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Abstract

This paper describes the POLL (Perceptual Organization and Line Labeling) system for

obtaining labeled line drawings from single intensity images using an integrated blackboard

system. This system emphasizes the data driven extraction of 3D geometric information from

intensity images. The robustness of the system comes from it being implemented in an integrated

framework in which the errors made by one module can be diagnosed and corrected by the

constraints imposed by other modules. The system is able to generate an initial line drawing

from an intensity image in the domain of piecewise smooth objects.

Four modules were used as knowledge sources: weak membrane edge detection, curvilinear

grouping, proximity grouping, and curvilinear line labeling. An initial representation of the

image data is built using the �rst three knowledge sources. This representation is analyzed

using a modi�ed curvilinear line labeling algorithm developed in this paper that uses �gure{

ground separation to constrain legal line labelings. This modi�ed line labeling algorithm can

diagnose problems with the initial representation. The modi�ed line labeling algorithm can

�nd errors such as missing edges, improperly typed vertices, and missing phantom junctions.

Errors in the representation can be �xed using a set of heuristics that were created to repair

common mistakes. If no irreparable errors are found in the representation, then the modi�ed

line labeling algorithm produces a 3D interpretation of the data in the input image without

explicitly reconstructing 3D shape.



1 Introduction

One of the main goals of computer vision is to extract spatial and geometric information about

the external world seen in an image. The extracted spatial information could be as simple

as identifying empty spaces for navigational or obstacle avoidance purposes, or it could be for

manipulation or object recognition purposes.

Object recognition is one of the most important and frequently researched topics in compu-

tational vision, due to its potential for wide applicability to important automation problems.

There are many proposed methods in the literature for accomplishing object recognition. One

very common approach is to match a representation of an object that was derived from image

data to 3D descriptions of objects stored in a model database. Such 3D descriptions can also

be used for purposes other than recognition, such as manipulation.

In an intensity image, the light received by the camera is a function of several factors such

as the shape and re
ective properties of the surfaces, the number, type, and relative direction

of light sources, and the viewing direction. These factors are highly interrelated making the

direct recovery of the 3D shape of the imaged objects diÆcult. Therefore, the extraction of a

3D description from an image involves an inference process. There is a broad literature on a set

of techniques for inferring such information based on explicit reconstruction of the 3D shape.

These include shape from shading [1, 2, 3, 4], shape from texture [5, 6, 7, 8], shape from motion

[9], shape from stereo [10, 11], and many other similar processes collectively referred to as \shape

from X." While these algorithms are gaining mathematical rigor [9], they still lack the robustness

that is necessary to be useful in a general environment. Other approaches include extraction of

qualitative 3D information from images. An early example of such a process is extracting line

drawings from images with possible 3D intrepretations attached. This is attractive because it is

boundary based and terse. Boundaries have been shown to be useful in human vision [12]. The

problem is that it is diÆcult to reliably extract the perfect line drawings from images which are

necessary for most line labeling algorithms to work properly.

Another approach to extracting qualitative information from images involves inferring struc-

ture through perceptual organization. This line of research has been motivated by cues from the

human visual system [13]. The human visual system can organize and interpret images even

when 3D shape cannot be reconstructed. To do this, the salient features of the image, called

tokens, need to be identi�ed, organized, and interpreted. The capability of the human visual

system to group tokens together in a meaningful way without any prior knowledge of the con-

tents of the image, is called perceptual organization. Perceptual organization collects tokens in

the image plane together into signi�cant groupings using only general rules. These tokens can be
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recursively grouped, or subdivided as the scene is further organized. Cooperating and competing

groupings are explored until a globally good organization of the image is found. Groupings of

tokens can then be used to infer 3D properties [14]. The problem with this approach is that of-

ten there are many competing plausible groupings. Deciding among these competing groupings

without the proper 3D context is diÆcult.

This paper will describe the development of the POLL system (Perceptual Organization for

Line Labeling) which uses the processes described above in an integrated manner, to �nd labeled

line drawings from single monochromatic intensity images. Our motivation was:

� to reduce the fragility of each of these individual processes through the use of multiple

cooperative processes which complement each other, and

� to minimize the need for human intervention in this processing

The organization of the paper is as follows. Section 2 will give a brief review of the background

and previous work. Section 3 will describe the overall architecture of the POLL system. Section 4

will explain how the initial analysis of image information is performed with the perceptual

knowledge sources. Section 5 will give the method proposed to discern images that have been

properly analyzed by the initial processing from those that have not using the diagnostic and

interpretive knowledge source. Once inconsistencies in the initial representation of the image

have been found, Section 6 shows how some of these defects can be corrected using the control

and repair knowledge sources. Section 7 will present experimental results. The �nal section,

Section 8, will list the contributions of the paper and suggest related topics for further research.

2 Background

The POLL system's goal is to extract labeled line drawings from intensity images in an integrated

framework. The modules used in the implementation of the POLL system are (a) low level

modules, (b) perceptual organization modules, and (c) a 3D interpretation module in the form

of line labeling. We �rst give a brief review of previous work done which is relevant to the

components of the POLL system.

The low level processing component entails the processes that operate directly on the image

and produce results in the image domain. It includes such modules as edge detection, segmen-

tation, corner detection, etc. There has been a great amount of research done in the individual

modules of this level and there is a vast literature about it. The interested reader can refer to

any standard vision textbook [15, 16].
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Another module which is integral to the operation of POLL is the perceptual grouping

module. Perceptual grouping is the organization by the human visual system of image tokens in

a scene into meaningful groupings without using any domain speci�c knowledge or without any

explicit shape information being present. An appreciation for this aspect of the human visual

system dates back to the Gestalt school of psychology [17], which identi�ed the �rst principles

of what is now known as perceptual organization. These principles include proximity, similarity,

good continuity, closure, symmetry, and �gure-ground separation.

In computational vision, the importance of perceptual organization was brought to the fore-

front by Witkin and Tenenbaum [18] and Lowe [14]. Witkin and Tenenbaum analyzed the

importance of structure, meaning spatiotemporal coherence or regularity, in visual perception.

They argued that when regular structure is observed, it is signi�cant because it would have been

unlikely to have arisen accidentally. Lowe sharpened this idea in [14] when he proposed that the

signi�cance of a grouping of tokens is proportional to how unlikely the relationship between the

tokens was to have arisen by accident, called non-accidentalness. Other studies that attempt

to model perceptual organization principles computationally include Tuceryan [19], Rosin and

West [20], Trytten [21], McCa�erty [22], Sarkar and Boyer [23], and Mohan and Nevatia [24].

Labeling of line drawings was originally done in the trihedral world [25, 26], and later ex-

tended to general polyhedra [27]. Shadow edges and surface markings were added in [28], and

origami objects were used in [29]. A junction catalog for piecewise smooth objects was derived

by Malik in [30]. Piecewise smooth objects di�er from polyhedra in that the surfaces can be

curved and are not restricted to be planar. There have been various attempts in the past at

extracting labeled line drawings from real images with varying levels of generality and varying

degrees of success [31, 32, 33, 34, 35].

Another major aspect of the POLL system is the integration of various visual processing

modules. Integration has become an important research topic in computational vision [36, 37,

38, 39, 40, 35]. The primary goal of integration is improving the robustness and 
exibility of

computational vision algorithms.

Moravec's certainty grid [39], Gibbs distribution and Markov Random Field frameworks

(MRFs) [41, 38, 36, 22] are examples of integration within a uniform mathematical framework.

In these approaches often some sort of optimization process is involved in the form of maximiz-

ing a posteriori probabilities or minimizing some energy function. When energy minimization

problems are being solved, it is often desirable that the solution found be smooth. Regulariza-

tion theory is the rigorous approach to smoothness as a constraint which have been suggested

and used by various researchers [42, 43, 44].
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Any integration strategy that does not exhibit the uniformity of the integration strategies

mentioned above will be classi�ed as non-uniform. This approach is often used for integrating

pairs of processes. Many of these schemes take advantage of the strong constraints in the speci�c

domain under consideration. Examples of this approach include works by Ahuja, et al. [45, 6]

and Malik and Maydan [46].

When the number of processes to be integrated becomes large, creating a non-uniform system

is more diÆcult. If this integration is handled informally, chaos can result. A useful structure

for integrating diverse processes which work on a common problem is the blackboard system

[47, 48]. Blackboard systems have previously been used for image processing and computer vision

[37, 49]. Work is also being done on specialized architectures for blackboards, concurrency and

parallelism, and real time blackboard systems [50].

3 The POLL System

This paper will describe the construction of the POLL system (Perceptual Organization and

Line Labeling) that can �nd labeled line drawings from single intensity images. The input into

the system will be a single intensity image of one or more objects in a domain which will be

precisely described shortly. The output from the system will be a line drawing labeled with a 3D

interpretation, and a database of intermediate representations and partial results that may be

useful for further processing. Finding labeled line drawings is a very diÆcult problem, and there

will be some images which are not correctly processed. In these images, it is desirable to obtain

intermediate information that could be used by other processing modules to work towards the

�nal goal of 3D interpretation.

Visual perceptual organization and 3D interpretation do not consist of a single cohesive

process, but rather of a diverse collection of processes working towards the goal of interpreting

images. For these perceptual processes to be able to cooperate and compete to �nd meaningful

relationships within the image, the processes need to be integrated. Integrated processes can

use each others constraints and expertise to guide the search for good groupings.

