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We study the dynamics of simple congestion games with two resources, where a continuum of agents behaves
according to a simplified version of Experience-Weighted Attraction (sEWA) algorithm. Dynamics is charac-
terized by the population intensity of choice/learning rate a > 0, capturing their economic rationality, i.e.,
their tendency to approximately best respond to the other agent’s behavior, and a discount factor (exploration
parameter) σ ∈ [0,1], capturing a type of memory loss (recency bias) where past outcomes matter exponentially
less than the recent ones. Finally, our system adds a third parameter b ∈ (0,1), which captures the asymmetry
of the cost functions. We show that for any discount factor σ the system is destabilized for a sufficiently large
intensity of choice a; however, dependent on the level of the asymmetry of the game b, and its relation to σ,
the system stays predictable or becomes unpredictable and chaotic. As σ increases the chaotic regime gives
place to a periodic orbit of period 2 that is globally attracting except for a countable set of points that lead to
equilibrium. Therefore, as the discount factor increases, memory loss can make the system predictable.

Learning in games is a universal modelling tool
used in game theory, economics, mathematical
biology and artificial intelligence. Nevertheless,
even in the simple setting of a congestion game
with two resources and full memory, under mini-
mal genericity assumption chaos is inevitable un-
der sufficiently large learning rate24. But what if
agents forget? We study what happens if agents
discount their past, where past outcomes mat-
ter exponentially less than the recent ones. We
show that as agents forget more (the recency
bias grows) the chaotic regime gives place to
predictable behavior of period 2, almost as pre-
dictable as the gold standard of a globally attract-
ing equilibrium.

I. INTRODUCTION

Congestion games65 are arguably amongst the most
well-studied classes of games in game theory. They cap-
ture multi-agent settings where the costs of each agent
depends on the resources she chooses and how congested
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each of them is (e.g., traffic routing, common resources).
Congestion games are isomorphic to potential games59,
i.e., games where the incentives of all agents are perfectly
aligned with each other by being equivalent to optimizing
a single potential function. Furthermore, population (non-
atomic) congestion games are even more regular game
settings as under a minimal natural assumption on the
cost functions of resources it is known that they admit
an essentially unique equilibrium flow which coincides
with the global minimum of a strictly convex potential
function60. Given the above, they are typically thought
as the paragon of game theoretic stability with numer-
ous evolutionary dynamics provably converging in them
via Lyapunov arguments where the potential function is
strictly decreasing with time20,26,32,33,46,47,56,57,61,68.

Despite the ubiquitous nature of these positive results,
at a closer look, a common driving “regularity” assump-
tion emerges at their core. The behavioral dynamics have
to be in a sense “smooth” enough to act as a gradient-like
system for the common potential function. This type
of regularities typically follow automatically in the case
of continuous-time dynamics68 whereas in the case of
discrete-time dynamics they can be enforced by appropri-
ate upper bounds on the step-size/learning rates. These
bounds decrease as we increase the Lipschitz constant
of the gradient of the potential with steeper potentials
resulting in more restrictive bounds on the intensity of
choice of the agents. In the case of non-atomic congestion
games, as we increase the total population size (i.e., total
load/congestion) these bounds converge to zero. Of course,
the mathematical necessity of such regularity conditions
is abundantly clear as even with gradient descent on a
strictly convex function the step-size has to be controlled
as the function becomes steeper to avoid overshooting
effects. What is less clear is how well do these mathe-
matically driven constraints agree with our best known
understanding of how people actually behave and adapt
when facing such strategic considerations in practice:
What type of behavior emerges if we move away from

assumption of vanishingly small step-sizes?
Does equilibration persist and if not what takes its
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place?
Motivated by this set of questions a number of recent

papers have studied standard online learning algorithms
such as Multiplicative Weights Update (MWU) (and vari-
ants thereof) in congestion games9,24,25,61. The main
insight of the line of research is that even in the case of
rather simple non-atomic congestion games, with only
two strategies/resources/paths available for the agents
and even with linear cost for each path, if the effective
population learning rate (i.e., learning rate × popula-
tion size) becomes large enough then the system becomes
unstable24. Furthermore, under a minimal genericity
assumption that the cost functions are not perfectly sym-
metric, i.e., the unique equilibrium flow is a perfect 50-50
split, then the system will not only become unstable but
actually formally chaotic. Similar chaotic results has since
been established for many other class of games and appli-
cations such as Cournot competition, Fisher markets and
auctions21 or transaction fee mechanism design49. This
proliferation of results raises the following question:

Is chaos inevitable in congestion games
under sufficiently large learning rate?

The question of how people learn to adapt their strate-
gies in real-world games is the object of study of behav-
ioral game theory17,18,42. Experience-Weighted Attrac-
tion (EWA) is a canonical learning model in behavioral
game theory and although in its full generality contains
too many free parameters recent work has focused on
a stripped down version36, which we will call simplified
EWA (sEWA). It allows only two free parameters, the in-
tensity of choice, a, (akin to the exponent of a logit choice
function2) and a memory loss parameter, σ, which is akin
to the rate of exponential discounting over past payoffs.
Equivalently, our dynamics can be interpreted as the stan-
dard MWU algorithm where the agents’ costs have been
regularized by adding an appropriately scaled negative
entropy term, which encourages exploration of suboptimal
strategies. We adopt this model where, roughly speaking,
agents perform logit best-responses to an estimate of the
historical performance of each action where the effect of
past payoffs/costs decays exponentially fast.
Importantly, experimental work in the area suggests

that large intensities of choice are common18, pointing
out at the possibility of a conflict between standard math-
ematically driven assumptions and experimentally tested
behavioral regularities. Similarly, the discounting rate is
shown to be reliably positive; however, its actual value can
vary widely from game to game42. Thus, our motivating
questions translate to our setting as follows:
How does the interplay between intensity of choice and

memory loss affect the convergence results in simple con-
gestion games?

At what points of the parameter space do the dynamics
destabilize and when they do what sort of behavior do they
give rise to (limit cycles, chaos, etc.)?

Finally, how does the nature of the congestion game
(e.g. symmetry of costs) affect its stability?

In a prior conference proceeding 24, we have provided
some preliminary answers to these questions for the special
case where the agents have no memory loss, whereas now
we provide a thorough understanding of the complex
phenomena emerging at different levels of memory loss.
Our results. We describe how memory loss and asym-

metry of costs interacts in simple population games with
two strategies when the increase in the intensity of choice
results in losing stability of the system.
Main Theorem (informal). For a fixed discount

factor σ ∈ [0,1], where σ = 0 describes a full memory
case and increasing σ > 0 means increasing memory loss
(recency bias), we have the following:

• if the costs functions of the two strategies don’t
differ significantly, captured in our model by b ∈
(1−σ

2−σ ,
1

2−σ ), then after losing stability (when the
system equilibrium/fixed point is not longer attract-
ing) the system stays predictable for any values of
intensity of choice.

• If b is outside of (1−σ
2−σ ,

1
2−σ ), then for sufficiently

large values of intensity of choice the system be-
comes unpredictable.

Moreover, as memory loss increases the system becomes
predictable for a wider range of cost functions.
This is a crucial differentiation of the long-term be-

havior of the system: in the first case the existence of
a periodic orbit of period 2 which attracts almost all
trajectories implies that although the system does not
stabilize, it remains relatively predictable — no matter
the initial state of the system, it will converge to a unique
period 2 orbit, thus after some time, every even number
of iterations of the map will place it close to its previous
position. When the system becomes chaotic we land in an
unpredictable regime at the antipode of this behavior with
periodic orbits of different periods, positive topological
entropy and complicated dynamics.
Due to a memory loss parameter, the (interior) fixed

point of our learning dynamics corresponds to a unique
quantal response equilibrium54, reflecting the bounded ra-
tionality of the agents. As the intensity of choice increases
the fixed point approaches the Nash equilibrium (Propo-
sition IV.2) but at the cost of losing stability. As long
as the fixed point is locally attracting then it is globally
attracting . Moreover, there is a lower bound on the
learning rate/intensity of choice, above which the fixed
point is repelling. This threshold value is decreasing with
the discount factor (Theorem IV.5). If there is memory
loss (recency bias), then there exists a threshold value on
the intensity of choice that if exceeded, then the game
is unstable no matter what the costs are. In contrast,
if there is no memory loss, for any intensity of choice
one can find congestion games such that the dynamics is
stable (Proposition IV.6).
Next, we study exactly how unpredictable the system

will become when stability is lost. In the case of systems
with memory, as long as the underlying congestion game
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is not very asymmetric, then under large enough inten-
sity of choice the system will inevitably converge to an
attracting periodic orbit of period two (Theorem IV.9).
Thus, although the system won’t converge, the behavior
will be predictable. On the other hand, if the resources
have significantly different costs resulting in a Nash equi-
librium flow b far from the symmetric 50%− 50% split
(i.e., the value b is far from 0.5), then there is a threshold
value for the intensity of choice above which the dynamics
are Li-Yorke chaotic and have positive topological en-
tropy (Theorem IV.11). Finally, in Section IVD we show
another way of interpreting our system — through the
Multiplicative Weights Update algorithm with perturbed
costs.

We complement our theoretical understanding with fur-
ther simulations and numerical experiments. In Figure 1
we present bifurcation diagrams at increasing values of the
discount factor σ in a specific instance of a two-resource
congestion game where the Nash equilibrium flow is fixed
at b= 0.4. Without any discounting (σ= 0), the dynamics
leads to the period-doubling bifurcation route to chaos
as one increases the intensity of choice a. As the dis-
count factor increases to σ = 0.25, chaos starts at a much
larger intensity of choice. Finally, as the discount factor
increases to σ = 0.5, increasing the intensity of choice can
at most result in the existence of a period-2 limit cycle.
Thus, a larger discount factor tends to make the dynamics
more predictable.
In Figure 2 we show how increasing the discount fac-

tor/memory loss σ can reduce chaotic, unpredictable dy-
namics into periodic, predictable ones by examining both
the day-to-day behavior as well as the time evolution on
the potential function of the game.

Finally in Appendix A we derive simplified EWA from
the general EWA model, and in Appendix B we show
connection of this model with Multiplicative Weights
algorithm.

