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Abstract

Traditionally, vision systems have largely relied upon the object boundaries extracted from

images to accomplish recognition. Most contour detection algorithms, however, suffer from

the fact that the extracted object boundaries are usually broken and incomplete due to poor

imaging conditions and/or occlusions. In this paper, we describe an algorithm to perform curvi-

linear grouping of image edge elements for detecting object boundaries. The method works by

generating hypotheses and selecting the best one. A neighborhood definition based on Delau-

nay graph is used to keep the number of hypotheses generated small. An energy minimizing

curve is fit to the generated hypotheses to evaluate the grouping and locate discontinuities.

1 INTRODUCTION

Traditionally, vision systems have largely relied upon the object boundaries extracted from images

to accomplish recognition. Recent psychophysical studies have provided evidence that contour-

based processing also plays a very important role in object recognition by humans [4]. Thus,

obtaining meaningful contours in degraded images is very important.

The main advantage of using a contour-based approach is the fact that most of the shape infor-

mation about the object necessary for its recognition is contained in its boundaries. In addition, a

great deal of three-dimensional (3D) inference can be made from just the two-dimensional (2D)
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contours. The human visual system seems to perform very reliably with stimulus-poor inputs. Line

drawings are examples of such stimulus-poor inputs because they lack any of the usual surface re-

lated information such as texture, shading, range from stereopsis, etc. Even with degraded line

drawings where the boundary information is incomplete, humans do a remarkable job by complet-

ing the missing boundary segments to recognize the objects.

Most contour detection algorithms, however, suffer from the fact that the extracted object

boundaries are usually broken and incomplete due to poor imaging conditions and/or occlusions.

In this paper, we describe an algorithm to perform curvilinear grouping of image edge elements

for detecting object boundaries. One of the goals in this research is to have a unified computational

framework that will complete piecewise smooth boundaries and detect discontinuities in curvature

(corners) simultaneously. Another goal is to be able to apply the same methodology to integrate

the results of various other modules such as symmetry detection with the results of curvilinear

grouping module.

We start with a gray level image and we perform the low level processing of edge detection

on it. Given noisy and broken object boundaries, we want to compute the best possible interpreta-

tion of these boundaries utilizing domain independent techniques. These boundary interpretations

could then be input to higher level processes such as the 3D interpretation of the 2D lines [12,19].

Current line labeling algorithms suffer from the fact that they expect perfect line drawings. We

intend the contour completion and segmentation algorithm presented here to be one part of an in-

tegrated processing subsystem which will produce 3D interpretations of the objects in the scene

possibly including a labeling of the lines. This point is very important because it means that our

grouping algorithm does not have to generate perfect results by itself. It is sufficient for it to gen-

erate groupings that will start the processes in other modules going. In return, it can use partial

results coming from other modules to perform further groupings. We do not address this problem

in this paper, however, the results of the current algorithm must be evaluated in this context.

The paper is organized as follows. Section 2 gives a brief background on perceptual grouping

and contour completion. Section 3 gives the details of the algorithm. Section 4 provides the

experimental results and a discussion of these results. Section 5 gives some concluding remarks.
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2 BACKGROUND

Perceptual grouping is the process that “organizes” image plane entities into larger units based on

image plane relationships and Gestalt rules of organization. These Gestalt rules of organization

are based on the premise that the physical world is well behaved and has structure. Such structure

in the 3D world in turn is preserved during the imaging process so that the detection of significant

structure (perceptual organization) in the image plane tells us something about the 3D structure

of the scene [11]. It has been argued in the past that the human visual system uses the laws of

perceptual organization to identify and complete the noisy contours of an object [3, 11, 22]. Such

detection of structure by perceptual grouping is domain independent. That is, there are general

rules reflecting the constraints of physical world and of the imaging process, but these constraints

do not depend on the specific domain in which object recognition ultimately has to be performed.

Gestalt psychologists were the first to state explicitly the rules of organization in visual perception.

These rules include the properties of proximity, good continuation, closure and similarity [10,21].