An example of the need for integration is shown in Figure 1. This very simple polyhedral

scene would create enormous diÆculties for existing line labeling methods. The imaged object is

within both the domain of polyhedral objects and the domain of piecewise smooth objects. But

it is unlikely that any edge detection scheme could recover the front corner edge of this object,

since edge detection relies upon spatial variation in intensities and there is no spatial variation

in intensity values across the front edge of the prism. Line labeling modules require perfect

input and cannot recover from edge detection mistakes. And edge detection modules cannot
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Figure 1: An intensity image of a simple square block. Notice that there is almost no variation
in intensity across the front corner of the block. This makes it diÆcult for edge detection to �nd
this edge without �nding other noise edges.

give perfect edges. Therefore, even an unavoidable edge detection failure as in this example will

result in a failure of line labeling.

The selection of the integration framework will depend upon the nature of the modules

and upon the nature of the information each module processes. If all the modules are working

on information in the same representation scheme, then using uniform integration frameworks

becomes easier but not obligatory. This still does not mean that uniform schemes are the most

appropriate to use in these cases. On the other hand, if the way in which the information

is represented lacks a uniformity to begin with, then it becomes harder to justify and also

implement such uniform integration schemes.

The integration framework used is the blackboard system [47]. A blackboard system uses

a common database, called the blackboard, to hold input, partial solutions, and control data.

These data objects are processed by independent knowledge sources, each of which specializes in

one type of processing. These knowledge sources evaluate the current blackboard con�guration,

look for opportunities to contribute to improving the solutions, and perform their specialized

processing. The results of this processing are left on the blackboard for other knowledge sources

to opportunistically use.

Blackboard systems have signi�cant advantages over other integration frameworks for this

research. Blackboard system modules can be altered without undue hardship since knowledge

source independence is maintained. This is important since there may well be signi�cant im-

provements in some of the modules in the future. This type of 
exibility permits a system to

evolve as the understanding of computational vision increases. The blackboard has an indepen-

dent control module that can strategically explore the space of solutions. Bringing these control

issues to the forefront, o�ers an opportunity to examine the interaction among the various mod-
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ules. Methods without elaborate control structures cannot provide this type of introspection

into their processing.

Figure 2 shows the overall structure of the POLL system. The knowledge sources are di-

vided into four groups. The �rst group are the low level (perceptual) knowledge sources. These

knowledge sources bootstrap the initial line drawing using low level processing and perceptual

organization. They are also available to do specialized work for other knowledge sources, and

make other contributions to the blackboard database. The diagnostic and interpretive knowl-

edge source is a modi�ed line labeling paradigm that can examine a line drawing and locate

inconsistencies. If there are no inconsistencies, a 3D interpretation of the line drawing will

be found. The information produced by the diagnostic and interpretive knowledge source is

available for the control knowledge source. This knowledge source selects which of the available

repair strategies, if any, is suitable for �xing problems with the line labeling. The repair knowl-

edge sources are called by the control knowledge source to �x the line labeling, and in turn call

the perceptual knowledge source to reevaluate previous results in light of the the more global

diagnostic information that is available. The integration in this system comes from the fact that

there is interaction, cooperation, and feedback among the various knowledge sources through

communications via the blackboard. Thus, the diagnostic line labeling knowledge source can

have a top-down e�ect on the lower level modules by enforcing constraints in its domain. Notice

also that through this type of interaction, there is no �xed, sequential order of processing which

must be applied to every image. Depending upon the content and complexity of the image, there

may be many di�erent orders of processing and many iterations through the e�ective feedback

loops. This is where the power of integration schemes originates.

The perceptual knowledge sources used in this system are weak membrane edge detection

[51], an algorithm that performs edge grouping on the basis of continuity [21], a module that

analyzes vertex proximity, and a module that can determine the type of line drawing junctions.

A modi�ed line labeling algorithm will be used as the diagnostic and interpretive knowledge

source.

The domain of objects that is used in this paper is the set of piecewise smooth objects

de�ned precisely by Malik in [30]. We restrict this domain, however, in order to help control the

complexity of the object domain: the number of surfaces that can meet at a vertex in an object

in our domain is limited to three. Some examples of real objects that are in the domain and

are correctly processed by the POLL system are shown in Figure 3. Examples of objects that

are not in this domain are wireframe objects, origami objects, objects where more than three

surfaces meet at a junction, a single nappe of a right circular cone.
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Perceptual Knowledge Sources

Edge Detection Curvilinear Grp Vertex Proximity Junction typing

Line Labeling

Controller

Repair Knowledge Sources

Control Knowledge Source

Reclassify Jn

Add Phantom

Add Arc

Diagnostic and Interpretive Knowledge Source

Group Junction *

Divide Junction *

Smooth Curve *

Figure 2: An overview of the POLL system described in this paper. Repair knowledge sources
marked with an asterisk have not been implemented.

(a) (b)

Figure 3: Two piecewise smooth objects.
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A number of other assumptions must be made for the line labeling algorithm to be applicable.

The projection model for the image must be orthographic; the objects must be seen in a general

viewpoint; and shadows, texture and markings are not allowed on the objects. These restrictions

could be relaxed if a more comprehensive junction catalog were to become available. Below we

give a brief description of some of the building block modules of our system.

3.1 Edge Detection

The method of edge detection that was selected for this work is �tting a weak membrane model

using the Generalized Non-Convexity (GNC) algorithm of Blake and Zisserman [51]. Other edge

detection methods we considered include Canny edge detector [52] and other traditional edge

detectors. The weak membrane method has a number of advantages over Canny edge detection.

We have found that it behaves better at the corners than Canny. This is critical because the

corners (junctions) are very important in line labeling.

The weak membrane model is an energy minimization scheme in which a surface is �t to

the image data which models a membrane which can have tears (thus modeling discontinuities).

The minimization can be done with the usual techniques, but in [51] a deterministic algorithm

(GNC) is used which �nds the global minimum. For the sake of simplicity, the explanation

given below refers to the weak string (the one-dimensional analogue of the weak membrane).

The discrete formulation of the energy functional in the weak string is made up of three terms.

Let ui be the weak string solution to the functional. Let xi be the initial data. Let li be a binary

function such that li = 1 corresponds to a break in the string. The energy functional E to be

minimized for the weak string is:

E =
X

i

((ui � xi)
2 + �2(1� li)(ui � ui+1)

2 + �li) (1)

The �rst term penalizes the solution ui for being far away from the data xi. The second

term penalizes ui for being far from its neighbor. This is a �nite element approximation of the

�rst derivative and contributes to the energy only when the string is unbroken. The �nal term

is a penalty for breaks in the string. These three energy penalties together encourage the weak

string to be simultaneously close to the data, smooth, and unbroken. The parameters are set to

balance smoothness with breaks. If � is large, the string will be heavily penalized for not being

smooth, and will tend to break often. If � is large then the string will be broken less frequently,

but will smooth over the discontinuities. The two dimensional counterpart of a break in the

string is a tear in the weak membrane. The set of tears in the weak membrane correspond to

the edges of the detected regions.
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The energy functional needs to be minimized both with respect to ui, and with respect to

li. This problem is not convex and has the potential to get trapped in local minima during

the minimization process. The GNC algorithm is an attempt to avoid this problem in the

weak membrane model. This procedure has been shown to converge to the global minimum

energy for the weak string, the weak membrane, the weak rod, and the weak plate models if the

discontinuities are much further separated than the scale parameter �.

One advantage of selecting GNC for the edge detection module is that it tends to �nd

complete boundaries around regions even though this is not guaranteed. It does a good job

at the corners and junctions. The weak membrane formulation has only two parameters, both

of which have a physical interpretation. These parameters can be changed into another pair

of parameters which corresponds to scale and contrast sensitivity which is meaningful for edge

detection. The parameters were set initially, after experimentation, and were not altered during

the course of processing all the images shown in this paper Appendix A contains a summary of

the parameters used in the implementation.

3.2 Curvilinear Grouping

Edge detection alone cannot always provide perceptually meaningful lines and curves. Missing,

misplaced, and extraneous edges are often detected. The purpose of the curvilinear group-

ing module is to take the edges that are detected and organize them into more perceptually

meaningful structures. This can be done by grouping neighboring image tokens, as perceptual

organization would suggest.

Much of the previous research in this area has been dedicated to detecting straight lines

[53, 32, 54] or curves whose model is known a priori [55, 56]. More general algorithms have also

been studied by Lowe, whose algorithm emphasized recursively grouping adjacent edge points

into lines at multiple scales [14]. But he used a linear or circular curve model for performing the

perceptual organization. In this paper, a more general curvilinear grouping algorithm developed

by the authors was used [21]. This algorithm uses good continuity to group neighboring curves.

The neighborhood relationship is de�ned by the perceptually signi�cant Voronoi tesselation [57].

3.3 Line Labeling

As previously discussed, there have been many attempts to �nd a line labeling algorithm in the

past. Some of these have widened the domain of objects for which the labeling scheme is de�ned.

Others have attempted to deal with imperfect data. In this paper, we have decided to use a

line labeling algorithm with the least restricted object domain currently available. Therefore,
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Edge

Detection
RegionsInput Image Curves

Continuity Endpoint

Proximity
Vertices

Select BestSelect Best

Initial Object Hypothesis

Classify Junctions

Arcs and Junctions

Figure 4: An overview of the initial processing sequence.

we have chosen Malik's line labeling algorithm with some additional restrictions on the object

domain.

In the next few sections, we concentrate on the details of the various groups of knowledge

sources in the POLL system. These are grouped into the perceptual (or low level) knowledge

sources, diagnostic knowledge sources, and the repair knowledge sources, as shown in Figure 2.