II. RELATED LITERATURE

Concepts discussed in this article arise in different con-
texts and were studied independently by many economists
and computer scientists. The problem of introducing dis-
counting of the past costs is an important issue both from
theoretical and experimental economics perspective.
Experience-Weighted Attraction (EWA). EWA

is arguably one of the most influential learning models in
behavioral game theory17–19. Recently62, it was shown
that best reply cycles can predict non-convergence of six
well-known learning algorithms in games with random
payoffs where one of the algorithms considered is EWA.
Other dynamics include replicator dynamics, reinforce-
ment learning, fictitious play and k-level EWA, showing
that often there exist similarities between their behavior
at least in small, randomly chosen games. Closely related
to the model discussed in this article is also (considered
usually in the continuous time) perturbed best response

dynamics8,28,31,43,68.
Learning in games. Learning procedures can be di-

vided into two broad categories depending on whether they
evolve in continuous or discrete time: the former includes
the numerous dynamics for learning and evolution (see
Sandholm68 and Hadikhanloo et al.40 for recent surveys),
whereas the latter focuses on learning algorithms (such
as fictitious play and its variants) for infinitely iterated
games35.
The EWA algorithm, discussed in this paper, can be

seen as a reinforcement learning algorithm where agents
score their actions over time based on their observed pay-
offs and then they choose an approximate/perturbed best
response. Learning algorithms of this kind have been
investigated in continuous time by Börgers and Sarin15,
Hopkins44, Coucheney et al.28 and many others. The
model closely related to the one discussed in this paper
was proposed by Coucheney et al.28. In this article a
class of penalty-regulated game dynamics consisting of
replicator-like drift plus a penalty term that keeps agents
from approaching the boundary of the state space is de-
rived. This gives dynamics equivalent to the case when
agents are scoring their actions by comparing their ex-
ponentially discounted cumulative payoffs over time and
using a smooth best response to pick an action. They
show global convergence in the continuous case.
Our model is also related to discrete-time model of

Q-learning44,50,73. From a discrete-time viewpoint Leslie
and Collins50 used a Q-learning approach to establish the
convergence of the resulting learning algorithm in two-
player games under minimal information assumptions,
a similar approach was also used by Cominetti et al.27.
Moreover, the model presented in this article subsumes
two well-known dynamics: a discrete-time variant of repli-
cator dynamics (Multiplicative Weights Update)34 and
logit best-response2,14. Finally, it is a two-parameter ver-
sion of EWA dynamics which was numerically studied for
random (zero-sum) games by Galla and Farmer36 and
Pangallo et al.62.
Chaos in games. The question one may want to

answer is how complicated (or random) the behavior of
agents may become even in simple games. The seminal
work of Sato et al.69 showed analytically that even in a
simple two-player game of Rock-Paper-Scissor replicator
dynamics (the continuous-time variant of MWU) can lead
to chaos, rendering the equilibrium strategy inaccessible.
Replicator dynamics has recently been shown to be able to
produce arbitrarily complex orbits (e.g. Lorenz butterfly
dynamics) in simple matrix games4.

For two-player games with a large number of available
strategies (complicated games), EWA algorithm, exhibits
chaotic behavior in a large parameter space36. The preva-
lence of these chaotic dynamics also persists in games with
many players, as shown in the follow-up work67. Careful
examinations suggest a complex behavioral landscape in
many games (small or large) for which no single theo-
retical framework currently applies. Moreover, a chaotic
behavior was detected for Nash maps in games like match-
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FIG. 1: Bifurcation diagrams for increasing values of the discount factor σ when the Nash equilibrium is fixed at
b= 0.4. Without any discounting (σ = 0), the dynamics is described by the Multiplicative Weight Update which leads

to the period-doubling bifurcation route to chaos as one increases the intensity of choice a 24. However, as the
discount factor increases to σ = 0.25, chaos starts at a much larger intensity of choice. As the discount factor increases
to σ = 0.5, increasing the intensity of choice can at most lead to the period-2 dynamics. Thus, a larger discount factor

tends to make the dynamics more stable and predictable.

ing pennies7,37. Fictitious play learning dynamics for a
class of 3x3 games, including the Shapley’s game and
zero-sum dynamics, possesses rich periodic and chaotic
behaviors72,74. Result that the replicator dynamics, the
continuous-time variant of MWU, is Poincaré recurrent in
zero-sum games64, was later generalized55 to Follow-the-
Regularized-Leader (FTRL) algorithms (called also dual
averaging). When MWU/FTRL is applied with constant
step-size in zero-sum games it becomes unstable5 and in
fact Lyapunov chaotic22. It was showed experimentally63
that EWA leads to limit cycles and high-dimensional
chaos in two-agent games with negatively correlated pay-
offs. Lyapunov chaos was also established in the case
of coordination/potential games for a variant of MWU,
known as Optimistic MWU23. However, none of the above
results implies formal chaos in the sense of Li-Yorke or
positive topological entropy.

The first formal proof of Li-Yorke chaos was shown for
MWU in a single instance of two agent two strategy con-
gestion game by Palaiopanos et al.61. This result was gen-
eralized and strengthened (positive topological entropy)

for all two-agent two-strategy coordination games25. In
arguably the main precursor of our work24 topological
chaos in nonatomic congestion game where agents use
MWU was established. This result was then extended to
FTRL with steep regularizers9. The theory of Li-Yorke
chaos has since then been applied in other game theoretic
settings such as Cournot competition, Fisher markets and
auctions21, as well as blockchain protocols49.

Finally, there is a growing landscape of one dimensional
discrete time economic models. Most of those for which
the dynamics can be thoroughly studied are those that
can be described with a unimodal map6,29,30,45,53,58. In
our model the interesting dynamics appears when map
describing the game dynamics is bimodal (with two critical
points). Such maps describe more complex systems with
more complicated dynamics. As the theory of unimodal
maps can be seen as complete, the same cannot be said
about bimodal maps. Nevertheless, we show how one can
study dynamics of such maps and for our family of maps
we give precise description of the complicated dynamics.
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b = 0.35

FIG. 2: A larger discount factor σ helps stabilize the dynamics. These figures are visualizations of the dynamics for
b= 0.35 and fixed a= 17. The initial state is set to x0 = 0.2. The left column shows the dynamics in the convex

potential (cost) landscape in our congestion game Φa,b,σ(x) = a
2
(
(1− b)x2 + b(1−x)2)+σ [x log(x) + (1−x) log(1−x)]

whose quantal response equilibrium x is the potential minimum. This equilibrium (marked as green point) lays
between Nash equilibrium b= 0.35 and 0.5. The right column shows the dynamics of xn. Larger discount factors tend

to stabilize the chaotic dynamics to at most a period 2 instability. The top row with σ = 0 corresponds to the
Multiplicative Weights Update dynamics, whose time-average of xn is exactly the Nash equilibrium b24.

III. MODEL

We consider a two-strategy nonatomic congestion game
(see65) with a continuum of agents (players), where all of
them apply the simplified Experience-Weighted Attraction
(sEWA) algorithm to update their strategies. Each of
the agents controls an infinitesimal small fraction of the
flow. The total flow of all the agents is equal to N . We
will denote the fraction of the agents adopting the first
strategy at time n as xn.

A. Linear congestion games

The cost of each resource (path, link, route or strategy)
here will be assumed proportional to the load. By denoting
cj the cost of selecting the strategy number j (when a
fraction x of the agents choose the first strategy), if the
coefficients of proportionality are α,β > 0, we obtain

c1(x) = αNx, c2(1−x) = βN(1−x). (1)

Without loss of generality we will assume throughout
the paper that α+β = 1. The values of α and β = 1−α
indicate how different the resource costs are from each
other. As we will see, the only parameter of the game that
is important is the value of the equilibrium split, i.e. the
fraction of agents using the first strategy at equilibrium.
An advantage of this formulation is that the fraction of

agents using each strategy at equilibrium is independent
of the flow N . It is worth to add that our analysis on
the emergence of bifurcations, limit cycles and chaos will
carry over immediately to the cost functions of the form
αx+γ for α,γ > 0.

B. Learning in congestion games with sEWA

Experience-Weighted Attraction (EWA) has been pro-
posed by Camerer and Ho41 as a stochastic algorithm
that binds reinforcement learning and belief learning algo-
rithms. This unifying property comes with a consequence
of many free parameters. In this paper we focus on a
deterministic, simplified variant of EWA36, which has
only two free parameters, an intensity of choice and a
memory loss parameter, which can be seen as the rate of
exponential discounting of past costs.

We assume that at time n+1 the agents know the cost
of the strategies at time n (equivalently, the fraction of
agents using the first (xn) and the second (1−xn) strat-
egy). Since we have a continuum of agents, the realized
flow (split) is accurately described by the probabilities
(xn,1−xn). There is a parameter ε ∈ (0,1), which can be
treated as the common learning rate of all agents, such
that λ= log 1

1−ε describes intensity of choice. Then the
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agents update their choices using sEWA algorithm

xn+1 =
x1−σ
n exp(−λc1(xn))

x1−σ
n exp(−λc1(xn)) + (1−xn)1−σ exp(−λc2(1−xn))

=

x1−σ
n

x1−σ
n + (1−xn)1−σ exp[λ(c1(xn)− c2(1−xn))]

=

x1−σ
n

x1−σ
n + (1−xn)1−σ exp(a(xn− b))

,

(2)

where a=N log 1
1−ε > 0 is a population intensity of choice,

b= β ∈ (0,1) is the equilibrium split, i.e. the fraction of
agents using the first strategy at equilibrium and σ ∈ [0,1]
is a memory loss parameter.
Note that if σ is treated as a discount factor then it

describes how individuals value the past — the greater σ
the less important are previous plays, the more important
recent plays.

Observe that the update rule in (2) can be seen as Mul-
tiplicative Weights with perturbed costs. Let us consider
cost functions perturbed by a component dependent on
(exploration) parameter σ

c1(x) = c1(x) + σ

λ
log(x),

c2(1−x) = c2(1−x) + σ

λ
log(1−x).

(3)

Then the dynamics introduced by (2) is Multiplicative
Weights Update dynamics with perturbed costs functions
(the precise derivation can be found in Appendix B).

Equation (2) implies that the dynamics of changes in
the behavior of agents (and the system) is governed by
the map

fabσ(x) = x1−σ

x1−σ + (1−x)1−σ exp(a(x− b)) , (4)

where a > 0, b ∈ (0,1), σ ∈ [0,1] (in this formula, when
σ = 1, 00 is treated as 1).

C. Attracting orbits and chaos

Let us introduce basic notions of dynamical systems.

