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Overview 
 Semi-supervised learning and the fixed model assumption 
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Overview 
 

A new direction for Semi-supervised learning 

 utilizes unlabeled data to improve learning even 
when labeled data is partially-observed 

 uses self-adjusting generative models instead of 
fixed ones 

 discovers new classes and new components of 
existing classes 
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Outline 

1. Learning in Non-exhaustive Settings 

2. Motivating Problems 

3. Overview of the Proposed Approach 

4. Partially-observed Hierarchical Dirichlet Processes 

5. Illustration and Experiments 

6. Conclusion and Future Work 

4 



Non-exhaustive Setting 
 Training dataset is unrepresentative if the list of classes is 

incomplete, i.e., non-exhaustive 

 Future samples of unknown classes will be misclassified 
(into one of the existing classes) with a probability one 

ill-defined classification problem! 

 

 

 

     blue: known 

     green & purple: unknown 
5 



What may lead to non-exhaustiveness? 

 

 Some classes may not be in existence 

 Classes may exist but may not be known 

 Classes may be known but samples are unobtainable 

 

Exhaustive training data not realistic for many problems 
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Some Application Domains 
 

 Classification of documents by topics 

 research articles, web pages, news articles 

 Image annotation 

 Object categorization 

 Bio-detection  

 Hyperspectral image analysis 
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 Biodetection 

Food Pathogens 
 Acquired samples are from most 

prevalent classes 

 High mutation rate, new classes  
can emerge anytime 

 An exhaustive training library 
simply impractical 

 

Inherently non-exhaustive 
setting 

 

A B 

C D  

(A) Listeria monocytogenes 7644,  

(B) E. coli ETEC O25,  

(C)Staphylococcus aureus P103,  

(D)Vibrio cholerae O1E 
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Hyperspectral Data Analysis 
 Military projects, GIS, urban planning, ... 
 Physically inaccessible or dynamically changing areas 

 Enemy territories, special military bases 
 urban fields, construction areas 

Impractical to obtain an exhaustive training data 
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Semi-supervised Learning (SSL) 
 Traditional approaches 

 1. self-training, 2. co-training, 3. transductive methods,     
4. graph-based methods, 5. generative mixture models 

 Unlabeled data improves classification under certain 
conditions, but primarily: 

 model assumption matches the model generating the data 

 Limited labeled data not only scarce, but usually data  
distribution not fully represented or maybe evolving 
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SSL in Non-exhaustive Settings 
 

A new framework for semi-supervised learning 

 replaces the (brute-force fitting of a) fixed data model 

 dynamically includes new classes/components 

 classifies incoming samples more accurately 

 

A self-adjusting model to better  accommodate unlabeled data 
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Our Approach in a Nutshell 
 

 Classes as Gaussian mixture model (GMM) with 
unknown number of components 

 Extension of HDP to dynamically model new 
components/classes 

 Parameter sharing across inter- & intra-class 
components 

 Collapsed Gibbs sampler for inference 
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Our Notation 

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DP, HDP Briefly… 
 Dirichlet Process (DP): a nonparametric prior over the number of 

mixture components with base distribution G0 and parameter α 

 Hierarchical DP: models each group/class as a DP mixture and 
couples the Gj’s through a higher level DP 

  
𝑥𝑗𝑖|𝜃𝑗𝑖 ~ 𝑝(⋅ |𝜃𝑗𝑖)        𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑗, 𝑖

𝜃𝑗𝑖|𝐺𝑗 ~ 𝐺𝑗                𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑗, 𝑖
   

 

  
𝐺𝑗|𝐺0, 𝛼 ~ 𝐷𝑃(𝐺0, 𝛼)        𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝑗

𝐺0|𝐻, 𝛾 ~ 𝐷𝑃(𝐻, 𝛾)
   

 

 α  controls the prior probability of a new component 
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Modeling with HDP 
 Chinese Restaurant Franchise (CRF) analogy 

 Restaurants correspond to classes, tables to mixture components 
and dishes in the “global menu” to unique parameters 

 First customer at a table orders a dish 

 Popular dishes more likely to be chosen 

 Role of γ in picking a new dish from the menu 
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Conditional Priors in CRF 

 Seating customers and assigning dishes to tables 

 t
ji
 – index of the table for customer i in restaurant j 

 kjt – index of the dish served at table t in restaurant j 

𝑡𝑗𝑖|𝑡𝑗1, … , 𝑡𝑗,𝑖−1, 𝛼 ~
𝛼

𝑛𝑗 + 𝛼
𝛿𝑡𝑛𝑒𝑤 + ‍

𝑚𝑗.

𝑡=1

𝑛𝑗𝑡
𝑛𝑗 + 𝛼

𝛿𝑡 

𝑘𝑗𝑡|𝑘𝑗1, … , 𝑘𝑗,𝑡−1, 𝛾 ~
𝛾

𝑚.. + 𝛾
𝛿𝑘𝑛𝑒𝑤 + ‍

𝐾

𝑘=1

𝑚.𝑘
𝑚.. + 𝛾

𝛿𝑘 
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Inference in HDP 
 Gibbs sampler to iteratively sample the indicator variables 

for tables and dishes given the state of all others 

 𝐭 = 𝑡𝑗𝑖 𝑖=1
𝑛𝑗

𝑗=1

𝐽
, 𝐤 = 𝑘𝑗𝑡 𝑡=1

𝑚𝑗.