The low level knowledge sources, which bootstrap the system and form the �rst hypotheses on

the blackboard, will be discussed �rst.

4 Obtaining an Initial Line Drawing

The processing in the POLL system is initiated by feeding it an input image. In order to go from

the image to the 3D interpretation, some of the modules need to initially produce intermediate

results. Initially, this results in a certain sequence of processing as shown in Figure 4. This

sequence is not �xed by the architecture, but is determined by data 
ow constraints. This is

discussed in more detail below in Section 4.1. This processing is used to analyze the input image

and create a reasonable approximation of the structure of the image for further analysis. Weak

membrane edge detection is performed. The detected edges are grouped using a continuity

module, and have vertices assigned at their endpoints. These vertices are collected using spatial

proximity to group junctions for line labeling. The junctions are then classed and typed. This

gives suÆcient information for the �rst pass of the line labeling algorithm.

Since it is expected that none of the processes utilized in this paper will produce perfect

results, a richer description of the image data must be made than what would be necessary for

a line drawing. The details are dicussed below.
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4.1 The Representation of Piecewise Continuous Objects in a Blackboard

The blackboard database contains a variety of data, including the initial intensity image, the

regions, curves, vertices, and object hypotheses that are output by the knowledge sources. To

discuss the organization of the blackboard system being used in this research, some vocabulary

is needed. The terms that are used here are those used in GBB (Generic Blackboard), the

blackboard shell used to implement POLL, and are given in [58]. The term \blackboard" used

by GBB will be replaced with \GBB blackboard" so as not to confuse the generic blackboard

ideas discussed before with the speci�c implementation of those ideas in GBB.

A GBB blackboard is a hierarchical tree structure composed of GBB blackboards and spaces.

Spaces are used to contain and index units. Units are the basic blackboard objects. When a

unit is created it is stored on a space. Such a unit is said to have been instantiated. Spaces are

stored, in turn, on a GBB blackboard. Indexing of units on spaces is optional in GBB, but in

image processing it can improve the eÆciency.

Units hold the hypotheses for entities that are found in the image. For the curvilinear line

labeling paradigm, for example, there are units for the arcs and the junctions. Each unit can

store three types of information. Slots hold the basic data, such as the name and label of a

junction. Indexes determine how the unit will be stored on the space. GBB permits a wide

range of indexing possibilities, including Frenet box ranges which are useful for units which are

not restricted to a single point. The �nal type of information is a link. Links relate a given unit

to other units. Di�erent types of units may be related using links.

The units used in POLL's blackboard system are as follows:

� Frame: the initial input data before analysis.

� Figure: a group of regions, curves and vertices.

� Region: a two dimensional array of spatially connected pixels

� Curve: a one dimensional array of spatially connected pixels

� Vertex: a point at the end of a curve

All of the units could have been stored on a single space since they are all indexed in the

same coordinate system. This would have kept the database overhead to a minimum, but would

have made retrieval of a particular unit type more time consuming. By placing each type of

unit on a separate space, retrievals can be done more quickly.

Each of the proposed modules uses a subset of these units for its processing. Table 1 sum-

marizes the mapping between modules and blackboard objects. The slots for the units re
ect
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the needs of the modules using that unit. Some slots store information that is used by only

one module. As an example, the frame unit stores the �lename of the input data, and all units

have index variables stored. All units have a belief slot which gives a rough interpretation of

the importance of this unit at the given point in time. If a hypothesis has belief zero, it is not

used in further processing although it remains on the space. Although removing a hypothesis

with belief 0 would save storage space and speed retrievals, it would violate one of the design

goals by making recovery from mistakes impossible.

The links between units can be divided into four categories. All links are bidirectional, al-

though this is not dictated by GBB but rather by the needs of this application. Adjacency links

describe spatial adjacency relationships. An example of an adjacency link is the neighboring-

curves link in the curve unit. This link joins two curve units that are spatially adjacent. Ad-

jacency links can also join di�erent unit types. An example of this is the link between regions

and their boundary curves. The region side of the link is called bounded-by-curve, and the

curve side is called bounds-region. A second type of link also exists between regions and curves.

This link is used for curves that are in the interior of regions. Units of the same type are also

linked as supporting-hypotheses and competing-hypotheses. The �nal class of links used are

supplementary hypotheses. An example of a supplementary hypothesis is a missing edge that is

hypothesized from a line labeling failure.

As we pointed out before, the processing sequence in Figure 4 is not �xed by architecture

but is a consequence of the data 
ow constraints in the processing. Since the knowledge sources

are independent, they do not call each other directly. The initial processing is controlled by the

blackboard itself. As an example, the creation of a new region triggers the curvilinear grouping

module to create the edges. This is not done by the module that created the new region, but

is done as a consequence of placing a new region on the blackboard. Similarly, the curvilinear

grouping module does not directly call the vertex module. The vertex module is automatically

called by the blackboard when the curve unit is instantiated and placed on the blackboard. This

type of processing greatly enhances the consistency of the blackboard.

4.2 Creating the Initial Blackboard

Since the initial blackboard database is the foundation for all future processing, it is important

that it be an accurate representation of the important events in the image plane. It is not

necessary that it be perfect. In fact, if it were possible to reliably create a perfect initial

blackboard database, the integration that is the subject of this paper would be unnecessary.

During the initial analysis of the input image, competing hypotheses for image events are
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instantiated. These competing hypotheses will make it possible to backtrack and correct poor

initial decisions at a later point in time when global constraints are applicable. With this

strategy, operations like thresholding that are normally fragile can be used with more con�dence.

The �rst line drawing hypothesis is created in three parts. Section 4.2.1 describes the sepa-

ration of the frame into coherent regions. In Section 4.2.2, the processing which starts with the

region units and creates a competing set of curve and vertex units is described. Once the curve

and vertex units have been established, the junctions need to have the number of incident arcs

in the initial �gure hypothesis identi�ed, and type (i.e. three tangent, curvature-L) determined.

4.2.1 Finding Regions

The purpose of the initial processing is to create a reasonable representation of the region, curve

and vertex units from the frame unit. All of the processing described in this section is of a local

nature. Local processing is advantageous at the early stages because it is potentially massively

parallel, although this virtue is not exploited in this implementation. The disadvantage of local

processing is that information in a small neighborhood is not always reliable in a more global

context. Since it is known that the information may not be globally reliable, alternate hypotheses

are kept. This makes it possible for later processing to backtrack and reverse decisions that were

good locally, but which fail in a more global setting.

The processing in this section will be demonstrated using the image in Figure 5. This

image was captured in the Pattern Recognition and Image Processing (PRIP) laboratory at the

Michigan State University.

The �rst step in the processing of the real image is to �nd the edges using the region

based edge detection. As was discussed in Section 3.1, the weak membrane model with GNC

algorithm is used for edge detection. Although GNC claims to produce thin edges, it did not

always in practice. The reason for this failure was that many of the edges in the processed

images were ramp edges instead of step edges. This was caused by two factors. The �rst factor

is discretization error. Since the division between regions does not always coincide with the

division between pixels, some pixels will contain a mixture of two regions. This produces a

narrow ramp edge instead of a crisp step edge. The second reason for GNC to produce thick

edges is that some of the objects (bath tub toys) that were imaged do not have 
at sides. The

sides of the toys that appear to be planar are slightly curved. This curving produces ramp edges

instead of the step edges that GNC expects.

GNC responds to the ramp edges as repeated step edges and produces thick edges. The

edges found by GNC when run on the image in Figure 5(a) are shown in Figure 5(b). Although
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Figure 5: An example image on which the initial processing is illustrated. (a) The input intensity
image. (b) The result of weak membrane edge detection. (c) The thinned edges. (d) The regions
identi�ed as connected components. Each connected component is represented as a separate gray
shade. (e) The initial curve and vertex units found. (f) The initial vertices typed (A: arrow
junction, T: T-junction, Y: Y-junction, L: L-junction, P: Phantom junction).
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Figure 6: The image shown in Figure 1 after processing with GNC. Notice that the front edge
of the cube is missing, as expected.

this image was correctly segmented in terms of object semantics, some images were not. For

example, the edges detected in the image in Figure 1 is given in Figure 6. The front corner edge

of the block is not detected, as predicted, because the intensities do not provide evidence for an

edge in this location.

In order to create one dimensional curves from the thick edges of GNC, thinning was done.

The result of running the thinning algorithm on the example image is shown in Figure 5(c). The

thinned edges are the borders of the region units.

To get the region units, a connected components algorithm was run [59], using an eight

connected neighborhood relationship. Figure 5(d) shows the connected components found from

Figure 5(c). Di�erent grey values correspond to distinct regions. Small regions are given a unit

with belief 0, and then included in the largest neighboring region. A region is labeled as small

if it has fewer pixels than the threshold given in Appendix A. Any unit with belief zero is not

included in further processing, although it is still available on the blackboard for retrieval should

it be needed later.

4.2.2 The Curves and Vertices

The boundaries of the region units are used to �nd the initial curve units. First the complete

boundary of each region is given a single curve unit. This curve unit is initially given a belief

value of one (the belief values range from one to ten, but the only signi�cance of the belief value

is relative to the other competing units of similar type), meaning that it should be included in

processing but is not considered to be a favored hypothesis at this point. This boundary is then

broken into pieces at any point with more than three edge neighbors (triple points). Each piece

is a distinct competing curve unit with a belief value of 2 signifying that these curve hypotheses
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are more perceptually signi�cant than the initial ones and should take precedence in processing.