Definition III.1. Let x be a fixed point of a dynamical
system (X,f). The fixed point x is called:

• attracting, if there is an open neighborhood U ⊂X of
x such that for every y ∈U we have lim

n→∞
fn(y) = x,

where fn is a composition of the map f with itself
n-times.

• repelling, if there is an open neighborhood U ⊂X
of x such that for every y ∈ U , y 6= x there exists
n ∈ N such that fn(y) ∈X\U .

In this note we study differentiable maps on the unit
interval. Then let x be a fixed point, if |f ′(x)|< 1, then
x is attracting, if |f ′(x)| > 1, then x is repelling. If
|f ′(x)|= 1 we need more information.

Definition III.2. Let (X,f) be a dynamical system. An
orbit {fn(x)} is called periodic of period T if fn+T (x) =
fn(x) for any n ∈ N. The smallest such T is called the
period of x. The periodic orbit is called attracting, if x is
an attracting fixed point of (X,fT ), and repelling, if x is
a repelling fixed point of (X,fT ).

There are many properties which can be seen as defin-
ing chaotic behavior. In this note we reflect on two of
most commonly used ones: Li-Yorke chaos and positivity
topological entropy.

Definition III.3 (Li-Yorke chaos). Let (X,f) be a dy-
namical system and x,y ∈ X. We say that (x,y) is a
Li-Yorke pair if

liminf
n→∞

dist(fn(x),fn(y)) = 0

and

limsup
n→∞

dist(fn(x),fn(y))> 0.

A dynamical system (X,f) is Li-Yorke chaotic if there
is an uncountable set S ⊂X (called scrambled set) such
that every pair (x,y) with x,y ∈ S and x 6= y is a Li-Yorke
pair.

The origin of the definition of Li-Yorke chaos is in the
seminal Li and Yorke’s article52. Intuitively orbits of two
points from the scrambled set have to gather themselves
arbitrarily close and spring aside infinitely many times
but (if X is compact) it cannot happen simultaneously
for each pair of points.
Another crucial feature of the chaotic behavior of a

dynamical system is exponential growth of the number
of distinguishable orbits. This happens if and only if
the topological entropy of the system is positive. In fact
positivity of topological entropy turned out to be an
essential criterion of chaos38. This choice comes from
the fact that the future of a deterministic (zero entropy)
dynamical system can be predicted if its past is known76
and positive entropy is related to randomness and chaos.

For every dynamical system over a compact phase space,
we can define a number h(f)∈ [0,∞] called the topological
entropy of transformation f .

For a given positive integer n we define the n-th Bowen-
Dinaburg metric on X, ρfn as

ρfn(x,y) = max
0≤i<n

dist(f i(x),f i(y)).

We say that the set E is (n,ε)-separated if ρfn(x,y)> ε
for any distinct x,y ∈ E and we denote by s(n,ε,f) the
cardinality of the most numerous (n,ε)-separated set for
(X,f).
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Definition III.4. The topological entropy of f is defined
as

h(f) = lim
ε↘0

limsup
n→∞

1
n

logs(n,ε,f).

We give the intuitive explanation of the idea. Let
us assume that we observe the dynamical system with
the precision ε > 0, that is, we can distinguish any two
points only if they are apart by at least ε. Then, after n
iterations we will see at most s(n,ε,f) different orbits. If
transformation f is mixing points, then s(n,ε,f) will grow.
Taking upper limit over n will give us the asymptotic
exponential growth rate of number of (distinguishable)
orbits, and going with ε to zero will give us the quantity
which can be treated as a measure of exponential speed,
with which the number of orbits grow (with n). Thus, as
Li-Yorke chaos tells us if there is chaos in the system, the
topological entropy tells us how much of chaos we have.
For deeper discussion we refer the reader to the excellent
surveys by Blanchard10, Glasner and Ye39, Li and Ye51
and Ruette’s book66.

D. Equilibrium

We assume that the population of agents is homoge-
neous, that is all agents use the same mixed strategy.
Hence, adoption of a strategy profile (x,1−x) by agents
results in x fraction of the agents choosing the first strat-
egy. A strategy profile (x,1− x) is a Nash (Wardrop)
equilibrium if and only if no agent can strictly decrease her
expected cost by unilaterally deviating to another strat-
egy. The interior fixed point of the dynamics introduced
by (4) usually won’t be a Nash equilibrium (see discussion
in Section IVB). One can show that it agrees with general
concept of quantal response equilibrium. Quantal response
equilibrium (QRE)54 was rediscovered in different con-
texts. In a quantal response equilibrium, the probability
of playing action i for a given agent is proportional to
e−θ·ci , where ci is the expected cost of action i given
that all other agents play according to the QRE. Namely,
it is a bounded rationality version of Nash equilibrium
where agents play suboptimal strategies with positive
probability but where very costly errors are exponentially
unlikely. In addition, as we have one to one correspon-
dence between the ratio of agents choosing first resource
in the game x and mixed strategy (x,1−x), we will use
the simplification saying that the fixed point of fabσ is a
Nash/quantal response equilibrium of the game.
Take an interior fixed point x of fabσ. By (2) it must

satisfy the follwing equations:

log(x) = (1−σ) log(x) + log(1−ε)c1(x)− logZ

and

log(1−x) = (1−σ) log(1−x)+log(1−ε)c2(1−x)− logZ,

where Z is the denominator in the first line of (2). From
the above system of equations we derive that

Nσ

a
log x

1−x = c2(1−x)− c1(x). (5)

Thus, the probability of playing action i is proportional to
e−θ·ci where θ= a

Nσ . Equation (5) shows that when σ= 0
the fixed point x is a Nash equilibrium, whereas σ > 0
perturbs the equilibrium state. We use this interpretation
in Section IVD, where we discuss perturbed costs.

IV. RESULTS

A. One dimensional map and topological conjugacy

We are interested in discrete dynamical system on the
unit interval [0,1]:

xn+1 = fabσ(xn) = x1−σ
n

x1−σ
n + (1−xn)1−σ exp(a(xn− b))

,

(6)
where a > 0, b ∈ (0,1), σ ∈ [0,1].

To study dynamics of (6) one can look at the derivative
of fabσ for x ∈ (0,1), which is given by

f ′abσ(x) = x−σ(1−x)−σ exp(a(x− b)) [1−σ−ax(1−x)]
[x1−σ + (1−x)1−σ exp(a(x− b))]2

,

(7)
or equivalently by

f ′abσ(x) = fabσ(x)
(
1−fabσ(x)

)( 1−σ
x(1−x) −a

)
. (8)

From (8) when σ < 1 the map fabσ is a homeomorphism
as long as a∈ (0,4(1−σ)], and when a> 4(1−σ) the map
fabσ is N-bimodal with critical points (see Figure 3)

κl =
1−
√

1− 4(1−σ)
a

2 , κr =
1 +
√

1− 4(1−σ)
a

2 .

Often instead of fabσ we will consider another map
F : R 7→ R, conjugate to fabσ|(0,1). We get it by taking
y = 1

a log 1−x
x and F (y) = 1

a log 1−fabσ(x)
fabσ(x) . Then

F (y) = (1−σ)y+ 1
eay + 1 − b. (9)

The map x 7→ 1
a log 1−x

x is a diffeomorphism from (0,1)
onto R. Therefore, fabσ on (0,1) is smoothly conjugate
to F on R.This means that instead of investigating the
dynamics of fabσ, we may investigate the dynamics of F .
It is worth adding that studying the dynamics of F is
usually simpler than for fabσ. Thus, we will repeatedly
look at the dynamics of our system through the lenses of
the map F .
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FIG. 3: Graph of fabσ for a= 12, b= 0.4, σ = 0.5. The
map is N-bimodal, that is, it has two critical points and

f(0) = 0, f(1) = 1.

We have

F ′(x) = 1−σ− aeax

(eax+ 1)2 . (10)

So, if σ < 1 then F is strictly increasing whenever a ≤
4(1−σ); otherwise it is bimodal, with F increasing on
the left and right laps, and decreasing on the middle lap.
The first example of the usefulness of F is finding the

fixed points. For σ = 1 the map fabσ is decreasing and
has one equilibrium x ∈ (0,1). When σ ∈ [0,1), we can
check straightforwardly that 0 and 1 are fixed points of
fabσ. To find the interior fixed points, we look at F . If
y is sufficiently large, then F (−y) > −y and F (y) < y.
Therefore, F has a fixed point. Since F ′ < 1−σ < 1, by
the Mean Value Theorem, F cannot have two distinct
fixed points. We will denote the unique fixed point of F
by y. Then fabσ has a unique fixed point x in (0,1) and
y = 1

a log 1−x
x .

Thus, for σ ∈ [0,1) the map fabσ has three equilibria: 0,
1, and x ∈ (0,1). The unique equilibrium in (0,1) usually
depends on a,b and σ (we will focus on its properties
in the next section). When σ ∈ (0,1), the derivative of
fabσ is infinite at 0 and 1, while for σ = 0 it is greater
than 1 for both of these points. Therefore, the fixed
points 0 and 1 are repelling independently of the values
of intensity of choice a > 0, discount factor σ ∈ [0,1) and
Nash equilibrium of the game b ∈ (0,1).
The map F has some nice properties, for instance

it has negative Schwarzian derivative for a > 4(1− σ).
This is important as the dynamics is fairly regular if the
map has negative Schwarzian derivative. Recall that the
Schwarzian derivative of a map f having third derivative
is given by

Sf = f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
.

Lemma IV.1. If a> 4(1−σ) then the Schwarzian deriva-
tive of F is negative.

Proof. For simplicity, let us use notation t= eax. Elemen-
tary calculations give us

F ′(x) = 1−σ−a t

(1 + t)2 ,

F ′′(x) = a2 t2− t
(1 + t)3 ,

F ′′′(x) = a3−t3 + 4t2− t
(1 + t)4 .

Schwarzian derivative of F is negative if and only if
2F ′F ′′′−3(F ′′)2 < 0. From our formulas we get

2F ′F ′′′−3(F ′′)2 =
(
2(1−σ)(−t2 + 4t−1)−at

) a3t

(1 + t)4 .

We have

2(1−σ)(−t2 + 4t−1)−at= 2(1−σ)
(
2t− (t−1)2)−at

≤ 4(1−σ)t−at= (4(1−σ)−a)t,

so if a > 4(1−σ) then SF < 0.

Observe that if F isn’t monotone, then it has negative
Schwarzian derivative.

