FD 0.19 0.4 0.74 0.88 0.44 0.57

that smell "musky” from the rest of the molecules. Approxi€lassified) with infinite but continuous sets of constraifas
mately half of the molecules are known to smell musky. Theteast one convex combination of the original instances enev
are two musk datasets. MUSK1 contains 92 molecules withbag has to be correctly classified). Further, the proposeal id
total of 476 instances. MUSK2 contains 102 molecules withfar achieving convexity in the objective function of theitiag
total of 6598 instances. 72 of the molecules are shared betwalgorithm alleviates the problems of local maxima that escu
two datasets but MUSK2 dataset contain more instances forsome of the previous MIL algorithms, and often improves
the shared molecules. The Image Annotation data is composieel classification accuracy on many practical datasetsd;Thi
of three different categories, . Each dataset naniéfjer, we present a practical implementation of this idea in thenfor
Elephant Foxhas 100 positive bags and 100 negative bags.of a simple but efficient alternate-optimization algoritHar

We set ®(w) = v|A. For the musk datasets our re-Convex Hull based Fisher's Discriminant. In our benchmark
sults are based on a Radial Basis Function (RBF) kerretperiments, the resulting algorithm achieves accuraayith
K(z;,x;) = exp(—o ||z — y|*). The kernel space is assumedomparable to the current state of the art, but at a signtfican
to be spanned by all the datapoints in MUSK1 dataset andosver run time (typically several orders of magnitude speed
subset of the datapoints in MUSK2 dataset (one tenth of thps were observed).
original training set is randomly selected for this purgose
The width of the kernel function and are tuned over a ACKNOWLEDGMENT
discrete set of five values each to optimize the 10-fold Cross _ i
validation performance. For the Image Annotation data vee us Ve would like to thank everyone who contributed to the
the linear version of our algorithm. We follow the benchmargOIOn and PE CAD projects. Our special thanks. goes to Dr.
experiment design and report average accuracy of 10 runsS&rang.Laque, Dr. Anna Jerebko, Dr. Senthil Periaswamy, Dr
10-fold Cross Validation in Table II. Results for other MiL-@ng Jianming and Dr. Luca Bogoni.
algorithms from the literature are also reported in the same

table. Iterated Discriminant APR (IAPR), Diverse Density REFERENCES

(DD) [10], Expectation-Maximization Diverse Density (EM- [1] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Suppa@tter ma-
DD) [16], Maximum Bag Margin Formulation of SVM (mi- chines for multiple-instance learning,” ikdvances in Neural Informa-
SVM, MI-SVI\/I) [1]’ Multi Instance Neural Networks (MI- tion Processing Systems,1S. T. S. Becker and K. Obermayer, Eds.

. . . . . Cambridge, MA: MIT Press, 2003, pp. 561-568.

NN) [13] are the techniques considered in this experiment fo[2] J. Bezdek and R. Hathaway, “Convergence of alternatiptinozation,”

comparison purposes. Results for mi-SVM, MI-SVM and EM-  Neural, Parallel Sci. Computvol. 11, no. 4, pp. 351-368, 2003.

DD are taken from [1] [3] L. Bogoni, P. Cathier, M. Dundar, A. Jerebko, S. Lakare,Lihng,

. S. Periaswamy, M. Baker, and M. Macari, “Cad for colonography

Table Il shows that CH-FD is comparable to other tech- tool to address a growing needBritish Journal of Radiologyvol. 78,

nigues on all datasets, even though it ignores the negative pp. 5762, 2005.
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TABLE I
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