If no competing hypotheses are found, the initial curve hypothesis has its belief raised to 2,

meaning that it has gained perceptual signi�cance. The curvilinearity algorithm described in

[21] is then run on the triple point curve units, or the original boundary curve unit if it was

unbroken by vertices. If corners are found by the continuity algorithm, competing curve units

are created for each segment, with a belief value of three. If no corners were found, the previous

curve hypothesis has its belief value raised to three. This leaves a unique hypothesis that is

thought to be best at each of the points on the boundary of the region. Since the continuity

algorithm is consistently �nding better hypotheses than what triple points alone could provide,

these hypotheses are given the highest con�dence of the three curves initially. At the end of

each of these curve units, a vertex unit is instantiated.

There are edge points that are found by GNC that do not fall on the boundary of a region.

Some of these points are caused by hairs left on the edges by GNC that have been thinned.

Some of the other edges on the interior of a region are partially detected edges. To collect

these edges into reasonable structures, the edges that are not on the boundary for each region

are grouped using the curvilinear grouping algorithm. By grouping only within single detected

regions, undesirable groupings between distinct regions are eliminated. These groupings are

given a belief value of three if they are more than a few pixels long (the threshold value is given

in Appendix A), and a belief value of zero otherwise.

At this point, a set of competing curve units has been created. Each curve unit will have

either no endpoints (as with the boundary of an isolated sphere), or two endpoints. Some of

the curve units are only a few pixels long, particularly those near the corners of the regions.

Competing vertex units have not yet been created. Since the continuity algorithm typically

leaves several bends near a vertex, particularly when working with real data, these small curves

and vertices need to be combined. The method for doing this initially is simple. When a vertex is

created, it tries to join with any other vertex in a local neighborhood to create a stronger vertex.

The size of this local neighborhood is determined by a threshold, shown in Appendix A. If a

vertex is combined, the old vertex is given a belief zero. An artifact of this vertex combination

is that there are short curves with both endpoints at the same combined vertex. These curve

units are given a belief zero. This cleans away many short, perceptually unimportant curves.

This processing results in an initial set of vertices and curves that form the �rst �gure

hypothesis. The result for the example image in Figure 5(a) is shown in Figure 5(e). The

labeling scheme is as follows. Curves are labeled with the letter \c" and an identi�cation

number. Vertices are labeled with the letter \v" and an identi�cation number. The label for a
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curve is placed to the lower left of the middle of a curve. The label for a vertex is placed at the

vertex. Around the edge of the image is a frame that completes any junctions that reach the

edge of the image. This frame will be shown in all future images, and is labeled a priori as a

jump edge.

At this point the blackboard contains regions, a group of competing curve units, and a group

of competing vertex units. Within the groups of both curve units and vertex units the competing

units have been labeled with belief values to determine which appears to be best at this point

in time. The blackboard also contains the beginning of the �rst �gure unit: the collection of

all non-competing curve units of highest belief value and the collection of all non-competing

vertex units of the highest belief value. For the �gure unit to be complete the vertices must be

classi�ed and typed. These operations are discussed next.

4.2.3 Identifying Junctions

First vertex units are classi�ed by the number of incident arcs. This classi�cation yields four

categories, junctions with one incoming arc, junctions with two incoming arcs, junctions with

three incoming arcs, and junctions with four or more incoming arcs. The domain assumptions

made in this work exclude vertices with more than three arcs, so junctions in the fourth category

are outside the scope of this paper and can be 
agged as erroneous immediately. The domain

of piecewise smooth surfaces discussed in [30] does not have this restriction.

A much more challenging problem than classifying the junctions is typing them. A summary

of the attributes that determine junction type is given in Table 2. The table does not distinguish

between Arrow and Y junctions. This distinction is made by examining the angle between the

incoming arcs. If one of the angles is greater than 180Æ, the junction is an Arrow. If all three

angles measure less than 180Æ the junction is a Y.

In order to assign a type to the junctions, each of the curve units must have a tangent

and curvature value at both endpoints. Finding curvature is a diÆcult problem. Therefore

the curvature values that are calculated should be treated with suspicion. Estimating tangent

direction is somewhat easier. Since later processing can help to correct mistakes, it is not essential

that the curvatures and tangents be perfect. Curvature and tangent direction estimations are

regularized using the continuity module to preprocess all curves. This module smooths the

curves, removes outliers, and separates the curve at discontinuities. Without this preprocessing,

the estimations would be more unreliable.

The simplest way to �nd curvature is to �t a circle to a set of points, and �nd the radius

and the center. The multiplicative inverse of the radius is the curvature. A normal to the �t
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Table 1: The mapping between modules and blackboard units.

Module Unit

Curvilinearity curves

Symmetry regions

curves

Proximity curves

vertices

Edge Detection frame

regions

Line Labeling �gure

curves

vertices

Table 2: A summary of the tangent and curvature properties of junctions. Arrow and Y junctions
(*) are distinguished on another basis. The symbol given will be used to represent this type of
junction in later �gures.

Class Type Symbol Tangents Curvatures

One arc Terminal TM None None

Two arcs Curvature L CL Equal Unequal

L L Unequal Doesn't Matter

Phantom P Equal Equal

Three arcs Arrow (*) A Unequal Doesn't Matter

Y (*) Y Unequal Doesn't Matter

T T Exactly Two Equal Same two Equal

Three Tangent 3T All Equal Two Equal
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circle at the endpoint can be found from the vector starting at the center of the circle and

ending at the endpoint of the arc. The tangent direction is perpendicular to the normal. The

�tting is done using a nonlinear least squares method found in [60]. Circular arcs were �t in

a neighborhood of the endpoint, with the size of the neighborhood determined by a parameter

given in Appendix A.

Although a straight line can be thought of as a circle of in�nite radius, this is numerically

troublesome. To avoid this problem, straight lines are �t in a neighborhood of the endpoint. The

size of this neighborhood is determined by a parameter given in Appendix A. The curvature for

a straight line is zero, and the tangent direction is calculated from the slope. The squared error,

calculated in units of pixels squared, between the circular �t and the linear �t is then compared

and the model with the better �t is accepted. The curvature values calculated in this fashion

are rough estimates. Therefore comparisons like those suggested in Table 2 must be revised.

Even with synthetic data, it is unlikely that two curvatures or tangents would be exactly equal.

To compare tangent directions, a threshold was used on the di�erence. This threshold is given

in Appendix A. This threshold was set arbitrarily, but is not critical to the performance of the

system since later processing can change this threshold to correct mistakes.

The curvature values were found to be very unreliable, particularly in the real images that

were used. There are several reasons for this. The objects used in the images in this paper

have circular arcs, which project to ellipses. Fitting a circle to an ellipse, particularly at the

ends of the major axis where the curvature is changing rapidly is diÆcult. Another problem is

that the continuity algorithm may not break the upper and lower halves of an ellipse exactly at

the corner. This means that the curvature will be calculated starting at di�erent places on the

ellipse, which will certainly lead to di�erent curvatures. To get around this problem, curvatures

were placed into only three classes, which are described in Appendix A. Curvatures will be

considered to be equivalent if they fall into the same class. It would have been possible to �t

an ellipse to the curve data instead of a circle, but this is computationally more expensive and

unnecessary.

With the curvature and tangent information, and suitable de�nitions of equivalence among

tangents and curvatures, the classi�ed vertices in the initial �gure unit can be typed. This

information completes the initial �gure unit, that is the �rst hypothesis for the arcs and junctions

in the imaged scene.

Although errors in the initial processing can be repaired later, it is important that the �rst

�gure unit be an accurate representation of most of the important events in the image plane.

Perfect line drawings should not be expected. Figure 7 shows some other example images with
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Figure 7: (a) The input image of a set of blocks. (b) The �rst �gure unit computed from (a).
(c) The input image of a taco holder. (d) The �rst �gure unit computed from (c).

the initial �gure hypothesis results.

5 Generating Line Labeling Diagnostics

Line labeling has long interested vision researchers because it provides a way to use local in-

formation about curves and vertices to build a more global interpretation of image data. The

practical diÆculty in using line labeling, and especially in curvilinear line labeling, is that the

local information about curves and vertices is often imperfect. Since the rigorous mathematical

framework built in the proof of the junction catalog assumes that a perfect line drawing is avail-

able as input, the algorithm is doomed to failure in all but the most contrived cases. This is

particularly true since the algorithm was not designed to provide diagnostic information about

the nature of the failure. In this section, a revised line labeling algorithm will be presented that
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can provide some diagnostic information about line labeling failures.

5.1 Detection of Line Drawing Problems

The algorithms that have been used in Section 4 to extract line drawings from images cannot

produce perfect output. Therefore it is important to be able to analyze a line drawing and

evaluate its strengths and weaknesses. This section will show a modi�cation to the standard

line labeling scheme proposed by Malik [30] which provides better diagnostic information about

the weaknesses of the current line drawings. This diagnostic information will be entered into

the blackboard database and later be used by other modules to �x problems in the line drawing.

The line labels used for the domain of piecewise smooth objects are the following:

!! A limb edge is a depth discontinuity that is formed when the line of sight is tangent to

the surface and the surface occludes itself with respect to the viewpoint. The direction of

the arrow is selected such that the surface closest to the viewer is on the right hand side

of the arrow as it is followed from tail to head.

! A jump edge which is a depth discontinuity which is not a limb edge.

+ A convex edge where the visible angle between the surfaces is greater than 180Æ.