B. Properties of the interior equilibrium

As the fixed points 0 and 1 are always repelling, we
focus our attention on x — the unique fixed point of the
dynamics (6) inside the unit interval. We now describe
the location of the interior fixed point x (QRE) and its
monotonic convergence to either 1/2 or Nash equilibrium
b.

Proposition IV.2. Let σ ∈ (0,1], and let x ∈ (0,1) be
a (unique) fixed point of fabσ. Then x lies between 1/2
and b. Moreover, when the intensity of choice a tends
to zero, x tends monotonically to 1/2, while as intensity
of choice tends to infinity, x converges monotonically to
Nash equilibrium b. For σ = 0, x= b is the unique Nash
equilibrium for all a > 0.

Proof. We start by noticing that the equality fabσ(x) = x
is equivalent to

x= b+ σ

a
log
(

1−x
x

)
, (11)

The first assertion follows from the fact that, by (11),
x≥ b if and only if x < 1

2 , and x < b otherwise.
We proceed with the second assertion. We put (11) in

the equivalent form

a(x− b) = σ log
(

1−x
x

)
. (12)
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Denote the left-hand side of (12) by L(a), and the right-
hand side of (12) by R(a). Note that lim

a→0+
L(a) = 0.

By (12), lim
a→0+

R(a) = 0. Since σ > 0, it follows that

lim
a→0+

x= 1
2 .

We claim that if b ∈ (0,1/2), then dx
da < 0, and if b ∈

(1/2,1), then dx
da > 0. Rewrite (11) as

ax= ab+σ log 1−x
x

.

Take the total derivative of both sides with respect to a.
We get

x+a
dx

da
= b− σ

x(1−x) ·
dx

da
.

Therefore, (
a+ σ

x(1−x)

)
dx

da
= b−x. (13)

If b ∈ (0,1/2), then b−x < 0; if b ∈ (1/2,1) then b−x > 0.
This completes the proof of our claim.

It follows that x varies monotonely with a. In particular,
lima→∞R(a) exists. Since x is between b and 1/2, this
limit is finite. Therefore, lima→∞L(a) exists and is finite,
so lima→∞x= b.
The case of σ = 0 follows from (11).

Remark IV.3. From the proof above it follows that if
b 6= 1/2 then (1−2x)dxda < 0.

Proposition IV.2 guarantees that the fixed point is
bounded by 1

2 and b. Moreover, it describes two extreme
cases. When the intensity of choice tends to zero, the fixed
point x approaches the case when an agent is indifferent
about her payoff and thus which resource to choose. As
both choices are equally likely, the split (1

2 ,
1
2 ) is chosen.

On the other hand, if intensity of choice tends to infinity,
then a small historical advantage of a given choice causes
that choice to be more probable. Then the fixed point
(QRE) approaches Nash equilibrium.

We next study possible convergence of trajectories of
the dynamics (4) to the fixed point. Proposition IV.2
implies that when σ > 0 the fixed point will approach
Nash equilibrium for sufficiently large values of a. Thus,
one may be interested in choosing large values of the
parameter a. But will the dynamics stabilize close to
Nash equilibrium? We start with lemma about the map
F .

Lemma IV.4. If the trajectories of all points x < y are
attracted to y, then the trajectories of all points of R are
attracted to y. Similarly, if the trajectories of all points
x > y are attracted to y, then the trajectories of all points
of R are attracted to y.

Proof. Assume that there is a point of R, whose trajectory
is not attracted to y. Since both −∞ and∞ are repelling,

by70, F has a periodic orbit of period 2. If the trajectories
of all points x < y (respectively, x > y) are attracted
to y, this periodic orbit has to lie entirely to the right
(respectively, left) of y. Thus, there is a fixed point to the
right (respectively, left) of y, a contradiction.

We show that although for small values of intensity of
choice we see global convergence to QRE, increasing the
intensity of choice will result in losing stability of x, and
thus, the system will become unstable.

Theorem IV.5.

1. If σ ∈ [0,1], then as long as x is attracting for fabσ,
it attracts all trajectories of points from (0,1). For
σ = 1 equilibrium x attracts also trajectories of 0
and 1.

2. For any b ∈ (0,1) there exists a0 > 0 such that x is
attracting for a < a0, and x is repelling for a > a0.
Moreover, the threshold a0 is decreasing with respect
to the exploration parameter σ.

Proof. We begin with the first assertion. We will show
that if the fixed point of F is attracting, then it is globally
attracting, which by the conjugacy argument will prove
our theorem.
Let σ ∈ [0,1). If F is strictly increasing, then it does

not have a periodic orbit of period 2, so y is globally
attracting.
Assume that F is bimodal. If y belongs to the left or

right lap, then by Lemma IV.4, y is globally attracting.
Assume that y belongs to the interior of the middle lap.
Since by Lemma IV.1 the Schwarzian derivative of F
is negative, then the interval joining y with one of the
critical points of F is in the basin of attraction A of y.
We may assume that this critical point is the left one, κ−.
There is a unique point y < κ− such that F (y) = y. Then
F ([y,κ−]) = F ([κ−,y])⊂A, so [y,y]⊂A. For every point
x < y we have x < F (x)< y. Therefore, the trajectory of
x increases as long as it stays to the left of y. Since there
are no fixed points to the left of y, the trajectory has to
enter [y,y] sooner or later. This proves that (−∞,y]⊂A,
so by Lemma IV.4, y is globally attracting.
When σ = 1, then F is strictly decreasing. Values of

F are bounded by −b and 1− b, so F has an attracting
invariant interval [−b,1−b]. Because from Lemma IV.1 F
has negative Schwarzian derivative and F has no critical
points then, by Singer theorem, (−∞,y] or [y,∞) has to
be attracted by y. By Lemma IV.4, y has to be globally
attracting.

Now, we proceed with the proof of the second assertion.
First we show that if b ∈ (0,1), then f ′abσ(x) is decreasing
as a function of a.
Assume first that b 6= 1/2. Multiply both sides of (13)

by 1−2x:

(1−2x)
(
a+ σ

x(1−x)

)
dx

da
= (1−2x)(b−x) =

b(1− b) + (b−x)2−x(1−x).
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From this and the fact that in view of (8) we have

f ′abσ(x) = 1−σ−ax(1−x), (14)

we get

df ′abσ(x)
da

=−x(1−x)−a(1−2x)dx
da

=

σ

x(1−x) (1−2x)dx
da
− b(1− b)− (b−x)2.

In view of Remark IV.3, this is negative.
If b= 1/2, then x= 1/2, and f ′abσ(x) = 1−σ−a/4, so

also f ′abσ(x) is decreasing as a function of a. Thus, the
threshold a0 is unique. Moreover, by the first assertion of
our theoremas long as x is attracting it attracts all points
from (0,1).

We now show that the threshold a0 is decreasing with
respect to σ.
Let 0≤ σ1 < σ2 ≤ 1. Then

fabσ1(x)< fabσ2(x)⇐⇒ x <
1
2 ,

fabσ1(x)> fabσ2(x)⇐⇒ x >
1
2 .

(15)

These inequalities follow from the fact that

fabσ1(x)< fabσ2(x) ⇔
(

1−x
x

)σ2−σ1

> 1,

fabσ1(x)> fabσ2(x) ⇔
(

1−x
x

)σ2−σ1

< 1.

Let b < 1/2. Then x ∈ [b,1/2]. From (15) we have

fabσ2(xσ1)> fabσ1(xσ1) = xσ1 .

Thus, once more from (15), we infer that 1/2 ≥ xσ2 >
xσ1 ≥ b.
Therefore, from (14) and the fact that a term z(1−z)

increases if and only if the distance between z and 1
2

decreases, we have f ′abσ1
(xσ1)> f ′abσ2

(xσ2) for any given
a > 0. Similar reasoning can be performed for b > 1/2.
Since for b= 1/2 the only difference in the reasoning is
that xσ1 = xσ2 = 1/2, we obtain that for every b ∈ (0,1)
and a > 0

f ′abσ1(xσ1)> f ′abσ2(xσ2).

Thus (as the derivative at the fixed point cannot be greater
than one), the instability at xσ2 arises for smaller values
of a than for xσ1 .

Theorem IV.5 implies that for small intensity of choice
the equilibrium attracts all trajectories of the system, so
starting from any initial state (other than the case where
the entire population chooses a pure strategy) the system
will converge to (x,1−x). Therefore, the description of
the dynamics of the game is simple as long as x is attract-
ing (It is worth mentioning that existence of attracting

quantal response equilibrium or even attracting Nash equi-
librium does not exclude possibility of chaotic behavior.
For instance, Follow-the-Regularized-Leader algorithm
admits coexistence of an attracting Nash equilibrium and
chaos9). Nevertheless, there is a threshold where the
equilibrium loses stability. Therefore, increasing inten-
sity of choice will eventually destabilize the system. This
threshold depends on discount factor σ in a monotonic
way — as we value recent costs more (σ increases), the
instability appears earlier, for smaller intensity of choice.

Proposition IV.6. If σ > 0, then there exists a threshold
a∗> 0 such that for any a>a∗ the fixed point x is repelling
for every b ∈ (0,1). If σ = 0, then for any intensity of
choice a there exists b (sufficiently close to 0 or 1) such
that the Nash equilibrium x is attracting.

Proof. Let us think of the picture in the (a,b)-plane, see
Figure 4. The region of stability of the fixed point is
marked in yellow, and the region with an attracting pe-
riodic orbit of period 2 in red. The curve dividing those
two regions corresponds to the first period doubling bi-
furcation, where the fixed point loses stability. Thus, for
(a,b) on this curve the derivative of fabσ at the fixed point
x is equal to −1.

To find this curve, we use formula (8) with x= x. We
get

f ′abσ(x) = x(1−x)
(

1−σ
x(1−x) −a

)
= 1−σ−ax(1−x).

Thus, the equation f ′abσ(x) =−1 is equivalent to

x2−x+ 2−σ
a

= 0. (16)

When a≥ 4(2−σ), this equation has two solutions, sym-
metric with respect to 1/2, namely

x1 = 1
2

(
1−
√

1− 4(2−σ)
a

)
,

x2 = 1
2

(
1 +
√

1− 4(2−σ)
a

)
.

