
A Component-Based Approach for Constructing
High-confidence Distributed Real-time and

Embedded Systems

Shih-Hsi Liu1, Barrett R. Bryant1, Mikhail Auguston2, Jeff Gray1,
Rajeev Raje3 and Mihran Tuceryan3

1 University of Alabama at Birmingham
{liush, bryant, gray}@cis.uab.edu

2 Naval Postgraduate School
auguston@cs.nps.navy.mil

3 Indiana University Purdue University Indianapolis
{rraje, tuceryan}@cs.iupui.edu

Abstract. In applying Component-Based Software Engineering (CBSE)
techniques to the domain of Distributed Real-time and Embedded (DRE)
Systems, there are five critical challenges: 1) discovery of relevant com-
ponents and resources, 2) specification and modeling of components, 3)
exploration and elimination of design assembly options, 4) automated
generation of heterogeneous component bridges, and 5) validation of
context-related embedded systems. To address these challenges, this pa-
per introduces four core techniques to facilitate high-confidence DRE
system construction from components: 1) A component and resource dis-
covery technique promotes component searching based on rich and pre-
cise descriptions of components and context; 2) A timed colored Petri
Net-based modeling toolkit enables design and analysis on DRE sys-
tems, as well as reduces unnecessary later work by eliminating infeasible
design options; 3) A formal specification language describes all specifi-
cations consistently and automatically generates component bridges for
seamless system integration; and 4) A grammar-based formalism spec-
ifies context behaviors and validates integrated systems using sufficient
context-related test cases. The success of these ongoing techniques may
not only accelerate the software development pace and reduce unneces-
sary development cost, but also facilitate high-confidence DRE system
construction using different formalisms over the entire software life-cycle.

1 Introduction

As the complexity of Distributed Real-Time Embedded (DRE) software sys-
tems continues to increase [11], there is a need to facilitate the construction of
such systems from reusable components that can be configured for the particu-
lar implementation being constructed. Component-Based Software Engineering
(CBSE) [8] addresses this issue, providing the mechanism to leverage existing
artifacts and resources rather than handcraft DRE systems from scratch, as is
often observed in current practice. CBSE techniques, however, only partially ful-
fill the objective of software development. For example, to meet both longevity

and changeability requirements demands continuous optimizations to the con-
figuration of the component interactions and application logic. Furthermore,
end users’ demands on confidential, high quality, and time-to-market software
products have not yet been completely addressed. Endeavoring to redeem the
promises to both organizations and end users leads to five core challenges:

– Discovery of relevant components and resources: Amid a repository
of available components, discovering relevant components is non-trivial. Par-
ticularly, DRE systems not only require stringent demands on functional
correctness, but also non-functional (i.e., Quality of Service (QoS)) satisfac-
tion. Such QoS demands, however, are not purely influenced by standalone
systems composed by selected components - the context of the system under
development also has a major influence. For example, there may be several
implementations of the same functional component with different run-time
features (e.g., battery consumption versus throughput). Additionally, two
components may also have functional and/or QoS dependencies between
each other that lead to mutual influence. A manual discovery process by
embedded system engineers may be time consuming and error prone. An au-
tomated and unified resource discovery process based on component specifi-
cations, component dependencies, and context specifications may accelerate
search speed as well as select the best component for specific DRE system
construction.

– Specification and modeling of components and their relevant prop-
erties: As described in the first challenge, in order to discover an appropriate
component, that component must be entered into the repository with an ap-
propriate specification and model that can be detected by the discovery ser-
vice. The specification indicates the relevant functional and non-functional
(i.e., QoS) properties of the component and dependencies between compo-
nents. The model indicates the domain the component belongs to in order
to narrow and expedite the search to the appropriate application domain.
A consistent and understandable specification syntax and semantics may
reduce possible accidental complexity during DRE software development.

– Exploration and elimination of design assembly: Different challenges
faced by embedded systems developers require effective design and fine tun-
ing, crosscutting multiple layers of infrastructure and system logic. Such
challenges result from diverse configuration possibilities, numerous appropri-
ate component candidates for composition, and highly complex component
dependencies in embedded systems. The combination of these challenges re-
sults in abundant design alternatives. Embedded systems engineers must be
able to examine and deploy various design alternatives quickly and easily
amid possible configurations, component candidates, and component depen-
dencies.