� A concave edge where the visible angle between the surfaces is smaller than 180Æ.

In the piecewise smooth object domain, the junction catalog is guaranteed to give one or

more correct labelings for each object in the object domain. An object that is not within this

domain may still be legally, and perhaps even correctly, labeled. To restate this in a way that

is more relevant to this discussion: there is no guarantee that if a mistake is made in the initial

line drawing that line labeling will fail to interpret the image. Therefore, line labeling cannot

be the only arbiter of correctness in line drawings. However, when possible, it can contribute

towards this goal. This section will demonstrate how line labeling can be instrumental in �xing

incorrect line drawings.

One of the diÆculties with using line labeling as a diagnostic tool is that there are often

multiple interpretations of a single object. To reduce the combinatorics of the line labeling, the

POLL system uses a heuristic called the 
oating object heuristic to initiate labeling of the line

drawings. We assume that the image has been segmented into regions. Further, we assume that

these regions have been correctly labeled as either background or foreground. The objects of

interest should be in the foreground. The labeling of the background region is a method for

performing �gure-ground separation, which is one of the Gestalt principles. This �gure-ground
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separation is done by hand in the POLL system, although it would be preferable to have the

system select the background automatically. Using this terminology, the heuristic is de�ned as

follows:

De�nition 1 Floating Object Heuristic: All outside arcs (that is, those that are adjacent to

the background region) in a line labeling should be labeled as either limb or jump edges with

the direction being such that the foreground region will be interpreted as being in front of the

background region. The labels on inside arcs are not restricted.

There are times when the 
oating object heuristic won't work, such as when part of an

object is being viewed through a hole. A similar heuristic was used before by Winston [61]. Line

labeling with the 
oating object heuristic is much less combinatorially explosive than ordinary

line labeling. There are two contributing factors. The �rst factor is that there are fewer interpre-

tations of outside junctions. A casual inspection of Malik's original junction catalog, shows that

most of the legal interpretations for inside junctions will no longer be legal interpretations for

outside junctions thus reducing the number of possibilities. A second factor that improves the

combinatorics of line labeling is that phantom junctions are not necessary with this heuristic,

since a necessary phantom junction can be identi�ed by the line labeling process.

If an image can be segmented into foreground and background regions, outside junctions

that have been labeled by the 
oating object heuristic will have at most two interpretations,

except for T junctions which may have as many as four interpretations. This can be veri�ed by

a case analysis on the junction catalogue and a counting argument.

Table 3 shows a vast improvement in combinatorics for outside junctions with the 
oating

object heuristic. Five di�erent outside junctions have a unique labeling with the 
oating object

heuristic. These unique labelings of arcs on a local basis will improve the combinatorics of

labeling inside arcs as well. This combinatoric improvement can also be exploited to improve

the line labeling paradigm. Outside arcs and outside junctions are providing the strongest

constraints. When this information is used �rst in the line labeling algorithm, the legal labelings

on the inside arcs are also restricted. Algorithm 1 is the modi�ed line labeling algorithm which

takes advantage of this combinatoric reduction and which provides diagnostic feedback.

The principal advantage of Algorithm 1 over the three step algorithm proposed by Malik

in [30] is that diagnostic information is provided for the blackboard in the form of the failed

vertex. Since the number of legal line labelings is often reduced to a single set by the improved

combinatorics, this diagnostic information can pinpoint the area of the line drawing that is

incorrect. This makes it possible to make corrections. Figure 9 shows the curves and vertices

identi�ed for the image in Figure 1. When the modi�ed line labeling algorithm is run on this
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Table 3: The number of legal labelings for outside arcs.

Junction Inside Labelings Outside Labelings

TM 1 0

L 6 1

CL 4 2

3T 2 1

A 3 1

Y 5 1

T 12 4

Algorithm 1

Input: A set of arcs A
A set of junctions J
Ao
 The set of outside arcs in A

Ai
 The set of inside arcs in A

A0
 Ao~[Ai

change  true
while change  true

change  false
foreach arc a 2 A0 in order

L  the set of labels that are still legal for a
foreach label l 2 L

J  junctions adjacent to a.
Jo
 The set of outside junctions in J

J i
 The set of inside junctions in J

J0
 Jo~[Ji (in order)

foreach j in J 0 in order
if label l is not a legal label for arc a at junction j

change  true
remove l from L

if L is empty return j as the failed vertex
end

end

end

end

end

end

Figure 8: The revised line labeling algorithm. The notation ~[ is used to indicate that the sets
of junctions and arcs are concatenated, while maintaining the order.
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Figure 9: The junctions and curves found from processing Figure 1.

intermediate result, the junction \v25" is correctly diagnosed as the location of the problem.

An assessment of the results and more examples are shown later in Section 7.

Figures 10-11 give more examples of the results obtained by using the diagnostics coming

from the revised line labeling algorithm. In these examples, the vertices that were 
agged as

being the cause of the labeling problems were indeed the troublemakers. This localization of the

problems will give the repair knwoledge sources a starting point for forming hypotheses.

5.2 Common Problems with Line Drawings

When line drawings are obtained from real images, there are a number of problems that can

occur. In this section, line labeling problems that result from the processing described in Sec-

tion 4 will be discussed. These problem line drawings will be analyzed using the 
oating object

heuristic, and the resulting diagnostic information will be discussed. Since the line labeling

paradigm has no knowledge of the inner workings of the other modules, it is not able to �x any

of the problems that it detects without violating the independence of knowledge sources. The

suggestions for �xing the problems will come from control knowledge sources to be discussed in

Section 6, and the correction modules.

In the example images that were used in testing this system there were four common prob-

lems: missing or incomplete edges, mislabeled junctions, missing junctions, and extraneous

junctions. There are other problems that can occur in line drawings, such as extraneous edges,

but the vast majority of the incorrect line drawings that were used to test this system fell into

these four categories. This is a result of a conscious decision to select parameters for the weak

membrane edge detection that undersegment the image, i.e. that divide the image into too few

regions.
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Figure 10: Some example results of diagnosis. (a) The input image of Figure 5. (b) The vertex
\v54" is diagnosed as problematic. The reason is that there should be a phantom vertex along
the curve \c39" adjacent to vertex \v54." (c) The image of a right circular cylinder. This is one
example where the ability to distinguish between Arrow junctions and Curvature L junctions is
crucial for the line labeling algorithm to work properly. (d) The vertex \v3" is 
agged as the
problem location.
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Figure 11: Some more example results of diagnosis. (a) The image of a triangular prism from an
accidental viewpoint in which an arrow junction appears lika a T junction. (b) The diagnostic
module 
ags correctly vertex \v25" (the erroneous T junction) as the problem location.

Incomplete and missing edges occur when the edge detection algorithm does not completely

separate two regions. An example of an unavoidable missing edge was shown in Figure 1.

Mislabeled junctions occur in line drawings because it is diÆcult to �nd the type of a junction

using only local information. Confusion occurs between junction types of the same class, for

example three tangent, arrow, Y, and T vertices. These mistakes are inevitable, since in the

mathematically rigorous curvilinear line labeling paradigm the only distinction between a T

junction and a Y is T junctions have two arcs that have perfectly aligned tangent directions.

Since this perfect alignment rarely happens in practice due to positional noise, a threshold was

used to determine how close to perfect alignment two arcs must be to be considered a T junction.

When this is done, a Y junction or an arrow junction that falls within this thresholded range

will be improperly typed as a T junction.

The most diÆcult junctions to properly analyze are the curvature-L junctions and three

tangent junctions. In a local neighborhood, they are very similar to arrow junctions and L

junctions, respectively.

Missing junctions are another problem in the input line drawings. Missing junctions occur

when the continuity algorithm does not detect a corner. The only type of junctions that can be

missed are L and Curvature-L junctions. Junctions with three incident arcs cannot be missed

because they occur at a position where three surfaces are joined, and all such points are forced

to be vertices. Junctions with three incident arcs may be mislabeled, or misplaced, but they

will not be missing.
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6 Utilizing Line Labeling Diagnostics for Repair

Previous sections have described how an initial line drawing can be found from a single intensity

image, and how problems in this line drawing can be diagnosed. This section will focus on

the repair knowledge sources that were created to use the diagnostic information coming from

the modi�ed line labeling algorithm to �x some of the problems in the line labeling, and the

controller knowledge source that governs which repair knowledge source is chosen.

This is the point at which the independence of the knowledge sources starts to pay dividends.

While it would be possible for the line labeling module and try to correct problems that are

the result of other modules, the complexity of this structure would be high. The line labeling

module would have to know about all of the data structures from all of the other modules, and

be able to modify its data structure to call them.

A blackboard system solves this problem by having each module translate to and from

the standard blackboard objects. Control knowledge sources are designed to use the standard

blackboard objects alone. Control knowledge sources have no knowledge of the detailed inner

workings of the other modules. They only know what blackboard objects are legal input to

what modules, and the control parameters, (such as the parameters for edge detection), that

each knowledge source has made available to the blackboard. This division of labor makes it

possible to make changes within a single module without propagating them into other modules.

The control knowledge sources do need to know how to call individual modules, but they do not

need to know anything about the internal data structure of the modules. This structure is ideal

for experimentation with controlling the modules, since the modules themselves do not have to

be altered.

In order to �x line drawings, two types of knowledge sources are needed. The �rst type are

repair knowledge sources. These knowledge sources know how to �x a particular problem in a line

labeling. For example, there are repair knowledge sources that can insert phantom vertices into

a line drawing, and hypothesize where edges that are missing could be placed. These knowledge

sources are instantiated by the controller knowledge source, which has a strategy for selecting

which of the repair knowledge sources should be selected next.