There has been a renewed interest in the perceptual grouping phenomenon both in the computer

vision community [3, 6, 11, 20, 22] and the psychology community [14]. In these studies, the

idea of detecting non-accidental properties has emerged as a unifying explanation for many of the

phenomena that Gestalt psychologists had identified previously. Non-accidental properties in an

image refer to properties such as collinearity, curvilinearity, parallelism, etc. The main idea is

that the likelihood of such structures arising in images by accident is very low. Therefore, their

presence in the 2D image indicates a significant causal structure that exists in the corresponding

3D scene. These non-accidental structures in images then must be identified at this intermediate

stage which may be useful for processing at later stages.

The Gestalt rule of organization based on proximity and smoothness is one of the most impor-

tant ones and has been used extensively in vision research. Even though these are usually stated as

separate rules, in order to get any kind of reasonable groupings in images, they must be treated as

a single rule in an integrated manner. This integration usually takes the form of a proximity-based

grouping formulation with the smoothness criterion providing an extra constraint to resolve any

ambiguities. Zucker and Hummel [23] and Ahuja and Tuceryan [3] have taken this approach.

Regularization is one method that has been suggested for enforcing smoothness criteria and
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thus restrict the possible solutions to various reconstruction problems [13]. This method has been

successfully applied to various reconstruction problems [5, 9, 16]. Some of these applications

perform very well, but require human intervention [9]. All of them have been used for various

reconstruction tasks, but not necessarily for grouping applications. Some of them provide elegant

algorithms for solving the variational problems that arise and for dealing with the discontinuities

in a unified manner [5].

3 ALGORITHM

This section will present our formulation of the grouping of curvilinear contours by using an energy

minimizing curve fitting technique. The top-level algorithm is given in Algorithm 1. The edge

detector used for generating the initial edge map from the gray level image is the one by Canny [7].

We now describe each major part of the algorithm in more detail.

3.1 Preprocessing

In order to apply our grouping algorithm, the initial edge elements (edgels) should be sufficiently

simple. Since the Canny edge detector already generates thinned edges, we do not need to perform

any thinning operation at this stage. The remaining simplifications are that the edgels should not

contain any branch points (any pixels which have three or more eight-connected neighbors) and

that they should not contain any corners. The goal of the preprocessing step is to convert the initial

edge data into a form suitable for further processing.

The preprocessing performs a connected components labeling on the edge map and identifies

all the connected edge elements. For each component so labeled, it identifies branch points and

breaks the edgel into smaller components at these branch points. The remaining edgels are further

broken at points of high curvature (corners). The corner detection is accomplished by using the in-

tegrated algorithm of discontinuity detection and energy minimizing curve fitting described below

(see Section 3.3). The second order derivative discontinuities detected in this scheme are labeled

as corners. The edgels identified at the end of this process become the candidate image tokens to

be grouped by our algorithm.
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Algorithm 1

Input: Gray level image
Perform edge detection
Iedge Result of preprocessing the edge image
Compute adjacency graph of the edgels inIedge
E Sort edgels inIedge in descending order of length
G fg, the set of grouped edgels
foreachedgele 2 E in descending order of length

S fg
N(e) set of neighbors ofe
foreache0 2 N(e)

de Delaunay edge betweene ande0.
Construct a grouping hypothesisH consisting of the edgels
(e; de; e0)
U  Fit an energy minimizing curve toH finding curvature
discontinuities simultaneously
S S [ fUg

end
Select fromS the edgel that has no discontinuities and has the mini-
mum energy.
if the result is not empty

remove the original constituent edgels and replace with grouped
edgel.

else
remove edgele from E and put intoG

end
end
Output: G , the set of grouped edgels.

end
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3.2 Adjacency Graph

A crucial point in our algorithm is the definition of adjacency of image tokens. This is very im-

portant because if properly defined it reduces the number of the possible grouping hypotheses and

also keeps the edgel relationships local. We use a modified version of the Delaunay graph as the

basis of our adjacency definition.

It has been argued that the Delaunay graph can be used to represent local neighborhood infor-

mation and that it is very useful in extracting local information about the spatial distribution of a

set of points [1, 3]. It has also been shown that the Delaunay graph has desirable perceptual prop-

erties [8]. Alternative definitions of adjacency are possible. For a discussion of the advantages and

disadvantages of various definitions see [1, 8]. We now give the definition of the Delaunay graph

in terms of its dual, Voronoi tessellation. We then give the definition of our adjacency relation.