Moreover, with σ ∈ [0,1] fixed, x1 as a function of a
is a bijection from [4(2−σ),∞) onto (0, 1

2 ], and x2 is a
bijection from [4(2−σ),∞) onto [ 1

2 ,1).
Since x1 and x2 are fixed points of fabσ, we can use

formula (11), and we obtain formulas for b as functions
of a and σ:

b1(a,σ) = x1−
σ

a
log
(

1−x1
x1

)
∈
[
0,1/2

]
,

b2(a,σ) = x2−
σ

a
log
(

1−x2
x2

)
∈
[
1/2,1

]
.

For a fixed σ, the first formula describes the bottom
branch of our curve, and the second formula the upper
branch. As x2 = 1−x1, we have b2(a,σ) = 1− b1(a,σ).
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We next find a solution of b1(a,σ) = 0 (and b2(a,σ) =
1). Since x1 and x2 are two solutions to (16), we have
x1x2 = 2−σ

a . We get

b1(a,σ) = 0 ⇐⇒ σ

a
x2 log

(
1−x1
x1

)
= x1x2

⇐⇒ (1−x1) log
(

1−x1
x1

)
= 2−σ

σ
.

Define

g(x) = (1−x) log
(

1−x
x

)
.

Then g(1/2) = 0, lim
x→0+

g(x) = ∞ and g′(x) =

− log
(1−x

x

)
− 1

x < 0 for x ∈ (0,1/2]. Therefore,
g : (0,1/2] 7→ [0,∞) is bijection. By the fact that x1 as
a function of a is also a bijection, we obtain that for a
fixed σ ∈ (0,1] there exists a unique a∗ ∈

[
4(2−σ),∞

)
such that b1(a∗,σ) = 0 and b2(a∗,σ) = 1.

On the other hand, when σ = 0, the equation b1(a,σ) =
0 does not have any solution. Instead

lim
a→∞

b1(a,σ) = 0, and lim
a→∞

b2(a,σ) = 1.

Therefore,

1. If σ ∈ (0,1], then there exists a∗ ≥ 4(2−σ) such that
for every a > a∗ the fixed point x is repelling.

2. If σ = 0, then for any a > 0 there exists b ∈ (0,1)
(sufficiently close to 0 or sufficiently close to 1) such
that the fixed point x= b is attracting.

This completes the proof.

Proposition IV.6 gives another important distinction
between no discount (full memory) model and discount
(memory loss) case. When intensity of choice is large,
then in full memory case one can change conditions of
the game (differentiate costs of the (pure) strategies) to
impose the convergence to equilibrium. However, once
the memory loss affects choices of agents (σ > 0), then
for sufficiently large intensity of choice the system will
inevitably become unstable and no change of conditions
of the game will stabilize it.

After discussing what happens for small values of inten-
sity of choice and formulating the stability loss conditions,
in the next sections, which are a key part of the work, we
will focus on the analysis of the case when the system is
unstable.

C. Main result — memory-dependent behavior

In this section we discuss long-term behavior of agents
for large intensity of choice when σ ∈ [0,1]. We study
how behavior of the system for large values of intensity

of choice a depends on the interplay between discount
factor σ (property of learning) and difference in costs of
resources (property of the game reflected by the value of b).
Long-term behavior of agents differs when b∈

(
1−σ
2−σ ,

1
2−σ

)
and when b ∈

(
0, 1−σ

2−σ

)
∪
(

1
2−σ ,1

)
, that is, it depends on

proximity of the costs of resources (see Figure 4).

1. Auxiliary lemmas

First we show two simple lemmas which we will use in
the proofs of main theorems. They give bounds for the
conjugate map F .
Lemma IV.7. For any ε > 0 there exists α(ε) such that
if a≥ α(ε) and |x| ≥ ε then 0≤ F ′(x)< 1−σ.

Proof. From (10) we have F ′(x)< 1−σ. Since eax

(eax+1)2 <

eax, we get F ′(x) > 1−σ−aeax. Similarly, eax

(eax+1)2 <

e−ax, so F ′(x) > 1−σ−ae−ax. Therefore, F ′(x) > 1−
σ−ae−a|x|. If |x| ≥ ε, then we get F ′(x)> 1−σ−ae−εa.
Since lim

a→∞
ae−εa = 0, the lemma follows.

Let us consider two linear maps,

F−(x) = (1−σ)x+ 1− b and F+(x) = (1−σ)x− b.

Since 0 < 1
eax+1 < 1, we have F+ < F < F−. Let us

improve those estimates.
Lemma IV.8. If x< 0 then F−(x)+ 1

ax <F (x)<F−(x),
and if x > 0 then F+(x)< F (x)< F+(x) + 1

ax .
Proof. If x < 0 then

F−(x)−F (x) = 1− 1
eax+ 1 = eax

eax+ 1 < eax

= 1
e−ax

<
1
−ax

.

If x > 0 then

F (x)−F+(x) = 1
eax+ 1 <

1
eax

<
1
ax
.

2. Predictability for b ∈
( 1−σ

2−σ ,
1

2−σ
)

We begin with the case b ∈
(

1−σ
2−σ ,

1
2−σ

)
. We will in-

vestigate the existence of an attracting periodic orbit of
period 2 when intensity of choice is large.
Theorem IV.9. Let σ ∈ [0,1] be fixed. For a given b0 ∈(

1−σ
2−σ ,

1
2

)
, there exists a1 > 0 such that if a ≥ a1 and

b ∈ [b0,1− b0] then fabσ has an attracting periodic orbit
of period 2 which attracts trajectories of all points from
(0,1), except countably many whose trajectories fall into
x.
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(a) σ = 0.25

(b) σ = 0.75

FIG. 4: Period diagrams of the small-period attracting periodic orbits associated with the map fabσ for different
values of σ. The horizontal axes are the intensity of choice a ∈ [4,54] and the vertical axes are the asymmetry of cost
b ∈ [0,1]. The colors encode the periods of attracting periodic orbits as follows: period 1 (fixed point) = yellow, period
2 = red, period 3 = blue, period 4 = green, period 5 = brown, period 6 = cyan, period 7 = darkgray, period 8 =

magenta, and period larger than 8 = white. The equilibrium analysis is only viable when the fixed point is stable. In
other region of the phase-space, non-equilibrating dynamics arise and system proceeds through the period-doubling

bifurcation route to chaos in the white region. The picture is generated from the following algorithm: 20000
preliminary iterations are discarded. Then a point is considered periodic of period n if |fnabσ(x)−x|< 10−16 and it is
not periodic of any period smaller than n. Black lines describe bounds b= 1−σ

2−σ , b= 1
2−σ . By Theorem IV.9 we know

what happens for large a. We can see from numerical computations that situation might be a little bit more
complicated for some values of a. There is a possibility of the attracting periodic orbit of period 4.

Corollary IV.10. For a fixed σ ∈ [0,1] and b ∈(
1−σ
2−σ ,

1
2−σ

)
there exists a1 > 0 such that for a≥ a1 trajec-

tories of all points from (0,1) are attracted to the periodic
orbit of period 2, except countably many whose trajectories

fall into the interior equilibrium x.
The proof of Theorem IV.9 relies on careful choice of

two disjoint intervals I− and I+ such that F (I−) ⊂ I+
and F (I+)⊂ I−. This last property implies existence of
an attracting periodic orbit of period 2. As we deal with
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a discrete dynamical system we have to take into account
that some trajectories may fall into the repelling equilib-
rium. The property of attraction of almost all trajectories
follows from existence of an attracting invariant set. We
show that all trajectories eventually enter the invariant
set and then they either hit the fixed point and stay there,
or they are attracted by the periodic orbit.

Proof of Theorem IV.9. First, let us consider the case of
σ = 1. From (9) the map

F (x) = 1
eax+ 1 − b

is decreasing. Thus, F 2 is increasing. This excludes
existence of periodic orbits (other than fixed points) of
F 2. As a result, F does not have any periodic orbit of
period greater than 2. Thus, all trajectories converge to
the fixed point y or a periodic orbit of period 2 of F .
Let a0 be a threshold from Proposition 2. If a < a0,

then by Theorem IV.5, y is globally attracting. Take
a > a0. Notice that

F 2(x) = x ⇐⇒ 1
1 + exp(aF (x)) − b= x

⇐⇒ F (x) = 1
a

log
(

1
x+ b

−1
)
.

Therefore, if {γ1,γ2} is a periodic orbit of period 2, then

γ2 = 1
a

log
(

1
γ1 + b

−1
)
. (17)

Assume that F has two attracting orbits of period 2:
{γ′1,γ′2} and {γ′′1 ,γ′′2 }. Without loss of generality we can
assume that γ′1 < γ′′1 . Then, by (17), we get that γ′2 > γ′′2 .
Since by Lemma IV.1 the Schwarzian derivative of F
is negative, then in the immediate basin of attraction
of each periodic orbit has to be −b or 1− b. We may
assume that [−b,γ′1) is in the basin of attraction of {γ′1,γ′2}
and (γ′′2 ,1− b] is in the basin of attraction of {γ′′1 ,γ′′2 }.
But then γ′2 is attracted to {γ′′1 ,γ′′2 }. This contradicts
existence of two attracting periodic orbits.
Now, assume that σ ∈ [0,1). Fix b0 ∈

(
1−σ
2−σ ,

1
2

)
and

assume that b ∈ [b0,1− b0]. Set φ(b) = 2b− σb− 1 + σ.
Note that φ(1−b) = 1−2b+σb. Since b> b0 and 1−b> b0,
we have

φ(b)≥ φ(b0)> 0 and φ(1− b)≥ φ(b0)> 0. (18)
Set

x− =− φ(b)
σ(2−σ) and x+ = φ(1− b)

σ(2−σ) .

Observe that x− < 0< x+. We have

F−(x−) = (1−σ)−2b+σb+ 1−σ
σ(2−σ) + (1− b) =

1−2σ+σ2−2b+ 3σb−σ2b+ 2σ−σ2−2bσ+σ2b

σ(2−σ) =

1−2b+ bσ

σ(2−σ) = x+,

and

F+(x+) = (1−σ)1−2b+σb

σ(2−σ) − b=

1−2b+σb−σ+ 2σb−σ2b−2bσ+ bσ2

σ(2−σ) =

1−2b+σb−σ
σ(2−σ) = x−.

Thus,

F−(x−) = x+ and F+(x+) = x−. (19)

Set K = φ(b0)
2σ(2−σ) and consider intervals I− = [x− −

K,x−+K] and I+ = [x+−K,x+ +K].
We have |x−|= φ(b)

σ(2−σ) , so by (18), for every x ∈ I− we
get

|x| ≥ φ(b)
σ(2−σ) −K ≥K.