– Automatic generation of correct component bridges: Some of the
available components may be applicable only to specific technology plat-
forms, requiring an approach that operates in a heterogeneous manner. The
generation of component wrappers from formally specified behavioral char-

acteristics may offer assistance in verifying the correctness of component
interactions that are more difficult or impossible to perform in handcrafted
solutions. Furthermore, the specifications of component properties provides
a capability to check if a set of components are assembled in a valid and legal
manner. For example, adjustments made at one layer of the infrastructure
may lead to unforeseen consequences at some other layer of the infrastruc-
ture, or may adversely affect application logic.

– Validation of context-related embedded systems: The factors of vali-
dation emerge from component specifications, component dependencies, com-
ponent configurations and system logics, and heterogeneous component bri-
dges. Such factors are, in fact, all context-related, and thus require the knowl-
edge of different contexts and sufficient random test cases to cover all possible
states under each given context. For a large number of test cases in different
contexts, efficiently managing and reusing them to address the regression
test problem are required. Cohesively tieing such test cases to the artifacts
of the earlier software life-cycle to cover the quantitative and qualitative
validation of context-related embedded systems are also imperative.

Although CBSE techniques lift the abstraction to a higher level and use in-
terface description languages to specify the characteristics of composition units
[8], these five accidental complexities still arise. This paper introduces four core
techniques to facilitate high-confidence DRE system construction in the vision
of the UniFrame project [20]: 1) A component and resource discovery technique
promotes component searching based on multi-level descriptions of components
and context; 2) A timed colored Petri Net-based modeling toolkit enables de-
sign and analysis of DRE systems and eliminates infeasible design options to
avoid unnecessary later work; 3) A formal specification language consistently
describes all specifications and automatically generates component bridges for
seamless system integration; and 4) A grammar-based formalism specifies con-
text behaviors and validates integrated systems using sufficient context-related
test cases. The success of these progressive techniques may not only accelerate
software development pace and reduce unnecessary development cost, but also
enable high-confidence DRE system construction by formalizing the static and
dynamic properties of a DRE system, and facilitating validation of the functional
and QoS requirements of the system at component, service, and system levels.

The rest of the paper is organized as follows. Section 2 introduces UniFrame,
the application domain in this paper, and its case study. In Section 3, four core
techniques to address the five challenges are presented. Section 4 discusses the
current CBSE techniques in the DRE domain. Section 5 concludes the paper
and discusses future work stemming from current limitations.

2 Background

This section offers an overview of the UniFrame process and the domain of mobile
augmented reality [22]. A case study, called the Battlefield Training System
(BTS), is also described and applied to four techniques in the later sections.

2.1 UniFrame

���������

�	
�	����

���	�
���

	
�����������

�������

������
� ��	����������

�	
�	����

����	���

�����
����	�
���

�����
����������������	�

�����
� ��������	�

�	
�	����

��������!�������

�����������"��	��#��

��#	����

���������#�

����	����	�

���
���

���

���

�

�

����������

	�
��

�

�����

�

�

	

��������

�����

���������

	�����

���

��

	��������

����������

��
������

�������

Fig. 1. The Overview of the UniFrame Process

UniFrame is a knowledge-based framework that offers techniques and tools
for composing distributed systems from possibly heterogeneous components [21].
Figure 1 is an overview of the UniFrame process. The process starts from acquir-
ing knowledge from domain experts. As shown in arrows 1.1 and 1.2, UniFrame
engineers collaborate with domain experts to obtain sufficient backgrounds and
knowledge on the application domain, components, component assemblies, com-
ponent dependencies, and their functional and non-functional requirements and
standards. Such information may be converted into an executable formal spec-
ification and stored in the knowledgebase [13]. Component quality measures
concentrate on the evaluation of components according to their functional and
non-functional requirements. Validated components are deployed to the distrib-
uted environment for future acquisition and assembly. Please note that the de-
scriptions of the deployment environment context are stored in the knowledge-
base for the searching procedure. The distributed resource discovery procedure
searches and locates relevant components using the Unified Meta-component
Model (UMM) [20]. QoS-UniFrame [16], as a design space exploration and elim-
ination toolkit, utilizes timed colored Petri Nets [9] to model possible designs of
DRE systems and analyzes the feasibility of design artifacts in compliance with
their QoS requirements. During the system integration procedure, Two-Level
Grammar (TLG) [4] formally and seamlessly bridges heterogenous components.
Lastly, Attributed Event Grammar (AEG) [1] specifies possible event traces and
provides a uniform method for automatically generating and executing test cases
for quality validation purposes. This paper concentrates on the last four proce-

dures (the right half of Figure 1) for high-confidence DRE system construction
during the entire software life-cycle. Such procedures may reduce possible acci-
dental complexity and increase confidence of the software development.