We now discuss the knowledge sources that try to correct problems in the partially derived

line drawings as a result of diagnostics generated from applying the line labeling constraints.

6.1 Correcting Errors in Line Labeling

A variety of problems with the initial line labelings were found by the modi�ed line labeling

module. These problems now need to be identi�ed and corrected. There were four modules used
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Figure 12: (a) The input image. (b) The vertex \v25" is corrected from a T junction to an
Arrow junction and the �gure is relabeled. The labeled arcs and junctions

to create the line drawing: edge detection, curvilinear grouping, vertex proximity grouping, and

junction classing and typing. Each of these modules can, and does, make errors. These errors

are cataloged in Table 4. The errors are not mutually exclusive, for example a missing edge will

cause two junctions to be of the wrong class.

These errors will be �xed with a set of knowledge sources called the repair knowledge sources.

Each repair knowledge source is an expert at �xing one type of problem that can occur in an

image. The repair knowledge sources will be activated by the controller knowledge source that

decides which of the repair knowledge sources is most likely to �x the current problem vertex and

instantiates the knowledge source. The success or failure of the knowledge source will be reported

back to the controller, which can then either accept the solution, make more modi�cations, or

stop the processing.

Mislabeled Vertices

When a T junction is suspected of causing the line labeling problem one way to reexamine it is

to adjust the tangent threshold that was used to label the vertex. In fact, since it is known that

the T labeling is not correct, it is best to set this threshold to zero. If this setting were made

initially, T junctions would almost always be mislabeled. After this adjustment is made, the

line labeling is applied once more by the appropriate knowledge source to the new line drawing

with the modi�ed junction type. Figure 12 shows the example in Figure 11 where a mislabeled

vertex is identi�ed as the problem by the diagnostic module. Figure 12(b) shows the result of

applying the repair knowledge sources and the �nal labeling obtained for this image.
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Missing Arcs

Since the modi�ed line labeling algorithm can detect missing arcs, a procedure for adding arcs

is needed. The problem is approached by hypothesizing where a missing edge could go and then

picking the best of these hypotheses. This approach will be useful in cases like that shown in

Figure 1 where edge detection of any sort is unlikely to �nd an appropriate edge.

Assume that the control knowledge source has decided to hypothesize a missing arc. A

vertex needs to be found as for the second endpoint for the missing arc. This vertex must be

in a region that is adjacent to the problem vertex. The second type of vertex to be considered

is a vertex with two incoming arcs. Adding a third arc to this type of vertex would permit an

interpretation that is legal in the current object domain. Phantom vertices will not be used for

the second vertex since the phantom vertices that are presently in the line drawing are there as

the result of failures in the continuity algorithm and have no perceptual signi�cance.

Once the set of second vertex candidates is found, a curve is hypothesized between the �rst

vertex and each of the second vertex candidates. These curves are added to the initial object

hypothesis individually, and this new hypothesis has its junctions typed and labeled. If the

labeling does not fail at the either of the vertices that were modi�ed, then the new object is put

on a list of candidate objects. The best object hypothesis will be chosen from these candidates.

Vertices which already have three incoming arcs could also be used for the second endpoints.

This was not done in our case because the object domain speci�cally excludes objects with more

than three faces adjacent to a vertex. If this restriction were to be removed, vertices with three

incoming arcs could be given a fourth arc. In this case, it would be best to add a fourth incoming

arc to a vertex only if there were no other legal interpretations. This could be regarded as a

simplicity criterion, similar to Malik's requirement that a junction with more than four incoming

arcs be interpreted in such a way that the minimum number of hidden surfaces are used in the

interpretation.

Figure 13 shows the example in Figure 1 which has the front edge missing. We also show in

Figure 13 the various arc addition hypotheses actually tried by the POLL system and the �nal

result produced by the repair process.

Adding Phantom Vertices

There are two important di�erences between polyhedral line labeling and curvilinear line la-

beling. The �rst is that polyhedral line labeling can be aided by linear algebra as shown by

Sugihara in [32]. Curvilinear line labeling cannot rely on similar help because, in general, curved

arcs cannot be represented adequately with linear equations. The second important di�erence
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Figure 13: (a) The input image. (b), (c), (d) the hypotheses generated by the POLL system as
possible completion arcs. (e) The �nal result of repair and labeling. arcs and junctions
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Figure 14: (a) The input image. (b) The result of repair (adding the phantom vertex \v55")
and relabeling.

is that curvilinear line labeling requires all curved arcs to include an extra phantom vertex to

accommodate possible hidden limb edges. These extra vertices damage the combinatorics of

curvilinear line labeling, and are often unnecessary. It was discussed in Section 5 that the mod-

i�ed line labeling paradigm can 
ag and locate vertices near a necessary phantom vertex that is

missing. Phantom vertices identi�ed in this manner can be inserted into the line drawing and

the line drawing relabeled. In this way, phantom vertices do not have to be placed around the

line drawing but only put in when and where they are needed.

In order to decide which arcs adjacent to the a problem vertex should receive a phantom

vertex, a distinction must be made between curved arcs and linear ones. This distinction was

made by comparing a line drawn between the vertices to the actual arc. If the distance between

the line and the arc was more than a few pixels (threshold given in Appendix A), the arc was

labeled as curved. The threshold is kept small so that if an error occurred it would be more

likely to produce an extraneous phantom vertex than neglect a necessary one. All curved arcs

adjacent to the problem vertex have junctions added initially since there is no way to diagnose

which of the curved arcs needs the phantom vertex. This should still add far fewer phantom

vertices to the line drawing than the original strategy proposed by Malik where a phantom

vertex was added initially on every curved arc in the image.

Figure 14 shows an example (same one as in Figure 10(a)) where the addition of a phantom

vertex has corrected the problem with the line drawing. It also gives the �nal line labeling

generated by the POLL system.
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Other Line Labeling Improvements

There are other improvements that can be made to the line labeling that have not been im-

plemented. The �rst improvement is to remove unnecessary phantom junctions from the line

labeling. Unnecessary phantom junctions occur in images when the continuity algorithm makes

an extraneous break in an edge. This happens most frequently when the edge is noisy. When

these unnecessary breaks have their tangents and curvatures calculated and are labeled, they

are frequently labeled as phantom junctions signifying that they have no signi�cant di�erence in

either tangent or curvature. The removal of these breaks can be accomplished by hypothesizing a

possible grouping and �tting an energy minimizing curve without breaks to get its proper shape.

This will produce more reliable curvature values and tangent directions. When the continuity

algorithm has �nished smoothing the curve, the new curve will replace the old curves in a new

�gure hypothesis, which will be relabeled to verify the solution.

6.2 Control of Strategies

The repair knowledge sources are each capable of using their specialized knowledge to correct

exactly one type of problem in an image. Selecting which repair knowledge source should be

used �rst is the job of the controller knowledge source. The strategy implemented here is to use

a �xed ordering of the repair knowledge sources. A more elaborate strategy will be necessary as

the number of repair knowledge sources is expanded.

The general strategy for �xing these problems is to address only one problem junction at a

time. If there are several problems in the image, they will be solved sequentially. A problem is

identi�ed as being �xed by a repair knowledge source when the vertex where the failure occurs

moves to a di�erent location. A list of vertices where corrections have already occurred should

be kept to prevent endless, unproductive repetitions of processing. If a vertex is 
agged as being

a failure a second time, then the processing should either stop or backtrack to the �rst correction

of the vertex, and try a di�erent correction. This is a search process and, like all search processes,

it could be computationally expensive. The more closely the repair knowledge sources can be

matched with the diagnosed vertex problems, the less risk of combinatoric explosion.

The following repair knowledge sources are available:

1. Re-type junctions

2. Replace missing arcs

3. Insert a phantom vertex
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4. Break a vertex into two vertices

5. Join two close vertices

6. Remove a phantom junction

There are two criteria for selecting the ordering of repair knowledge sources. Repair knowl-

edge sources that can be uniquely identi�ed, and are unlikely to be falsely triggered should be

used �rst. Repair knowledge sources that are risky, meaning that they could produce a correct

line labeling without correcting the real mistake(s) in the image, should be tried last.

An example of a repair knowledge source that can be uniquely identi�ed is the repair knowl-

edge source that breaks single vertices apart into two adjacent vertices. It can be uniquely

identi�ed by the presence of a junction with more than three incident arcs. Similarly the repair

knowledge source that groups proximate vertices together is well identi�ed by the presence of a

curve incident to one of the junctions that is much shorter than the other incident curves. These

knowledge sources should be tried �rst.

Risk is another consideration when ordering the repair knowledge sources. A repair knowl-

edge source is risky if it can make alterations that may produce a legal line labeling without

�xing the underlying problem in the image. In some sense, all of the repair knowledge sources

are risky, but two of them are particularly so: the repair knowledge source that inserts phantom

vertices and the repair knowledge source that replaces missing arcs. These strategies should be

tried as a last resort. Whether phantom vertices damage the combinatorics of line labeling has

not been established, but they certainly do not improve the combinatorics and are risky in the

sense that they relax an important constraint: that an arc may have one and only one label.

The risk in the knowledge source which inserts missing arcs can be limited by checking the arc

that gets inserted against the raw image data, to look for a subtle edge that the edge detection

algorithm may have missed, or using other constraints such as symmetry.