Similarly, |x+|= φ(1−b)
σ(2−σ) , so for every x ∈ I+ we get

|x| ≥ φ(1− b)
σ(2−σ) −K ≥K.

So |x| ≥K for all x ∈ I−∪ I+. Set a0 = α(K). Then,
by Lemma IV.7, if a≥ a0 then

0≤ F ′(x)< 1−σ for all x ∈ I−∪ I+. (20)

From (18), (19), (20), and Lemma IV.8, we have

F (I−)⊂ [F (x−)− (1−σ)K,F (x−) + (1−σ)K]

⊂
[
x+ + 1

ax−
− (1−σ)K,x+ + (1−σ)K

]
.

We have
1

ax−
− (1−σ)K =−σ(2−σ)

aφ(b) − (1−σ)K ≥−K

for a≥ 2−σ
Kφ(b) , so

F (I−)⊂ [x+−K,x+ + (1−σ)K]⊂ I+.

Similarly,

F (I+)⊂ [F (x+)− (1−σ)K,F (x+) + (1−σ)K]

⊂
[
x−− (1−σ)K,x−+ 1

ax+
+ (1−σ)K

]
.

We have
1
ax+

+ (1−σ)K ≤K,

for a≥ 2−σ
Kφ(1−b) , so

F (I+)⊂ [x−− (1−σ)K,x−+K]⊂ I−.
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Thus, for

a≥ a1 = max
{
a0,

2−σ
Kφ(b) ,

2−σ
Kφ(1− b)

}
we have

F (I−)⊂ I+ and F (I+)⊂ I−. (21)

We may additionally assume that a1 > 4(1−σ). Then
for a≥ a1 we have F ′(0) = 1−σ− a

4 < 0, so by (20) the
interval I− lies to the left of 0, and I+ to the right of
0. Therefore, I−∩ I+ = ∅. Thus, by (20) and (21), there
exists an attracting periodic orbit of period 2.

Now we can describe the dynamics of F (and therefore
of fabσ). Let P = {z−,z+}, where z− < 0 < z+, be the
periodic orbit found there. From the formula for F ′ it
follows that F has two critical points, κ− < 0 and κ+ > 0.
From (20) and (21) it follows that

F (κ+)< z− < κ− < 0< κ+ < z+ < F (κ−).

In particular, the interval J = [F (κ+),F (κ−)] is invariant.
Moreover, the trajectories of both critical points are at-
tracted to P , so by Lemma IV.1, there are no attracting
or neutral periodic points except z− and z+.
Consider intervals J− = [F (κ+),κ−] and J+ =

[κ+,F (κ−)]. We have 0 ≤ F ′ < 1− σ on J− ∪ J+, so
F (J−)⊂ J+ and F (J+)⊂ J−. Therefore the trajectories
of all points from J−∪J+ converge to P .

Our map is decreasing on J0 = [κ−,κ+], and has there
a fixed point z0. Since there are no attracting or neutral
periodic points in J0, trajectories of all points from J0
(except z0) are repelled from z0 and eventually enter
J−∪J+. Then they are attracted to P . Similar argument
shows that trajectories of all points from R\J eventually
enter J , and then they either hit z0 and stay there, or
are attracted by P .
Now Theorem IV.9 follows immediately by the conju-

gacy argument.

Theorem IV.9 guarantees that when intensity of choice
is large enough, then the system will inevitably converge
to an attracting periodic orbit of period 2. Thus, although
the system will not converge, the behavior will be pre-
dictable. Moreover, the threshold a1 can be chosen in
such a way that for a wide variety of levels of asymmetry
of cost functions (b ∈ [b0,1− b0]) if intensity of choice
crosses this level each system will be attracted (excluding
countably many trajectories falling into equilibrium, but
which are almost impossible to get into) to the attract-
ing periodic orbit of period 2. Obviously this attracting
periodic orbit has to depend on the values of a, b and σ.

3. Chaos for b ∈
(
0, 1−σ

2−σ
)

∪
( 1

2−σ ,1
)
.

Now we look at the case b ∈
(

0, 1−σ
2−σ

)
∪
(

1
2−σ ,1

)
. Pa-

rameter b is the characteristic of our game – it tells us how

different are the costs of resources. Taking b far enough
from 1/2 implies that costs of resources are distinguish-
able for agents who are discounting/forgetting past costs
with factor σ. We show that in such case the chaotic
behavior emerges.

Theorem IV.11. For a fixed σ > 0 and b, if either b <
1−σ
2−σ or b > 1

2−σ , then there exists a0 > 0 such that if a >
a0 then fabσ is Li-Yorke chaotic and h(fabσ)≥ log 1+

√
5

2 .

Corollary IV.12. For fixed σ ∈ [0,1) and b∈
(

0, 1−σ
2−σ

)
∪(

1
2−σ ,1

)
the system becomes chaotic for sufficiently large

values of the intensity of choice.

In order to prove Theorem IV.11, we will show that
if a is sufficienly large then fabσ has a periodic point of
period 3.

Proof of Theorem IV.11. First, we will focus on the be-
havior of critical points of F for large values of a. Put
t= eax. Then from (10) the equation for the zeros of F ′
becomes

t2 +
(

2− a

1−σ

)
t+ 1 = 0.

If a is sufficiently large, then this equation has two roots,
both positive, one less than 1 and the other one larger
than 1.
For a given ε > 0, as a goes to infinity, F ′ converges

uniformly to 1−σ on R\ (−ε,ε). Thus, if a is sufficiently
large, both critical points have to be in (−ε,ε).

Assume that b < 1−σ
2−σ . We know that F has two critical

points κ− < 0 and κ+ > 0 independent of b. We will show
that there is a0 such that if a > a0 then there is a point
x0 ∈ (κ−,κ+) such that F (x0) = κ− and F 3(x0)> κ+.
For fixed σ, critical points converge to 0 as a goes to

infinity. Thus, by Lemma IV.8, as a goes to infinity,
then F (κ−) goes to 1− b and F (κ+) goes to −b. We
have F (0)≥ 0> κ− and F (κ+)< κ−, so there is a point
x0 ∈ (κ−,κ+) such that F (x0) = κ−. For a sufficiently
large, we get F 3(x0) arbitrarily close to (1−σ)(1− b)− b,
which is positive, while κ+ is arbitrarily close to 0. Thus,
F 3(x0)> κ+.
Now, we have F (x0) < x0 < F 3(x0), and this implies

the existence of a periodic point of period 3 for F (see,
e.g.,3).
In the case of b > 1

2−σ we use the first case and the
identity F1−b(−x) =−Fb(x).
Existence of a periodic point of period 3 implies Li-

Yorke chaos and topological entropy at least log 1+
√

5
2 for

F (see, e.g.,70,3) and thus for fabσ.

Theorem IV.11 shows us that when the difference in cost
functions is substantial if agents choose their strategies
with sufficiently large intensity of choice a, then the system
will inevitably become chaotic. In such case any long-term
behavior will become extremely complex. On the other
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hand, when the cost functions are similar enough, memory
loss (recency bias) makes those costs indistinguishable
from the perspective of an agent. In such case when the
intensity of choice is large the agents follow an attracting
periodic orbit of period 2 (Theorem IV.9). This is a
crucial differentiation of the long-term behavior of the
system: existence of periodic orbit of period 2 which
attracts almost all trajectories implies that although the
system does not stabilize, it remains relatively predictable
— no matter the initial state of the system, it will converge
to period 2 orbit, thus after some time, every even number
of iterations of the map will place it close to its previous
position. When the system becomes chaotic we land in
an unpredictable regime with periodic orbits of different
periods, dependence on initial conditions and complicated
dynamics.

FIG. 5: Behavior of the system for large values of
intensity of choice a. As long as b ∈

(
1−σ
2−σ ,

1
2−σ

)
, almost

all trajectories are attracted to the periodic orbit of
period 2. Outside this interval we observe chaotic

behavior.

Corollaries IV.10 and IV.12 determine the sets of pa-
rameters (σ,b) in which the long-term behavior for large
intensity of choice is diametrically different (see Figure
5). When σ = 0 the interval

(
1−σ
2−σ ,

1
2−σ

)
shrinks to {1/2}

and the system will be chaotic if only the cost functions of
paths are different. When σ increases the interval where
we observe attraction to the orbit of period 2 expands.
As σ tends to 1 chaotic behavior vanishes and in the
instability region almost all trajectories (except countably
many) converge to the attracting periodic orbit of period
2. We finally note that the phase transition at (σ, 1−σ

2−σ )
and (σ, 1

2−σ ) implies that close to these values a small
change of costs of resources (change of b) as well as small
change in memory of the agents (change of σ) can push
the system from simple periodic behavior to the complex
chaotic one (or in the opposite direction).

D. Perturbed costs

In this section we look at the fabσ-dynamics through
the lenses of MWU algorithm with perturbed (nonlinear)
cost functions. We show that if time-average perturbed
costs of strategies are convergent, then they converge to
the same limit. Lastly, we show that it might happen
that they diverge. Throughout this section we assume
that σ > 0. Results for σ = 0 are discussed in24.

Recall that the map fabσ that generates our dynamics
is defined by

fabσ(x) =
x1−σ exp(−λc1(x))

x1−σ exp(−λc1(x)) + (1−x)1−σ exp(−λc2(1−x))
(22)

where λ = a
N = log 1

1−ε and c1(x) = αNx, c2(1− x) =
βN(1−x) are costs of the strategies.
The fabσ-dynamics can be seen as Multiplicative

Weights Update dynamics with perturbed costs functions

c1(x) = c1(x) + σ

λ
log(x),

c2(1−x) = c2(1−x) + σ

λ
log(1−x).

(23)

Remark IV.13. Let c1, c2 be defined by (23). Then

fabσ(x) = xexp(−λc1(x))
xexp(−λc1(x)) + (1−x)exp(−λc2(1−x)) .

We next study properties of time-average perturbed
cost of both strategies.

Proposition IV.14.

1. Let {x0,x1, . . . ,xn−1} be a periodic orbit of fabσ-
dynamics of period n > 0. Then

n−1∑
i=0

c1(xi) =
n−1∑
i=0

c2(1−xi).

2. Let {x0,x1,x2, . . .} be an orbit of fabσ-dynamics.
Then

lim
n→∞

1
n

n−1∑
i=0

(c1(xi)− c2(1−xi)) = 0.