2.2 Mobile Augmented Reality Systems

An augmented reality system [7] enriches the environment by merging real and
virtual objects in a real environment. The real-time interactions and the reg-
istration (alignment) for real and virtual objects with each other are also re-
quired. The integrated concepts of augmented reality, mobile computing, wear-
able computing and ubiquitous computing systems enable research into Mobile
Augmented Reality Systems (MARSs) [22].

Generally, a MARS consists of six subsystems: computation, presentation,
tracking and registration, geographical model, interaction, and wireless commu-
nication [22]. The computation subsystem performs specific computational tasks
for the application. The presentation (rendering) subsystem computes and de-
picts virtual multimedia objects. The geographical model stores the geometrical
and detailed hierarchical 3D information of the environment where a demonstra-
tor works. The interaction subsystem offers a user friendly interface that allows a
demonstrator to conveniently input the data for processing as well as see the out-
put generated by the presentation subsystem. Wireless communication provides
the mobile communication between the subsystems. The tracking and registra-
tion subsystem tracks a user’s (or an object’s) position and orientation using
trackers or sensors and registers virtual objects in compliance with the tracking
results. The tracking data can be used both by the rendering and presentation
subsystem to generate the 3D graphics properly aligned with the physical world,
and also could be utilized by the computing subsystem for various tasks such as
spatial queries for location-aware computational tasks.

There are numerous off-the-shelf or custom-built hardware solutions to track-
ing. These often consist of sensors that provide position (2 or 3 dimensions),
orientation (2 or 3 Degrees of Freedom), or a combination. They utilize a variety
of technologies (magnetic, ultrasound, vision-based, infra-red, wireless, ultra-
wide-band, mechanical) to achieve the tracking and have various QoS properties
such as resolution, accuracy, and range. For example, Global Positioning System
(GPS) is a 2-dimensional position tracker that has a world-wide range, but has
a resolution on the order of 1 meter. The Inertia-CubeTM from Intersense Tech-
nologies4, is a self-contained (sourceless) inertial orientation tracker that outputs
three orientation angles and has a 1 degree yaw5 accuracy and 0.25 degree accu-
racy in pitch and roll angles. In a mobile augmented reality system that covers
a wide area, many such trackers may need to be deployed in various locations.

Many challenges exist in utilizing the trackers in such an environment that
contains multiple trackers with different characteristics (heterogeneity) and spread
over large spaces, with possible redundancies in their sensing modalities. The first
4 http://www.intersense.com/company/whatismotion.htm
5 Yaw corresponds to how far the object is pointing away from its direction of travel

due to rotation about its vertical axis

challenge is the discovery by the tracked object of all the sensors available in a
given location. The next challenge is to select a subset to be utilized. Finally,
the last challenge is to utilize the selected sensors to fuse the data and provide
a single, high quality measurement of the pose (position and orientation) of the
tracked object. UniFrame is used to accomplish the discovery and selection tasks.

In order to demonstrate the advantages of the UniFrame process over high-
confidence component-based DRE system construction, a Battlefield Training
System (BTS) example is introduced. Figure 2 shows an overview of the BTS
example.

���������

��	
�������

���

��������

	��������	

�������������

�������	

������	

Fig. 2. The Battlefield Training System Example

The following description is an example scenario for the BTS system. Imagine
a soldier who is walking on the street to rescue a virtual hostage hidden in one
of the buildings. The position and orientation sensors on his body send back the
6 Degrees of Freedom (6DOF) data to the tracking subsystem every half-second.
When the soldier is in a certain position and is looking in a particular direction,
the rendering subsystem will display enemy soldiers in certain 3D positions ac-
cording to a training scenario generated by the computational subsystem. This
rendering of enemy soldiers, therefore, is intimately tied to the position and orien-
tation information coming from the tracking subsystem. The soldier has to shoot
the enemies using a specialized rifle whose pose is also tracked. By computing
the bullet trajectory, the system computes if the enemy is killed and updates the
view of the soldier accordingly. The soldier can communicate with the command
center via his headphone. The information of each building and the soldier’s
current position can be displayed on the Head Mounted Display (HMD) by text.
Several movement, light, audio and temperature sensors will periodically send
the physical conditions of the battlefield back to the computation subsystem.

All of this simulation, computation, and rendering depends greatly on accurate
tracking of the various objects such as the soldier, the HMD, and the rifle.

Several high-level functional and QoS requirements are required to establish
a satisfactory BTS.