The repair knowledge source that re-types junctions is neither unique nor risky. It should

therefore be tried after the repair knowledge sources that break apart a vertex and joins close

vertices and before the repair knowledge source that inserts phantom junctions and missing

edges.

The only remaining repair knowledge source is the phantom vertex remover. Since it will

not be triggered falsely, it has no risk and can be run at anytime. In the interest of improving

the line drawing, it should be run �rst.

This gives the ordering used for triggering repair knowledge sources in the controller.

1. Remove a phantom vertex
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2. Break a vertex into two vertices

3. Join two close vertices

4. Re-type junctions

5. Insert a phantom vertex

6. Replace missing arcs

As the number of implemented repair knowledge sources grows, more subtle strategies can be

developed for selecting among the choices. If a test set of images with ground truth is available,

an analysis could be done of the probability of each repair knowledge source �xing a problem

for each junction type. This type of experimentation could lead to a better understanding of

the frequency of each type of error and more sophisticated control strategies. The development

of insight into productive strategies was one of the purposes for using the blackboard paradigm.

7 Experimental Results

To test the system, the algorithms were run on the test bed of images shown in Appendix B.

We have assessed the performance of each part of the system (initial �gure units, line labeling

and diagnostics, and line labeling corrections) separately and each of these will be discussed in

this section.

The results of the performance of initial �gure hypothesis modules are summarized in Table 5.

Each of these mistakes is attributed to the module that caused the initial error. As an example,

an arrow junction might be missing an arc causing it to be seen as an L junction. This error would

be classi�ed as as missing edge and not a junction type failure since the junction classi�cation

is correct given the incorrect input. This system avoids double counting of errors.

There are eight di�erent mistakes that can be made by these four modules. There are two

errors that can occur in the weak membrane edge detection. The �rst is that edges can be

missing or broken, and the second is that extraneous edges can be found. The vertex proximity

module can make only two types of mistakes. Junctions that should have been grouped can

be separated, and junctions that should have been separated can be grouped. The continuity

module can make only two errors as well. Either an extra break can be added, or a corner can be

missed. The junction typing algorithm also has two types of errors. An error can be caused by

a mistake in tangents. Mistaking a three tangent junction for an arrow junction is an example

of this error. Mistakes in curvature can also cause errors. An example of this error is mistaking

a Curvature-L junction for an phantom junction.
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In this set of images there are a total of 245 visible junctions and 323 visible arcs. There were

a total of 113 errors found in the initial processing, so the majority of the visible junctions and

arcs were properly processed. There was only one image with a perfect initial �gure hypothesis,

Image 8. There was also only one image with a very bad initial �gure hypothesis, Image 7.

The diÆculties in Image 7 arise on the right hand side of the background block. The rightmost

surface of this block is close to an accidental alignment and is therefore segmented into a large

number of small surfaces that these algorithms have diÆculty analyzing.

Appendix A shows the parameters that were used to calculate the initial �gure hypotheses.

Table 5 shows that the choice of parameters has balanced the errors. As an example, the value of

the vertex proximity threshold results in approximately the same number of junctions incorrectly

grouped (7) as broken (12). The same can be said for the continuity algorithm and the missing

(13) and extraneous breaks (13). The weak membrane edge detection is also creating roughly

the same number of extraneous edges (14) as missing edges (20).

The missing phantom junctions are not errors in the initial �gure hypothesis. In Malik's

line labeling paradigm [30], each curved arc was given a phantom junction. These phantom

junctions were not included in the initial �gure hypothesis because they can be detected from

line labeling failures and placed only at junctions where diÆculties arise.

One particular problem noticed in this processing was that all three tangent junctions were

mistaken for arrow junctions. Almost all of the curvature-L junctions were mistaken for L

junctions. This happens because �nding the curvature near junctions is diÆcult. This type of

problem can be ameliorated by the introduction of other modules such as shape from shading.

Separate research is currently under way to address this problem.

Examples of the results of the diagnostic line labeling module are at the end of Section 5. A

summary of the actual problems that exist in the test images is given in Table 6. Table 7 shows a

comparison between the faults that exist in the images and the ones that were diagnosed by the

algorithm. Multiple diagnoses for a single image were attained by manually correcting problems

as they were discovered to permit further problems to be diagnosed. Table 7 summarizes how

well the problems found in the initial �gure hypothesis have been detected by the modi�ed line

labeling paradigm using the 
oating object heuristic. Grouped junctions are easily detected

since having more than three arcs at a junction is not permitted within the object domain under

study in this paper.

Curvature and tangent mistakes in the classi�cation of the junctions are also found well.

The exception to this occurs when a pair of mistakes hide a problem. As an example, if a three

tangent junction is mistakenly identi�ed as an arrow and an adjacent curvature-L junction is also
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mistaken for an L junction, then the mistake cannot be diagnosed since the labeling produced is

in fact legal in this object domain. In this case, the limb edge will be found to be a jump edge.

While this is unfortunate, it should be noted that both limb edges and jump edges represent

discontinuities of the scene depth and it is this similarity that permits confusion.

The mistakes that are the most diÆcult to diagnose are the missing breaks and extraneous

breaks in continuity. The diÆculty with diagnosis is that usually labelings both with or without

breaks are legal. Although the problem in these cases cannot be diagnosed, it should be noted

that the line labeling that is obtained is correct. In fact, the correctness of the line labeling

without regard to the placement of these breaks is what prevents proper diagnosis.

The localization of the diagnosis of problems in the �gure hypothesis is important. In almost

all of the cases reported in Table 6 the problem was diagnosed at the correct junction. In three

cases, the problem was diagnosed at an adjacent junction.

The modi�ed line labeling algorithm has been shown to be useful for identifying problems

in the initial line labeling hypothesis, although there are problems which cannot be diagnosed.

In all cases in the test bed of images, the junction that was diagnosed as being the problem was

either was the problem vertex, or was adjacent to the problem vertex.

Finally, we give the results of the corrections of the problems which were identi�ed by the

diagnostics of the line labeling problem. Table 8 gives a summary of the results from this module.

A comparison can be made between the problems that have been diagnosed in Section 5

and the problems that can be repaired using the repair knowledge sources. This comparison

is shown in Table 9. This table shows that most of the diagnosed problems can be �xed using

the repair knowledge sources. The extraneous edge problem that was not �xed was in image 7

where a near accidental alignment lead to an excessively cluttered area of the image. The overall

performance of this system in detecting correct line labelings will be discussed in Section 8.

Of the twenty-two images in the test bed given in Appendix B, one image could not be

labeled, one image had a convex edge mistaken for a limb, and �ve images had limb edges

mistaken for jump edges, and one image had a missing arc that wasn't replaced. Therefore

fourteen of the twenty-two images were processed completely correctly. Of the eight failures,

only one produced no line labeling. In the other seven failures, only one or two arcs were

mislabeled. Integration and diagnosis have dramatically improved the initial �gure hypotheses,

as can be seen in Table 10.
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7.1 Execution Timings of Algorithms

The algorithms discussed in this paper were implemented in LISP, C, and Fortran on a Sparc-

server 690MP. The majority of the implementation was done in Allegro Common Lisp version

3.1.4, using the GBB blackboard system shell version 1.2. The LISP was compiled before tim-

ings were done. C was interfaced to Lisp to improve the execution speed of the numerical parts

of the program. Most array operations were implemented in C, as was the energy minimization

in the continuity algorithm. Fortran was only used for the program that performs the Voronoi

tesselation.

The run time of the edge detection, thinning and connected components algorithms are all

independent of the contents of the image, run times are given for one image (image 2 in the test

set in Appendix B). The weak membrane edge detection ran in 214 seconds (3.5 minutes). The

thinning took .7 seconds. The connected components algorithm took 10.4 seconds. The longest

time it took to process an image and generate a labeled line drawing after weak membrane edge

detection, thinning, and connected components had been performed was 14.6 minutes on image

20. The run times of these algorithms were found using the time command in Lisp. All times

exclude garbage collection.

8 Conclusions

This paper described the POLL system for obtaining labeled line drawings from single intensity

images using an integrated system. The goal of this research was to demonstrate that even when

individual visual processing modules are not very robust, one can increase the robustness and

quality of the overall system and 3D interpretation by integrating a collection of such modules.

In particular, the POLL system has demonstrated the following capabilities:

1. One can obtain 3D interpretations of real images (single intensity images) in the form of

labeled line drawings.

2. This system is unique in that it uses piecewise smooth objects, instead of the more restric-

tive planar or quadric surface models that are often used, particularly in range imagery

as in [62, 35]. This enhances the generality of the system, but also greatly increases the

diÆculty of the problem.

3. This result is achieved through the integration of the following modules: edge detection,

region segmentation, curvilinear grouping, and line labeling.

4. In the cases where an unambiguous labeling cannot be extracted, the POLL system will
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produce partial results. These partial results can be further re�ned and disambiguated

as other modules are added and further interpretations can be done. Examples of such

modules can be shape from shading, stereo, etc.

5. The POLL system has demonstrated that the blackboard systems are useful platforms for

integrating di�erent visual modules with diverse representations.

6. The system also works without reference to a set of object models. This distinguishes the

system from e�orts like the Schema blackboard system [37], where object models were

extensively used.

One of the shortcomings of the POLL system is that it does require objects to have smooth

surfaces with no markings and texture. This is a direct result of the curvilinear line labeling

scheme used to interpret the line drawings. Future research will look into the integration of

modules that can process such objects. The shape from shading and symmetry detection can

be incorporated in the future which would improve the results. The problem of adding shape

from shading and stereo modules to this scheme is being studied independently and the initial

results in terms of the ability to distinguish limb edges from jump edges are encouranging [63].