𝑗=1

𝐽
, 𝜙 = 𝜙𝑘 𝑘=1

𝐾  

 

 Conjugate pair of H and P(.|φ) allows for integrating out φ 

to obtain a collapsed version 

 

 α and γ also sampled in each sweep based on number of 

tables and dishes, respectively. (Escobar & West, 1994) 
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Gibbs Sampler for t and k 
 Conditional weighted by number of samples 

 

 

 

 

 Joint probability weighted by number of components 
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Defining Partially-observed Setting 
 

 Observed classes/subclasses: Those initially available in the 
training library.  

 Unobserved classes/subclasses: Those not represented in 
the training library 

 New classes: classes discovered online, verified offline 

 limited to a single component until manual verification 
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HDP in a Partially-observed Setting 
 

 Two tasks: 

1. Inferring component membership of labeled samples 

2. Inferring both the group and component membership 
of unlabeled samples 

 Unlabeled samples evaluated for all existing 
components 
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Inference in Partially-observed HDP 
 Updated Gibbs sampling inference for tji 
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Inference in Partially-observed HDP 
 Updated inference for kjt for existing and new classes 
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Gaussian Mixture Model Data 

Σ0, 𝑚, 𝜇0, 𝜅 estimated from labeled data by Empirical Bayes 
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Inference from GMM Data 
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Parameter Sharing in a GMM 
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Illustrative Example 
 3 classes as a mixture of 3 components  

 110 samples in each component, 10 randomly selected as labeled 
100 considered as unlabeled 

 Covariance matrices from a set of 5 templates 
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Illustrative Example 
Standard HDP using 
only labeled data 

A fixed generative model 
assigning full weight to 
labeled samples and reduced 
weight to unlabeled ones. 

SA-SSL using labeled 
and unlabeled data  
with parameter sharing 27 

1 

2 
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Experiments - Evaluated Classifiers 

 Baseline supervised learning methods using only labeled data 

 Naïve-Bayes (SL-NB), Maximum likelihood (SL-ML), expectation 
maximization  (SL-EM) 

 

 Benchmark semi-supervised learning methods 

 Self-training with base learners ML and NB (SELF) 

 Co-training with base learners ML and NB (CO-TR) 

 SSL-EM: Standard generative model approach 

 SSL-MOD: EM based approach with unobserved class modeling 

 SA-SSL: Proposed Self-adjusting SSL approach 
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Experiments – Classifier Design 

 Split available labeled data into train, unlabeled and test 

 Stratified sampling to represent each class proportionally 

 Consider some classes “unobserved” moving their 
samples from training set to unlabeled set 

 Non-exhaustive training set, exhaustive unlabeled and 
test sets 
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Experiments – Evaluation 

 Overall classification accuracy  

 Average accuracies on observed and unobserved classes 

 Newly created components associated with unobserved 
classes according to majority of samples 

 Repeated with 10 random test/train/unlabeled splits 
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Remote Sensing 
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 20 components and 10 unique covariance matrices in total 

 Two to three components per each of the 8 classes 

 Half of the components shares covariance matrices 

 

 

 

 

Remote Sensing Results 
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Pathogen Detection Experiment 
 Total of 2054 samples from 28 bacteria classes 

 Each class contains between 40 to 100 samples 

 22 feature samples 

 4 classes made unobserved, 24 classes remains observed 

 30% as test, 20% as train and remaining 50% as unlabeled 

 

 Totally 180 components, 150  

 unique covariance matrices 

 Five to six components 

   per each class 

 One sixth of the components  

   shared parameter with others 
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Method Acc Acc-O Acc-U 

SA-SSL 0.81 0.80 0.84 

SSL-EM 0.64 0.75 0 

SSL-MOD 0.67 0.74 0.26 

SELF 0.59 0.70 0 

CO-TR 0.60 0.72 0 

SL-ML 0.62 0.73 0 

SL-NB 0.52 0.62 0 

SL-EM 0.30 0.35 0 



Recap of the Contributions 
 A new approach to learning with a non-exhaustively 

defined labeled data set 

 A unique framework to utilize unlabeled samples in 
partially-observed semi-supervised settings 

 

1) Extension of HDP model to entertain unlabeled data 
and to discover & recover new classes 

2) Fully Bayesian treatment of mixture components to 
allow parameter sharing across different components 

a) addresses the curse of dimensionality 

b) connects observed classes with unobserved ones 
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Future Work 

 Replace Gibbs sampler with more scalable 
approximate inference methods 

 

 Speed-up for real-time analysis of sequential data via 
a sequential MCMC sampler 

 

 Extend the framework to hierarchically-structured 
datasets to associate discovered classes with higher 
level groups of classes 
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