– Functional Requirements
• (F1) A soldier should wear both position and orientation sensors on his

body to obtain 6 Degrees of Freedom (6DOF) results: 3 for position and
3 for orientation. The soldier should also wear a hand tracker on his hand
to sense the 6DOF of the hand.

• (F2) Each rifle should contain position and orientation sensors to the
6DOF of an objective that the soldier may target.

• (F3) Audio input and output devices should be provided to the soldier
for communicating with his teammates.

• (F4) An optical see-through Head Mounted Display (HMD) should pro-
vide the interaction subsystem that displays both text and visual objects.
This could be a one-eye, monocular system that leaves the second eye
unobstructed for other tasks.

• (F5) The computation subsystem should compute the scenarios and
strategies for training a soldier.

• (F6) The geographical model should store all the necessary geographical
and geometrical information of the battlefield. Such geographical infor-
mation should be hierarchical in compliance with the three dimensions
of the battlefield.

• (F7) A GPS PDA (Personal Data Assistant) should provide the up-
to-date geographical information of the battlefield obtained from the
geographical model.

• (F8) GPS satellites and relevant wireless communication devices should
transfer tracking results and registered virtual objects between tracking
and registration, geographical model, and computation subsystems.

• (F9) A battlefield training system strategist/trainer should assign train-
ing strategies and adaptable scenarios to the computation subsystem.

– Quality of Service Requirements
• (Q1) Each visual object should be displayed on the correct coordinates

of the HMD. The coordinate inaccuracy should not exceed 5mm.
• (Q2) Each visual object should be displayed and continuously updated

on the HMD. The sampling frequency of each object should be at least
24Hz. The residual visual object that misses the hard deadline should
not be displayed to confuse the soldier.

• (Q3) Each text object should be displayed on the correct coordinates of
the HMD. The coordinate inaccuracy should not exceed 5mm.

• (Q4) Each text object should be displayed on the HMD in real-time.
The sampling frequency of such an object should be at least 24Hz. The
residual text object that misses the hard deadline should not be displayed
to confuse the soldier.

• (Q5) Each audio signal should be transmitted to the soldier in real-time.
The sampling frequency of each signal should be at least 44Hz.

• (Q6) Each position sensor and orientation sensor on the soldier, the rifle,
and the hand should send at least 120 6DOF sampling information back
to the computation subsystem every second.

• (Q7) The interaction subsystem should display text and visual objects
with a reasonable resolution (e.g., resolutions for position and orientation
sensors should be respectively at least 0.75mm and 0.05 degrees).

• (Q8) The presentation/rendering subsystem should not provide obscure
text and visual objects to the interaction subsystem. For example, 12-
point (or more) proportional spaced bitmap fonts should be provided.

• (Q9) The geographical model should provide the geographical informa-
tion in time upon the request from other subsystems. The query process-
ing time of each geographical information should not exceed 0.01 second.

The listed functional and QoS requirements can be classified into three ab-
straction levels in UniFrame: component, service, and system. Functional or QoS
requirements at the component level mean that a specific component correctly
performs a functional task and satisfies how well it should perform as speci-
fied in the corresponding QoS requirements. F1, F2, F4, F6, Q7, and Q8 are
examples of such requirements. To perform a service obeying its functional re-
quirements at the service level, a sequence of components (i.e., a functional path
[30]) collaborates with each other in a specific order. Each component carries
out a specific task (e.g., rendering) and the combination of these tasks fulfills
the overall requirements. Regarding QoS requirements, a QoS path quantita-
tively describes how well the corresponding functional path can be satisfied [30].
For F3, F7, F9, Q1, Q2, Q3, Q4, Q5, and Q6, each of which is achieved by
comprising at least two components that interact with each other. F5 and Q9,
however, can be mistakenly classified into the component level because of the
brief descriptions. From the perspective of the component level, F5 and Q9 are
realized by the computation or the geographical model subsystem. Such a classi-
fication, in fact, does not consider the entire picture of the BTS example. After
obtaining the training strategies, the computation subsystem should compute
and then assign specific tasks to other appropriate subsystems. Such tasks may
request some collaborations among different subsystems. Additionally, because
there may be more than one virtual object displayed on the interaction sub-
system, the computation, tracking and registration, presentation, and wireless
subsystems frequently interact with the geographical model subsystem to ac-
cess the geographical results. Therefore, F5 and Q9 are regarded as system level
requirements.

3 The UniFrame Approach

To tackle accidental complexities as mentioned in Section 1, UniFrame offers
four kernel techniques in the requirements, analysis, design, implementation,
and testing workflows.