Let S denote a set of three or more points in the Euclidean plane. Assume that these points are

not all collinear, and that no four points are cocircular. Consider an arbitrary pair of pointsP and

Q belonging toS. The bisector of the line joiningP andQ is the locus of points equidistant from

bothP andQ and divides the plane into two halves. The half planeH
Q
P (HP

Q ) is the locus of points

closer toP (Q) than toQ (P ). For any given pointP , a set of such half planes is obtained for

various choices ofQ. The intersection
\

Q2S;Q6=P

H
Q
P defines a polygonal region consisting of points

in the Euclidean plane closer toP than to any other point. Such a region is called theVoronoi

polygon[18] associated with the pointP . The set of complete polygons for all points inS is called

theVoronoi diagramof S [15]. The Voronoi diagram together with the incomplete polygons in the

convex hull ofS define aVoronoi tessellationof the entire plane. Two pointsP;Q 2 S are said to

beVoronoi neighborsif the Voronoi polygons ofP andQ share a common edge. TheDelaunay

graph is obtained by connecting all the pairs of points which are Voronoi neighbors as defined

above. The Delaunay graph is a planar graph and it triangulates the plane. It has also been shown

that for a point pattern with a Poisson distribution the expected number of neighbors of a point

in the Delaunay graph is a constant and is about six [2]. The fact that the expected number of

neighbors of a point is constant keeps the number of hypotheses generated low.

The adjacency of the edgels is defined in terms of the original Delaunay graph computed for

the edge map. We regard each edge pixel with row and column indexes(i; j) as a point in the plane
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and compute the resulting Delaunay graph. We then keep only those Delaunay edges which are

connected to the endpoints of the edge elements. Thus, the adjacency of the edgels is defined only

in terms of the adjacency of their endpoints. This is acceptable in view of the fact that we will be

looking for curvilinear groupings along the boundaries.

3.3 Grouping by Energy Minimization

The heart of our grouping algorithm is the two step process of hypothesizing candidate groupings

and picking the best groupings. The candidate groupings are generated by utilizing the adjacency

graph. After each candidate hypothesis is generated, we fit an energy minimizing curve to the

hypothesis. The optimal curve which is the result of this process will be smoothed, have curvature

discontinuities marked, and have an energy value. The decision to group the edgels or not will

depend on this resulting curve.

First, we describe the energy minimization formulation. Let the original pixels along the hy-

pothesized edgel be given by the vectorx(s) = (x(s); y(s)) with parameters. We would like to

find a curveu(s) = (u(s); v(s)) that minimizes an energy functional that depends upon the initial

datax(s) and some regularization terms. The energy functional that we minimize is:

E =
Z
L

n
�1[(u(s)� x(s))2 + (v(s)� y(s))2]

+�2[u
2

s + v2s ] + �3[u
2

ss + v2ss](1� k(s)) + �k(s)g ds (1)

wherek(s) is an indicator function for the discontinuities along the curve given by

k(s) =

8><
>:

1 if there is a discontinuity

0 otherwise
(2)

Hereus anduss are the first and second derivatives ofu(s) with respect tos, respectively. The

notation is the same forv(s). The�1, �2, and�3 are parameters that control the relative weights

of the squared error and regularization terms in the energy functional. The(u(s) � x(s))2 +

(v(s) � y(s))2 is the term that keeps the solution close to data. The term involvingus andvs is a

regularization term ensuring smoothness in the first order derivatives. This can also be regarded as
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the stretch along the curve. The term involvinguss andvss is a regularization term that enforces

second order derivative continuity along the curve. If there is a discontinuity along the curve (i.e.,

a bend), then this term is turned off at that point. However, a penalty is paid for creating the

discontinuity by an amount�. The second order regularization terms can be interpreted as the

rigidity of the curve.

In order to obtain the discontinuities and the global minimum reliably, we have implemented

this using the multiresolution algorithm described in [17]. We use three levels of resolution: course,

intermediate, and fine. The grid size is halved each time going from finer to a courser resolution

and vice versa. For each level of resolution, we compute the energy minimizing curve by the

method described below and inject the results to the appropriate next level of resolution. Using

the multiresolution method makes the computed shape of the curve and the locations of the second

order discontinuities more reliable.