Moreover, if the sequences
(

1
n

∑n−1
i=0 c1(xi)

)∞
n=1

and
(

1
n

∑n−1
i=0 c2(1−xi)

)∞
n=1

are convergent, then

lim
n→∞

1
n

n−1∑
i=0

c1(xi) = lim
n→∞

1
n

n−1∑
i=0

c2(1−xi). (24)

Proof. We first show how perturbed costs can be treated
by the conjugate map. We will show that

λ(c1(x)− c2(1−x)) = a(F (y)−y). (25)
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By (23) we have

λ(c1(x)− c2(1−x)) =

λ

(
αNx−βN(1−x)− σ

λ
log
(

1−x
x

))
=

(α+β)Nλ
(
x− β

α+β

)
−σ log

(
1−x
x

)
=

a(x− b)−σ log
(

1−x
x

)
.

(26)

On the other hand
a(F (y)−y) =

a

[
1
a

log
(

1−fabσ(x)
fabσ(x)

)
− 1
a

log
(

1−x
x

)]
=

log
[(

1−x
x

)1−σ
exp(a(x− b))

]
− log

(
1−x
x

)
=

a(x− b)−σ log
(

1−x
x

)
.

(27)

By (26) and (27) we get

λ(c1(x)− c2(1−x)) = a(x− b)−σ log
(

1−x
x

)
= a(F (y)−y).

To show the first property it is sufficient to see that by
equation (25) we have

λ

n−1∑
i=0

(c1(xi)− c2(1−xi)) = a

n−1∑
i=0

(F (yi)−yi) =

a((y1−y0) + . . .+ (yn−1−yn−2) + (y0−yn−1)) = 0.

We move to the proof of the second statement. To this
aim we will show that

I =
[
− b
σ
,
1− b
σ

]
is an attracting invariant set. As F+ and F− are increas-
ing, F+(− b

σ ) =− b
σ and F−( 1−b

σ ) = 1−b
σ and F is bounded

from below by F+ and from above by F−, we obtain that
F (I)⊂ I, so I is an invariant, compact set.

Now we will show that I is attracting. We will use the
fact that if x <− b

σ , then F (x)> x and if x > 1−b
σ , then

F (x)< x.
Take 0 < x < − b

σ . Then F (x) > x. So as long as
Fn+1(x)≤− b

σ we have Fn+1(x)> Fn(x). We consider
separately when κ− is inside and outside of I. If κ− ∈ I,
then there is no critical point in (−∞,− b

σ ) and

x < F (x)< · · ·< Fn(x)< Fn+1(x)≤− b
σ
.

Thus, there exists n0 such that Fn0(x) < − b
σ and

Fn0+1(x)≥− b
σ . Since for any y <− b

σ we have

F (y)≤ F−
(
− b
σ

)
= 1− b

σ
≤ 1− b

σ
,

we get that Fn0+1(x) ∈ I.
If the critical point κ is outside of I, that is κ− <
− b
σ < 0. Then, as F has local maximum at κ− and
− b
σ < 0 < κ+, we get that F is decreasing on (κ−,− b

σ ).
Thus, F (κ−)> F (− b

σ )> F+(− b
σ )>− b

σ . Moreover,

F (κ−)≤ F−
(
− b
σ

)
= 1− b

σ
≤ 1− b

σ
.

Thus, F (κ−) ∈ I. So trajectory of x < κ− either falls
into I (once it crosses the value F−1(− b

σ )) or lands in
(κ−,− b

σ ). But then F ((κ−,− b
σ ))⊂ (− b

σ ,F (κ−))⊂ I. So
trajectory of any x ∈ (−∞,− b

σ ) eventually falls into I.
Similar reasoning for 1> x > 1−b

σ , using the fact that
F (x) < x when x > 1−b

σ and F+(1−b
σ ) ≥ − b

σ guarantees
that the trajectory of any x ∈ (1−b

σ ,∞) will eventually
fall into I.
Now we can show the point 2. By equation (25) we

have

λ

n−1∑
i=0

(c1(xi)− c2(1−xi)) = a

n−1∑
i=0

(F (yi)−yi) = a(yn−y0).

Because I is a compact attracting invariant set of F -
dynamics, there exists n0 ∈N such that yn ∈ I for n > n0.
Then for each n > n0∣∣∣∣∣ 1n

n−1∑
i=0

(
c1(xi)− c2(1−xi)

)∣∣∣∣∣= a

λn
|yn−y0|

≤ a

λn

(
1
σ

+ dist(y0, I)
)
,

where dist(y0, I) = inf
z∈I
|y0−z|. Thus,

lim
n→∞

∣∣∣∣∣ 1n
n−1∑
i=0

(
c1(xi)− c2(1−xi)

)∣∣∣∣∣= 0.

Corollary IV.15. Let {x0,x1,x2, . . .} be an orbit of fabσ-
dynamics. If the sequence (xn,1−xn) is convergent then
its limit is an equilibrium of the game. If the sequence
(xn,1−xn) is not convergent then any accumulation point
of the sequence (xn,1−xn) is an equilibrium of the game.

Proposition IV.14 guarantees that if time-average per-
turbed costs of both strategies are convergent, then they
are equal to each other. An illustration of the result of
Proposition IV.14 is presented in Figure 6. Nevertheless,
one may ask if the convergence is guaranteed. The answer
is negative. We will show that it may happen that the
limits from (24) don’t exist.
Assume that the values of parameters are such that

f has a periodic orbit of period 2. Let ϕ : [0,1] 7→ R be
a bounded observable, for which the value at the fixed
point and the average over the periodic orbit of period
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FIG. 6: Time-average costs and time-average perturbed costs for σ = 0.5, a= 25. The horizontal axis represents
parameter b for each b ∈ [0,1], last 300 iterations of the left critical point (κl) of the map fabσ out of 20000 iterations
are plotted in black. Level lines are in red. Time-average cost of the first (second) strategy is in maroon (purple),
time-average perturbed cost of the first (second) strategy is in green (blue). In order to place both iterations and
time-average (perturbed) costs on one diagram the costs were scaled down by factor 8. Observe that time-average

perturbed cost of the first strategy is invisible as it is covered by time-average perturbed cost of the second strategy.

2 are different – this condition for our game is shown in
Figure 7. We want to show that there is a point x ∈ (0,1)
such that the limit of the averages of ϕ over longer pieces
of the orbit of x doesn’t exist.
We will use standard tools from the combinatorial dy-

namics. If I,J are subintervals of [0,1], we say that I
f -covers J if J ⊂ f(I). The following lemma can be found
for instance in3.

Lemma IV.16. Let (Ii)∞i=0 be a sequence of subintervals
of [0,1], such that Ii f -covers Ii+1 for every i. Then there
exists a point x ∈ I0 such that fi(x) ∈ Ii for every i.

We are ready to show that the time average of the
observable ϕ may not converge.

Theorem IV.17. Assume that f has a unique fixed point
p ∈ (0,1), and a unique period 2 orbit Q= {q1, q2} (where
q1 < q2). Denote the critical points of f by κl,κr (where
κl < κr). Assume that

f(κr)< q1 < κl < f2(κr)< p < q2 < κr < f(κl), (28)

or

f(κr)< q1 < f2(κr)< κl < p < q2 < κr < f(κl). (29)

Under the above assumptions, there exists a point x ∈
(0,1) such that the sequence of averages 1

n

∑n−1
i=0 ϕ(f i(x))

diverges.

Proof. We define five subintervals of [0,1]: A= [f(κr), q1],
B = [q1,κl], C = [κl,p], D = [p,q2], and E = [q2,κr] (see
Figure 8).

If p is not repelling, then the trajectory of either C, or
D∪E is attracted to p. However, q2 belongs to both f(C)

and D∪E, so this is impossible. Therefore, p is repelling.
Similarly, if Q is not repelling, then the trajectory of one
of the three intervals B, C ∪D, or E, is attracted to Q.
However, p belongs to f3(B), C ∪D, and f2(E), so this
is impossible. Therefore, Q is repelling.

Very similar arguments show that there is no attracting
(at least from one side) periodic orbit of period 2, whose
one point is in the interior of D and the other point in the
interior of C. Similarly, there is no attracting (at least
from one side) periodic orbit of period 4, whose one point
is in the interior of D and the next point in the interior
of B, the next point in the interior of E, and the fourth
point in the interior of A.
Now we construct a sequence (Ii)∞i=0 of subintervals

of [0,1] in the following way. We start by repeating
D,C n1 times, then we repeat D,B,E,A n2 times, then
D,C n3 times, then D,B,E,A n4 times, etc. Let x be
the corresponding point, whose trajectory follows this
sequence (as in Lemma IV.16). From what we proved
in the two preceding paragraphs, it follows, that if the
numbers ni are large enough and grow fast enough, then
some pieces of the trajectory of x stay as close to p as
we want for as long as we want, and some other pieces
of the trajectory of x stay as close to Q as we want for
as long as we want. This means that the averages of
ϕ over longer and longer initial pieces of the trajectory
of x sometimes approach ϕ(p) as close as we want, and
sometimes approach (ϕ(q1)+ϕ(q2))/2 as close as we want.
Since we assumed that those two numbers are different,
the limit of the averages of ϕ does not exist.

We want to apply this theorem to ϕ equal to the per-
turbed cost functions c1 and c2. One may argue that
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FIG. 7: Bifurcation diagram with perturbed costs of the fixed point p ∈ (0,1) and periodic orbit Q= {q1, q2} for
σ = 0.5 and b= 0.28, with a ∈ [0,44]. Horizontal axis represents parameter a, for each a ∈ [0,44] last 200 iterations of
the starting point x0 = 0.4 of the map fabσ out of 20000 iterations are plotted in black, time-average perturbed cost of
the fixed point p is in yellow, average over the orbit Q is in green. In order to place both iterations and time-average

perturbed costs on one diagram the costs were scaled down by factor 9.
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FIG. 8: Dynamics of intervals when inequalities (28), (29) are met.

they are not bounded. However, the core of the map (an
invariant interval such that the trajectories of all points
except 0 and 1 eventually land in it) is a compact subin-
terval of (0,1), so those functions restricted to the core
are bounded.

It remains to show that for some values of parameters
our assumptions are satisfied. We show it numerically in
Figure 9. Since the computations do not involve more
than two iterates of our map, we do not have to worry
about the accumulation of the round-off error.