3.1 Distributed Discovery of Components

As indicated previously, the underlying model for the UniFrame approach is
the Unified Meta-component Model (UMM) [20]. The UMM has three parts: a)
Components, b) Service and associated guarantees, and c) Infrastructure [19].
Components in UniFrame are units of independent development and deploy-
ment and offer specific services with associated guarantees about the QoS. The
infrastructure provides the environment for deploying such independently devel-
oped components and discovering them via the UniFrame Resource Discovery
System (URDS), which is a pro-active and hierarchical discovery service [23].

UniFrame Resource Discovery System (URDS) URDS consists of three
levels: a) registration level, b) pro-active search level, and c) user interaction and
administration level. The registration level is realized by active registries, which
are enhanced versions of the basic publication mechanisms provided by different
component deployment environments (e.g., the built-in registry in Java-RMI6).
The enhancement is in the form of an ability for these basic mechanisms to ac-
tively listen and communicate with the head-hunters (described shortly). Com-
ponent developers are required to use the UniFrame knowledgebase (as indicated
in Figure 1) and create, in addition to the implementation of the components,
comprehensive specifications called the UMM-Specifications. An example of such
a specification is shown in the next section. Once the component and its asso-
ciated specification is ready, both of these are published with the corresponding
local active registry and deployed on the network.

The pro-active search level is implemented by head-hunters. These are spe-
cialized components who are entrusted with the task of pro-actively gathering
component specifications from various active registries. Head-hunters store these
specifications in their local store, called a meta-repository. Head-hunters, in ad-
dition to gathering specifications, carry out the task of matching specifications
stored in their meta-repositories with incoming queries. It is quite conceivable
that any single head-hunter may not contain all the specifications that are de-
ployed over a network, and hence, head-hunters may collaborate with one another
to cover a much larger search space. Various techniques for the collaboration be-
tween head-hunters have been experimented with. These include random, long-
term, short-term, and profile-based. Results of these experiments [24] demon-
strate that such a collaboration allows a selective search, as compared to an
exhaustive search (which may be costly in a large setup), without substantially
sacrificing the quality of the selected components.

The top level of URDS is achieved by the Internet Component Broker, which
is made up of the Domain Security Manager, Query Manager, Link Manager, and
Adapter Manager. The Internet Component Broker is responsible for authenti-
cating head-hunters and active registries (via the Domain Security Manager),
receiving incoming queries and returning results (via the Query Manager) to
the system integrator, for linking different Internet Component Brokers (via the

6 Remote Method Invocation - http://java.sun.com/products/jdk/rmi

Link Manager), and providing adapter components for bridging the technological
heterogeneities (via the Adapter Manager).

UMM Specification and Discovery of Components The UMM specifi-
cation of components is in accordance with the concept of multi-level specifi-
cation [2]. The UMM specification of a component, in addition to its name,
type and informal description, consists of computational attributes, cooperation
attributes, auxiliary attributes, QoS attributes, and deployment attributes.

The computational attributes describe the functional characteristics of a
component. These include inherent attributes, which contain the book keep-
ing information (such as the ID and version) of that component and functional
attributes. The functional attributes contain the syntactical, semantical, and the
synchronization contracts, along with a few additional fields such as technology
of implementation and the algorithm (if any) used. The cooperation attribute
indicates possible collaborators of a component. The auxiliary attributes provide
information about special features that may be incorporated in a component such
as security. The QoS attributes, which are critical in the case of DRE systems
such as MARS, contain information about the QoS parameters (e.g., latency),
their values (or a range), associated costs and the levels of quality that a com-
ponent provides. The deployment attributes indicate the execution environment
needed for that component and the effects of the environment on the QoS char-
acteristics of the component. For example, the partial UMM specification of an
IS-PCTracker that can be used in the MARS environment for providing the
position and orientation information (6DOF) is shown below (an example of a
complete UMM specification is found in [19]):

Component Name: IS-PCTracker Domain Name: Distributed Tracking
Informal Description: Provides the position and orientation
information.

Computational Attributes
Inherent Attributes:

Id: cs.iupui.edu/ISPCTracker;
...
Validity: 12/1/07
Registration: pegasus.cs.iupui.edu/HH1
Technology: CORBA

Functional Attributes:
Functional Description: Provides the position and

orientation of a tracked object.
Algorithm: Kalman Filter;
Complexity: O(n^6)

Syntactical Contract:
Vector getPosition();

Vector getOrientation();

Semantic Contract:
Pre-condition: {calibrated (PCTracker)== true}
Post-condition: {sizeof (posVector) == 3) &&

sizeof (orientationVector) == 3}
Synchronization Contract:

Policy: Mutual Exclusion
Implementation Mechanism: semaphore

....