For a given grid resolution we discretize the energy functional in Equation (1) and we get:

E =
PN

i=1

n
�1[(ui � xi)

2 + (vi � yi)
2]+

�2[(ui � ui�1)
2 + (vi � vi�1)

2] +

�3[(ui+1 + ui�1 � 2ui)
2 + (vi+1 + vi�1 � 2vi)

2](1� ki) +�kig (3)

In the discrete case, theki are boolean variables that need to be computed. The curve fitting is

done in two steps which is then iterated until the process converges on a solution. First, we estimate

the discontinuities (i.e., the values ofki) based on the current estimates of the curve(ui; vi). This

is followed by the computation of the(ui; vi) values based on these discontinuity estimates by

keeping them fixed.

The estimation of the discontinuities is done by minimizing the energy with respect toki. The

expressions forki are given below [5]:

ki =

8><
>:

1 if � � �3((ui�1 + ui+1 � 2ui)
2 + (vi�1 + vi+1 � 2vi)

2)

0 otherwise
(4)

Once the dicontinuities are located according to Equation (4), keeping them fixed turns Equa-
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tion (3) into a manageable minimization problem. The Euler equations (in discrete approximation)

for solving this variational problem are as follows:

0 = �1(ui � xi)� �2(ui�1 + ui+1 � 2ui)

+�3(1� ki)(1� ki�1)(ui�2 + ui � 2ui�1)

+�3(1� ki)(1� ki+1)(ui+2 + ui � 2ui+1)

�2�3(1� ki)(ui�1 + ui+1 � 2ui) (5)

0 = �1(vi � yi)� �2(vi�1 + vi+1 � 2vi)

+�3(1� ki)(1� ki�1)(vi�2 + vi � 2vi�1)

+�3(1� ki)(1� ki+1)(vi+2 + vi � 2vi+1)

�2�3(1� ki)(vi�1 + vi+1 � 2vi) (6)

Equations (5) and (6) are then solved iteratively using the method described in [9].

The decision to group at the end will be made according to the following rule:

1. If there is a bend (a discontinuity) along the curve, the edgels are not grouped and this

hypothesis is discarded.

2. If there is no discontinuity along the curve, then its energy is checked against the minimum

seen so far. If it is less than the current minimum it is kept as a viable hypothesis. Otherwise,

it is discarded.

At the end of this process, for a given edgel, we will either have a grouping hypothesis with the

minimum energy, or we will have no hypothesis that survives. In the latter case we consider the

edgel ungrouped and remove it from the list of edgels to be considered for further grouping. If there

is a grouping found, then we remove the constituent edgels from the list of edgels to be grouped

and add the new grouped edgel to the list. The entire process then continues from the start.

Since we start the grouping process with the longer edgels being considered first, then the most

significant groupings will be formed first. Also, as long as the currently examined edgel can group

with one of its neighbors, it will keep growing.

9



4 RESULTS

The algorithm is implemented in Common Lisp (the numerical routines are written in C which are

called from Lisp) on a Sparcstation 1. In our experiments we have used the following values for

the parameters:� = :28, �1 = 1, �2 = 1, and�3 = 2:5. These were determined empirically and

seem to give reasonable results in most images.

We have tried our algorithm on a number of images. Two examples are given in Figures 1 and

2. The example in Figure 1 is an easy one and part (c) of this figure shows the resulting grouping.

Note that the corners are detected reasonably well in this case and most of the groupings found are

good.

Figure 2 was taken from [12]. As we can see most of the significant groupings have been

formed by our program. Note that this result would be a big help for a line labeling program if it

wants to generate some partial labelings for further processing. There are some places where the

results can be improved. For example, the algorithm has difficulty detecting discontinuities where

the corner forms an obtuse angle. The lower resolution grid finds this discontinuity, but when it is

injected into the finer grid, it gets smoothed out and lost. This also causes problems with grouping

because if the edgel is not broken at a corner, the proper hypotheses cannot be generated.

Also we have not integrated the lengths of the gaps into the energy minimization formulation.

The stretch term may be used to deal with proximity based grouping in a unified manner.