We see that for our values of σ and b, starting at some

value of a the ordering of the important points is as in (28)
or (29). It also looks that this should be true for all larger
values of a. Note that if q2 < κr, then we can be sure
that q1 = fabσ(q2)> fabσ(κr).

V. CONCLUSIONS

In this paper we show that chaotic behavior can be
observed in a large class of EWA dynamics for simple
two-strategy nonatomic congestion game. We derive this
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FIG. 9: Points from (28) and (29) for σ = 0.5 and b= 0.28, with a ∈ [0,44]. Level lines are in red. Periodic points of
period 1 and 2 are shown in cyan. Critical point κl is in yellow and κr in blue; fabσ(κr) is in gray, f2

abσ(κr) in green,
and fabσ(κl) in magenta. Observe that the inequalities in (28) are satisfied when values of the parameter a are

sufficiently large.

class of dynamics from Galla and Farmer36. We show
that in such game an increase in the intensity of choice
will inevitably result in losing stability of the system.
Moreover, the interplay between asymmetry of costs and
memory loss will give qualitatively different behaviors for
large values of the intensity of choice. For σ = 0, that is
when all previous costs are equally important, the system
will become chaotic only if costs of resources are different.
When σ increases (memory loss/discount factor increases)
the range of values of the parameter of asymmetry of
costs b, for which the trajectories of almost all points
will be attracted by periodic orbit of period 2, will grow,
eventually for σ= 1 attaining the whole unit interval (0,1).
This behavior gives two completely different regimes. The
system where all trajectories are attracted to the periodic
orbit of period 2 is predictable and the dynamics is simple,
while chaotic regime is unpredictable resulting in complex
dynamics.

Our results show that while potential/congestion games
are traditionally viewed as one of the most predictable
classes of games in terms of their dynamics, their detailed
picture is much more complicated. These results are in line
with numerous recent findings9,22,24,25,55,62,67, suggesting
that complex and non-equilibrating behavior of agents
employing learning rules widely applied in economics
seems to be common rather than exceptional.
In addition, we show that memory loss can prevent

chaos in two-strategy congestion game with homogeneous
population of agents. But what will happen in hetero-
geneous case? And what if agents have more strate-
gies/resources available? Evidently, the system will be
more complicated. Nevertheless, in the full memory case
one can observe the emergence of chaotic behavior for
b 6= 1/2 as a consequence of the increase of the inten-

sity of choice, both in heterogeneous case and for many
strategies24. We leave the answer to the memory loss case
for future work. Moreover, one may ask if these results
are algorithm specific. Results on more general classes of
dynamics9,57 suggest that our result can be generalized to
larger class of dynamics like (discounted) FTRL dynamics.
We also leave the answer to this question for the future
work.

Lastly, Pangallo et al.62 showed that best reply cycles —
basic topological structures in games — predict nonconver-
gence of six well-known learning algorithms that are used
in biology or are supported by experiments with human
players. Best reply cycles are dominant in complicated
and competitive games, indicating that in these cases
equilibrium is typically an unrealistic assumption, and
one must explicitly model the learning dynamics. These
examples of complex and chaotic behavior strongly sug-
gests that chaotic, non-equilibrium results can be further
generalized to other games.
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Appendix
In the Appendix we use the notation η = 1−σ.

Appendix A: Derivation of the dynamics from
Experience-Weighted Attraction

In this section we show how to derive the update rule
in (2) from Experience-Weighted Attraction (EWA) dy-
namics. Our approach is based on the derivation of an
analogous formula for a game with finite set of players that
can be found in Supplementary Information Appendix
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of36. We reproduce this procedure here (with necessary
modifications for inclusion of a continuous population)
for the convenience of the reader.
We begin with introduction of the basic notation of a

game G= (N,S,π). The set of agents is N = {1,2, . . . ,n},
n > 1, the agents are indexed by i ∈N . We denote Si =
{s1
i ,s

2
i , . . . ,s

j
i , . . . ,s

m
i } a strategy space of agent i. For

simplicity of notation we assume that all strategy sets
have the same size m> 0. Then S =

∏n
i=1Si is the set

of all strategy profiles and S−i = S1× . . .×Si−1×Si+1×
. . .×Sn denotes the strategy space of all agents except
agent i. Let ∆i be the set of mixed strategies of agent i,
that is a set of all probability distributions over Si. Then
∆−i is the product set of mixed strategy profiles of all
agents except agent i. We denote πi(xi,x−i) a scalar-
valued payoff function of agent i when playing strategy
xi ∈∆i against strategy profile x−i ∈∆−i of other agents.
Then π = (π1, . . . ,πn) is the payoff vector. Let xi(t) be an
actual strategy chosen by agent i in period t≥ 0 and let
x−i(t) denote actual strategy chosen by other agents in
period t. Finally, let πi(xi(t),x−i(t)) be payoff of agent i
in period t.

The core of the EWA model is two variables which are
updated after each round:

• N(t) which we interpret as the number of
‘observation-equivalents’ of past experience,

• Qji (t) denotes agent i’s attraction of strategy sji
after period t has taken place.

The evolution of attractions goes as follows

Qji (t+ 1) =
ηN(t)Qji (t) + [δ+ (1− δ)I(sji ,si(t))] ·πi(s

j
i ,s−i(t))

N(t) ,

where

N(t+ 1) = η(1−κ)N(t) + 1.

The attractions are translated into probabilities by the
logit transformation

xji (t+ 1) = exp(λQji (t+ 1))∑m
k=1 exp(λQki (t+ 1))

.

The roles of the parameters of EWA are explained below:

• The parameter σ = 1−η ∈ [0,1] describes the rate
of discounting of the past experience. For σ = 1
only the most recent experience affects the agents’
decisions, and for σ= 0 all past experience has equal
weight.

• The parameter δ ∈ [0,1] is a relative weight given to
strategies that are played vs. the strategies that are
not played. For δ = 1 agents update all attractions
in every step, and for δ = 0 only strategies that are
played are being updated.

• The parameter κ ∈ [0,1] affects the way the attrac-
tions are aggregated. For κ = 1 attractions are
cumulated, and for κ= 0 the attractions are taken
as an average.

• The parameter λ≥ 0 is an intensity of choice. For
λ= 0 agents choose strategies with equal probability,
and with λ→∞ the agents choose only the strategy
with the highest attraction.

• I(., .) is an indicator function, that is I(x,y) = 1 if
x= y and I(x,y) = 0 otherwise.

In this article we use simplified version of the EWA
algorithm. Specifically, we set δ = 1 and κ= 1, therefore
agents update all attractions in every step and attractions
are cumulated. Moreover, as we work with congestion
games, instead of payoffs we consider costs ci(sji ,s−i)
resulting from choosing strategy sji against strategy profile
of the opponents s−i (where ci = −πi for every i ∈ N).
Then we have

Qji (t+ 1) = ηQji (t)− ci(s
j
i ,s−i(t)). (A1)

We note that the update rule in (A1) is stochastic, that
is agent i will see the realization of the strategy profile of
other agents s−i(t) with probability xs−i

−i (t) =
∏
k 6=ix

sk
k (t).

We simplify the problem by considering an adiabatic limit
of the process. This procedure corresponds to averaging
over batches of a large (infinite) number of rounds between
two adaptation steps, that is, to the replacement

ci(sji ,s−i(t))−→ c̃i(sji ,x−i(t)) =
∑
s−i

ci(sji ,s−i(t))·x
s−i
−i (t).

This simplification leads us to deterministic learning dy-
namics

xji (t+ 1) = xji (t)η exp(−λc̃i(sji ,x−i(t)))∑m
k=1x

k
i (t)η exp(−λc̃i(ski ,x−i(t)))

.

And because in our game we have a continuous population
and only two strategies, we can drop the indices

x(t+ 1) =
x(t)η exp(−λc1(x(t)))

x(t)η exp(−λc1(x(t))) + (1−x(t))η exp(−λc2(1−x(t))) .

Thus, we obtain the update rule of the formula (2).

Appendix B: Derivation of the dynamics from multiplicative
weights with discounting

We consider a two-strategy non-atomic congestion game
where the play is driven by Multiplicative Weight Update
(MWU) algorithm with discounting of previous costs. We
denote the strategies by s1,s2. The cost of each strat-
egy depends on the fraction of agents x ∈ [0,1] that use
strategy s1

c1(x) = αNx, c2(1−x) = βN(1−x),
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where N > 0 is the mass of the entire population of agents
and α,β ≥ 0, max{α,β}> 0, are parameters that differ-
entiate the strategies.

At every step n≥ 0 the strategies s1,s2 have weights
w1(n) and w2(n) respectively. The initial weights w1(0)
and w2(0) can be arbitrary positive numbers. Then at step
n the strategy si is chosen by each agent with probability

wi(n)
wi(n)+wj(n) , where i, j ∈ {1,2}, i 6= j. As a result, the
fraction of population that uses the strategy s1 at step
n+ 1 is

xn+1 = w1(n+ 1)
w1(n+ 1) +w2(n+ 1) . (B1)

The weights are updated by

wi(n+ 1) = w1(0) · (1−ε)

n∑
k=0

ηn−kc1(xik)
,

where ε ∈ (0,1) is a learning rate and σ = 1−η ∈ [0,1] is a
discount factor that depreciates past costs, with x1

k = xk,
x2
k = 1−xk. Thus, the weight wi decreases with higher

discounted cumulative cost of previous play of strategy
si, i ∈ {1,2}. We express the update rule of the weights

in terms of previous-step weights

wi(n+ 1) =

wi(0) · (1−ε)
η
n−1∑
k=0

ηn−1−kci(xik)
· (1−ε)ci(x

i
n) =

(wi(n))η · (1−ε)ci(x
i
n).

Then from (B1) we have that

xn+1 =
(w1(n))η · (1−ε)c1(xn)

(w1(n))η · (1−ε)c1(xn) + (w2(n))η · (1−ε)c2(1−xn) .

(B2)

Note that (1− ε)ci(·) = exp
[
− log

(
1

1−ε

)
· ci(·)

]
. There-

fore, by dividing the numerator and the denominator of
(B2) by (w1(n) +w2(n))η · (1−ε)c1(xn) we get

xn+1 =
xηn

xηn+ (1−xn)η · exp
[
N log

(
1

1−ε

)
· (αxn−β(1−xn))

] .
Then by denoting a = (α+β)N log

(
1

1−ε

)
and b = β

α+β
we obtain

xn+1 = xηn
xηn+ (1−xn)η exp(a(xn− b))

.
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