Quality of Service Attributes
QoS Metrics: tracking_volume, resolution_pos,

resolution_orientation, accuracy_pos,
accuracy_pitch, accuracy_yaw,
accuracy_roll, sampling_freq

tracking_volume: 2mx2mx3m
resolution_pos: 0.75mm
resolution_orientation: 0.05 degrees
accuracy_pos: 2-3mm
accuracy_pitch: 0.25 degrees
accuracy_yaw: 0.5 degrees
accuracy_roll: 0.25 degrees
sampling_freq: 100-130 Hz

...

The above specification indicates various important factors: a) it is comprehen-
sive and embodies the multi-level specification concepts, b) it places an emphasis
on functional as well as non-functional (QoS) features of a component, and c)
it is consistent with the concepts of service-oriented approaches for develop-
ing DRE systems. Due to its comprehensive nature and multi-levels, the UMM
specification of a component (such as an IS-PCTracker) allows complicated
matching techniques during the discovery process of the URDS for appropriate
components. For example, a system integrator may specify a subset of typical
attributes (e.g., the type, the syntactical attributes, pre- and post-conditions
associated with the interface, and QoS parameters with specific values) for an
IS-PCTracker. Once this query is received by the Query Manager, it will pass it
on to a subset of the head-hunters to search for appropriate components. URDS
uses multi-level matching, i.e., depending upon the level, a different technique
is used to match the corresponding part of the incoming query with the specifi-
cations stored in the local meta-repository. This approach is an enhancement of
the one discussed in [32]. For example, matchings such as type and technology
use keyword match, syntactical matching uses type relations, semantical match-
ing uses theorem provers, synchronization matching uses keywords and tempo-
ral logic, and QoS matching uses numerical relationships. Thus, the multi-level

matching is more comprehensive than simple attribute-based matching. Also,
different head-hunters may use different algorithms for discovering components
that match the given query from their local meta-repository. Once appropriate
components are discovered, they are presented back to the system integrator
who can select an appropriate one for his/her current needs.

3.2 Design Space Exploration and Elimination

UniFrame advocates the principles of CBSE [8], design by contract7, and multi-
level contracts [2]. Such principles facilitate URDS to discover relevant compo-
nents from the repository in compliance with their functional and QoS require-
ments. The complexity and magnitude of a design space increases exponentially
as more appropriate components are found for a distributed embedded system.
QoS-UniFrame [16] is a two-level modeling toolkit for designing and analyzing
distributed embedded systems. Such a toolkit explores and eliminates the design
space of a DRE system and assures its QoS requirements. At the first level, QoS-
UniFrame performs design space exploration and elimination using the formalism
of timed colored Petri Nets [9]. A Petri Net graph visually achieves design space
exploration by depicting all relevant components (places in a Petri Net graph)
and design decisions (transitions in a Petri Net graph). Design space elimination
is accomplished by a reachability tree construction of the Petri Net graph. Such
a reachability tree comprises a number of sequences of states (i.e., markings)
that represent selected component status and dynamic behaviors regarding QoS
at given points of execution. A QoS-UniFrame interpreter implements the tree
construction that obeys the formalisms of timed colored Petri Nets and the static
and dynamic properties embedded in the Petri Net graph.

Besides the formalisms, an aspect-oriented programming approach using As-
pectJ [10] is utilized to insert (i.e., weave) statements into the interpreter for an-
alyzing and/or asserting static or strict QoS requirements regarding components,
execution paths, and the system [16]. If the inserted statements are not fulfilled,
QoS-UniFrame stops constructing new nodes in the reachability tree whereas
all the leaves generated are the design space that satisfies static and strict QoS
requirements. Because dynamic QoS information accordingly relates to the de-
ployment environment, a statistical and stochastic approach is exploited at the
second level [16]. The previous state and observations of components can be ac-
cessed from the knowledgebase for the evaluation of dynamic QoS requirements.
QoS-UniFrame utilizes a meta-programmable approach, called PPCEA (Pro-
grammable Parameter Control for Evolutionary Algorithms) [14], that prunes
off less probable design alternatives by means of statistic and stochastic evolu-
tionary algorithms.