Other modules that could be added are surface �tting modules which would guide the 3D

interpretation process more robustly.

A Parameters

Many of the modules and algorithms used in this paper have parameters. These parameters

were set empirically, after experimentation with the test bed of images which will be shown in

Appendix B. In order to make this work reproducable, all of the parameters used are given in

this appendix. The parameters are in the order of �rst discussion.

Section 3.2 states that the continuity grouping algorithm of Trytten and Tuceryan [21] is

used to perform the curvilinear grouping. The parameters for this algorithm fall into three

categories: parameters for the energy formulation, parameters for Canny edge detection, and

the multi-grid relaxation parameters. These parameters and their physical interpretations are

summarized in Table 11.
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Table 4: The knowledge sources used to create the line drawing and possible errors made.

Module Error

Edge Detection False Edges

Missing Edges

Continuity False Corners

Missing Corners

Vertex Proximity Too much grouping

Not enough grouping

Junction Typing Wrong type

Wrong class

Phantom vertex missing
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Table 5: The results of processing the test bed of images shown in Appendix B are shown below.
ME stands for missing edges. EE is extraneous edges. GJ are grouped junctions. BJ are broken
junctions. MB are missed breaks. EB are extraneous breaks. CM are curvature mistakes. TM
are tangent mistakes. MP are missing phantom junctions. These nine failures summarize all of
the problems found in the test bed of images. Image 7 had many extraneous edges that were
diÆcult to count, as signi�ed by the a.

Initial Line Labeling Problems

Image ME EE GJ BJ MB EB CM TM MP

1 0 0 0 0 0 2 0 1 1

2 1 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 1 2 0

4 4 0 2 0 1 1 0 1 0

5 0 0 0 2 0 0 0 0 0

6 0 1 0 0 0 0 0 2 0

7 2 a 0 1 0 3 0 0 0

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 1 0 1 0

10 0 0 0 1 2 1 0 2 0

11 1 0 0 0 0 1 0 0 0

12 1 0 0 0 1 0 0 0 0

13 0 1 0 0 1 3 1 0 0

14 0 0 0 1 0 2 0 2 0

15 3 0 0 1 2 0 0 1 0

16 3 0 0 0 0 1 1 1 0

17 2 0 1 1 2 0 0 2 0

18 3 0 0 1 1 1 0 0 1

19 0 2 0 1 1 3 1 0 0

20 0 2 3 0 0 3 2 1 0

21 0 1 0 3 2 0 0 0 0

22 0 7 0 1 0 4 1 0 0

Total 20 14 7 13 13 26 7 16 2
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Table 6: A listing of the problems in the test bed of images from Appendix B showing which
problems are diagnosed. ME stands for missing edges. EE is extraneous edges. GJ are grouped
junctions. BJ are broken junctions. MB are missed breaks. EB are extraneous breaks. CM are
curvature mistakes. TM are tangent mistakes. MP are missing phantom junctions. Notation a
means that the problem diagnosis was found at a vertex adjacent to the vertex where the problem
actually existed. In Image 7, the notation b was used to indicate that one of the problems was
correctly diagnosed, but the image was too cluttered to be �xed using the methods of this paper.

Diagnosis

Image ME EE GJ BJ MB EB CM TM MP

1 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 1 2 0

4 3 0 2 0 0 0 0 1 0

5 0 0 0 1a 0 0 0 0 0

6 0 1 0 0 0 0 0 2 0

7b

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 b 0 1

10 0 0 0 0 0 0 0 1a 0

11 1 0 0 0 0 0 0 0 0

12 1 0 0 0 0 0 0 0 0

13 0 1 0 0 0 0 1 0 0

14 0 0 0 1 0 1 0 0 0

15 1 0 0 1 0 0 0 1 0

16 3 0 0 0 0 1a 1 1 0

17 0 0 1 1 0 0 0 2 0

18 2 0 0 1 0 0 0 0 1a

19 0 3 0 0 0 0 1a 0 0

20 0 2 3 0 0 0 2 0 0

21 0 1 0 2 0 0 0 0 0

22 0 3 0 1 0 1 1 1 0

Total 12 11 7 8 0 3 7 12 2
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Table 7: A comparison between the faults in the images from Table 5, and the problems that
were diagnosed using the 
oating object heuristic.

Source ME EE GJ BJ MB EB CM TM MP

Initial 20 14 7 13 13 26 7 16 2

Diagnosed 12 11 7 8 0 3 7 11 2

42



Table 8: A listing of the problems in the test bed of images from Appendix B showing which
problems are repaired. ME stands for missing edges. EE is extraneous edges. GJ are grouped
junctions. BJ are broken junctions. MB are missed breaks. EB are extraneous breaks. CM are
curvature mistakes. TM are tangent mistakes. MP are missing phantom junctions. Notation
a indicates a correction that was manually made that may be beyond the scope of the repair
knowledge sources discussed in this section.

Repair

Image ME EE GJ BJ MB EB CM TM MP

1 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 1 2 0

4 3 0 2 0 0 0 0 1 0

5 0 0 0 1 0 0 0 0 0

6 0 1 0 0 0 0 0 2 0

7a

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0 0

12 1 0 0 0 0 0 0 0 0

13 0 1 0 0 0 0 1a 0 0

14 0 0 0 1 0 1 0 0 0

15 1 0 0 1 0 0 0 1 0

16 3 0 0 0 0 0 1 1 0

17 0 0 1 1 0 0 0 2 0

18 2 0 0 1 0 0 0 0 1

19 0 3 0 0 0 0 0 0 0

20 0 2 3 0 0 0 2 0 0

21 0 1 0 2 0 0 0 0 0

22 0 3 0 1 0 1 1 0 0

Total 12 11 7 8 0 2 6 10 2
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Table 9: A comparison between diagnosed problems and repaired problems in line labelings.

Source ME EE GJ BJ MB EB CM TM MP

Diagnosis 12 11 7 8 0 3 7 12 2

Repair 12 11 7 8 0 2 6 10 2

Table 10: The result of the line labeling process. A \Yes" in the intial column means that a
proper line labeling was found from the initial �gure hypothesis. A \Yes" in the �nal column
means that a correct line labeling was found after correction. An \A" in the �nal column means
that the line labeling was correct except for a single error. A \B" means that a missing arc
wasn't replaced. A \No" in a column means that no correct line labeling was found.

Image Initial Final

1 No Yes

2 No Yes

3 No Yes

4 No Yes

5 No Yes

6 No Yes

7 No No

8 Yes Yes

9 No Yes

10 No A

11 No Yes

12 No Yes

13 No Yes

14 No A

15 No B

16 No Yes

17 No A

18 No Yes

19 No Yes

20 No A

21 No A

22 No A
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Table 11: The parameters for the continuity grouping algorithm of [21].

Algorithm Parameter Value

Canny edge detection � 2

mask size 17

low threshold .60

high threshold .75

Continuity � .28

� 1.0

� 2.5

length ratio .30

Multi-grid relaxation number of resolutions 3

number of mg iterations 1

� .001

maximum iterations 10

step size .20
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In Section 4.2.1, edge detection was performed using the weak membrane edge model and

the GNC algorithm for energy minimization. The parameters for the edge detection are shown

in Table 12. Curve hypotheses were created for the boundary of regions that were suÆciently

large, the speci�c numerical de�nition of large is given in Table 12. Edgels that were too short

were removed from consideration. The parameter for this is also given in Table 12.

Section 4.2.2 also used a variety of parameters. The circular arc �tting parameters were used

to determine how many pixels near the endpoint of a curve should be used for approximating

the curvature and tangent direction. The curvature values were found to be unreliable, and

were assigned to three classes: straight, curved and very curved. These symbolic curvatures

were used in all comparisons.

In Section 6.1, a parameter for the number of pixels that separate a line from an arc is

discussed. The value for this parameter is three pixels.

B Test Bed of Images

The POLL system was tested on twenty-two intensity images captured using a Macintosh II-FX

in the PRIP Laboratory of Michigan State University. These images are labeled and shown in

Figure 15, Figure 16, Figure 17, and Figure 18. Most of the side surfaces of the bath tub toys

used in Images 1 to 18 have shrunk and are slightly curved.
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Table 12: The parameters from Section 4.2.1

Algorithm Parameter Value

GNC � 4

h0 20

number of iterations 20

Curve creation Small regions 20 pixels

Curve creation Small edgels 5 pixels

Table 13: The parameter values used in Section 4.2.2.

Algorithm Parameter Value

Vertex proximity closeness 7 pixels

Circular arc �tting minimum pixels 5 pixels

maximum pixels 25 pixels

Linear �tting minimum pixels 2 pixels

maximum pixels 25 pixels

Vertex typing tangent threshold 20 degrees

straight radius of curvature more than 1000

curved radius of curvature 100 to 1000

very curved radius of curvature less than 100
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(a) (b)

(c) (d)

(e) (f)

Figure 15: (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4. (e) Image 5. (f) Image 6.

48



(a) (b)

(c) (d)

(e) (f)

Figure 16: (a) Image 7. (b) Image 8. (c) Image 9. (d) Image 10. (e) Image 11. (f) Image 12.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: (a) Image 13. (b) Image 14. (c) Image 15. (d) Image 16. (e) Image 17. (f) Image 18.
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(a) (b)

(c) (d)

Figure 18: (a) Image 19. (b) Image 20. (c) Image 21. (d) Image 22.
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