5 CONCLUSION

Currently our grouping algorithm is able to detect most of the discontinuities in curvature, and

it is able to form curvilinear groupings. Because we use the Delaunay graph as the basis of our

adjacency definition, the number of grouping hypotheses generated are small.

Some aspects of the algorithm can be further improved. The algorithm currently is having

difficulty detecting obtuse corners. This in turn causes problems with grouping because some of

the candidate hypotheses cannot be generated. There is sufficient information in the low resolution

grid of the energy minimization for doing this. We are currently working on this improvement.

A second improvement of the algorithm is a sparse formulation where proximity based group-
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(a)

(b)

Figure 1: An example image and the groupings found. (a) Original gray level image. (b) The edge
detector output. The resulting grouped edgels are shown on the next page. Adjacent edgels which
are different are labeled with different colors.
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(a) (b)

(c) (d)

Figure 2: An example image which has a large number of broken edge elements. (a) Original edge
image. (b) The voronoi edgels (yellow) between edgel pixels. (c) The result of the preprocessing
step which breaks the edgels at branch points and corners. Adjacent edgels which are different are
labeled with different colors. (d) The resulting grouped edgels using the same coloring scheme.
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ing can be computed automatically be creating discontinuities in the first derivative due to stretch.

Our algorithm currently fills the gap between two edgels with the points along the Delaunay edge.

An integrated treatment of this would be desirable. We are also looking into this aspect.

A further improvement is to integrate the curvilinear grouping module with other grouping

modules such as symmetry detection. This type of integration would help to fill the side of the

cylinder in Figure 2. A further step is to integrate the grouping module with 3D interpretation

modules. In the context of 3D interpretation, some of the difficulties and ambiguities in the current

algorithm may be resolved.

In conclusion, we intend this module to be part of a larger integrated system which includes

other grouping modules as well as 3D interpretation modules. Therefore, the success of its results

will depend on how helpful they are to the processing of other modules. Based on this, the group-

ing found in Figure 2 is an improvement because the line labeling module can now make some

hypotheses about possible interpretations whereas the ungrouped image was almost intractable.

References

[1] N. Ahuja. Dot pattern processing using voronoi neighborhoods.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-4(3):336–343, May 1982.

[2] N. Ahuja and B. Schachter.Pattern Models. John Wiley and Sons, Inc., 1983.

[3] N. Ahuja and M. Tuceryan. Extraction of early perceptual structure in dot patterns: Inte-
grating region, boundary, and component gestalt.Computer Vision, Graphics, and Image
Processing, 48:304 – 356, December 1989.

[4] I. Biederman. Human image understanding: Recent research and a theory.Computer Vision,
Graphics, and Image Processing, 32:29–73, 1985.

[5] A. Blake and A. Zisserman.Visual Reconstruction. MIT Press, 1987.

[6] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines.IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(4):425–455, 1986.

[7] J. Canny. A computational approach to edge detection.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-8:679–698, 1986.

[8] T. Chorzempa. Relative sensitivity of a family of closest point graphs in computer vision
applications. Master’s thesis, Michigan State University, East Lansing, Michigan, 1988.

14



[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.International
Journal of Computer Vision, 1:321 – 331, 1988.

[10] K. Koffka. Principles of Gestalt Psychology. Harcourt Brace, New York, 1935.

[11] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academics, Boston,
1985.

[12] J. Malik. Interpreting line drawings of curved objects.International Journal of Computer
Vision, 1(1):73–103, 1987.

[13] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory.Nature,
pages 314 – 319, 1985.

[14] I. Rock. The Logic of Perception. MIT Press, Cambridge, MA, 1983.

[15] M. I. Shamos and D. Hoey. Closest-point problems. InProc. 16th Annual Symp. on Founda-
tions of Computer Science, pages 131–162, 1975.

[16] D. Terzopoulos. Multilevel computational processes for visual surface reconstruction.Com-
puter Vision, Graphics, and Image Processing, 24:52–96, 1983.

[17] D. Terzopoulos. Image analysis using multigrid relaxation.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(2):129–139, March 1986.

[18] G. Voronoi. Nouvelles applications des param`etres continus `a la théorie des formes quadra-
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