Figure 3 (a) shows a partial high-level design of the BTS example represented
by a Petri Net graph using QoS-UniFrame. It describes three execution paths
that perform rendering text on the Head Mounted Display (HMD), rendering a
three dimensional graph on the HMD, and speech processing. White circles (i.e.,

7 http://archive.eiffel.com/doc/manuals/technology/contract

Fig. 3. (a) Timed Colored Petri Net Graph of BTS (at bottom right) (b) Design
exploration for IS-PCTracker (at left) and (c) for renderProcessing (at top right).

places) are the hardware (e.g., hmd) or software components (e.g., renderProcess-
ing) selected for the design; light colored circles are notations (called stub places)
for decision making complying with the syntax of timed colored Petri Nets; black
bars are the functions performed along the execution paths (e.g., getTrackResult)
or selection actions exploring the design space (e.g., pickOs4 of Figure 3 (b));
and arrows are the direction of the execution paths (e.g., all arrows in Figure 3
(a)) or design decisions (e.g., all arrows in Figure 3 (b) and (c)).

Figure 3 (a) describes the behavioral view of software architecture of the
BTS. The enlarged view of Figure 3 (a) and its details may be found in [17]. Fig-
ure 3 (b) is a containment component of Figure 3 (a) that represents all possible
design alternatives of the IS-PCTracker derived from selecting different combi-
nations of orientation sensors (OS) and position sensors (PS). Because of the
non-deterministism of timed colored Petri Nets, tokens flowing along the stub-in
place can be directed to any of seven transitions without preference. Transitions
pickOs1 to pickOs4 and pickPs1 to pickPs3 mean that only one of the sensors
is selected. Transition pickOs&Ps forces all seven sensors to be possible can-
didates, and transitions getOs&Ps1 to getOs&Ps3 choose two sensors from OS
and PS, respectively. There are twelve design alternatives generated due to the
non-deterministism. Figure 3 (c) is also a containment component in Figure 3
(a) that shows four renderProcessing components appropriate for constructing
the BTS. To guarantee high-confidence DRE system construction, analysis and
assertion statements, treated as pre-conditions and/or post-conditions of compo-

�� � ������	��
�
������������
����	��������������
�����
�����������

� � � � �
��������
������ � �

!� �
"���������
���������
�
�����������#�

$� � � � ��	�������%
�	�&'�' � � ��	����()���*�%
�	�+��������%
�	�+������*%
�	� �

,� � � � �����
��"�
��&�"
��� �

-� � � � .�/����()���/�&��0��1������������2����� �

3� � � � 14	�����2��*���
��&��14	�����2��*���/(') �

5� � � � %��������6����&���
�����7�6�����������8��
��!��
��8� �

9� � � � "���������&' �:��6��������� �;;�#�

<� � � � � � 14	�����6������������
��!��
���&��14	�����6������������6���������� �

�'� � � � � 14	�����=�������
���&��14	�����=�������
��!��
��������	����� �

��� � � � � %������*���>���&���
������2��*���������?
*���� �

�!� � � � � 14	�����2��*���>���&��14	�����2��*�*���>�������'� �

�$� � � � � �"���������2�
�����@�����A��*������B�&&��	��#�

�,� � � � � � � "�
��&���>������2�����	����������?
���+����%
�	�� �

�-� � � � � � � �"��"�
������%
�	��&���*�%
�	�(') �

�3� � � � � � � �"�����%
�	��C��������������6�*������D��	���*��������

�5� � � � � � � � � "�
��&�E���
�������F�
�����
����*���F��*������
�� �

�9� � � � � G�

�<� � � � � �"���������2�
�����@�����A�������B�&&��	��#�

!'� � � � � � � "�
��&���>������2�����	����������?
*���+��������%
�	�� �

!�� � � � � � � �"��"�
������%
�	��&��������%
�	�(')�;�

� � � � � � � � � ��>������2�����	���86	������������8+�������%
�	�� �

!!� � � � � � � �"�����%
�	��C���������������������D��	���*��������

!$� � � � � � � � � "�
��&�E���
�������F�
�����
�����*���F��*������
�� �

!,� � � � � � � �������>������2�����	���86	������������8+���%
�	�� �

!-� � � � � G�

!3� � � � � �"���������2�
�����@�����8�����*8�&&��	���

!5� � � � � #� � H������*��
������0��
�
������
���0������������������H� � � G�

!9� � GG�

Fig. 4. An AspectJ example to analyze and assert QoS requirements.

nent composition, are written in AspectJ following QoS requirements and woven
into the source code of the QoS-UniFrame interpreter, as shown in Figure 4.

Figure 4 asserts the satisfaction of the lower bound of a QoS parameter at the
component, service, and system levels. enableTrans is a function that verifies if
a transition is enabled to facilitate the reachability tree generation. All enabled
transitions are stored in a global vector, called storeEnableTrans. The loop from
lines 8 to 28 examines all the places connected to the transition. Lines 13 to
18 assure a requirement of the QoS parameter at the component level. If the
requirement is not met, the enabled transition will be removed from the vector,
as shown in line 17. For the service level QoS requirements analysis, line 21 is the
QoS formula computing how well the corresponding functional task performs. If
the requirement is met, the current value of the QoS parameter is updated (line

24). Conversely, line 23 deletes the transition such that the reachability tree will
not generate new nodes related to this transition.

QoS-UniFrame performs design space exploration and elimination during a
DRE system construction. The design space exploration approach visually de-
picts the behavioral view of software architecture at the higher abstraction level.
The design space elimination approach analyzes all kinds of QoS requirements
by passing various types of QoS parameters (i.e., QoSPar) into Figure 4 and by
revising the QoS formulae accordingly. Due to the space considerations, please
refer to [16] for the stochastic design space elimination using PPCEA .

3.3 System Integration

In UniFrame, application domains described in the knowledgebase are assumed
to be formalized using a Generative Domain Model [6]. A key aspect of a GDM
is the presence of generative rules which formalize its structure. GDM’s may
be constructed for various domains according to the standards. Furthermore,
components developed for that domain will also follow these standards. We use
Two-Level Grammar (TLG) [4] to express the GDM since TLG’s class hierarchy
allows convenient expression of abstract component hierarchies and TLG rules
may be used to express the generative rules required by the GDM [5]. TLG
may be used to provide attribute evaluation and transformation, syntax and
semantics processing of languages, parsing, and code generation. All of these are
required to use TLG as a specification language for components and domain-
specific generative rules.

An example TLG for a sound sensor GDM is:

class SoundSensor is subclass of Sensor.
SoundLocation :: Location.
SoundVolume :: Float.
AlarmThreshold :: Float.
SafeArea :: {Location}*.
alarm : SoundVolume > AlarmThreshold,

SoundLocation not in SafeArea.
end class Sensor.

SoundSensor inherits various Sensor properties such as the location of the sensor
itself and adds additional properties such as the location and volume of the sound
detected, the threshold at which an alarm should be sounded, and a safe range
to ignore sounds. These type declarations are established by the first level of
the TLG and correspond to context-free grammar rules (the :: corresponds to
the ::= in traditional BNF notation). Note that SafeArea is a set of 0 or more
locations. The second level of the grammar contains rules (e.g., in the above TLG,
alarm will be true if the sound volume exceeds the alarm threshold and the sound
location is not in the set of safe area locations). Additional rules may establish
pre-conditions, post-conditions, and invariants, including QoS constraints.

The component development and deployment process starts with a UMM
requirements specification of a component, following the established GDM for a

particular domain. The UMM specification is informal and indicates the func-
tional (i.e., computational, cooperative and auxiliary aspects) and non-functional
(i.e., QoS constraints) features of the component. This informal specification may
also be formalized using TLG to provide additional semantics such as rules for
validating the component and pre and post-conditions. Validated components
are deployed on the network for potential discovery by the URDS. If the com-
ponent does not meet the requirement specifications then the developer refines
either the UMM requirements specification or the design.

MDA8 Platform Independent Models (PIM’s) are based upon the domains
and associated logic for the given application. TLG allows these relationships
to be expressed via inheritance. If a software engineer wants to design a server
component to be used in a distributed embedded system, then he/she should
write an informal requirements specification in the form of a UMM describing
the characteristics of that component. We use the UMM and domain knowledge
base to generate platform independent and platform-specific UMM specifications
expressed in TLG (which we will refer to as UMM-PI and UMM-PS, respec-
tively). UMM-PI describes the bulk of the information needed to progress to
component implementation. UMM-PS merely indicates the technology of choice
(e.g., CORBA9). These effectively customize the component model by inheriting
from the TLG classes representing the domain with new functionality added as
desired. In addition to new functionality, we also impose end-to-end Quality-of-
Service expectations for our components (e.g., a specification of the minimum
frame-rate in a distributed video streaming application). Both the added func-
tionality and QoS requirements are expressed in TLG so there is a unified nota-
tion for expressing all the needed information about components. A translation
tool [12] may be used to translate UMM-PI into a PIM represented by a com-
bination of UML and TLG. Note that TLG is needed as an augmentation of
standard modeling languages such as UML to define domain logic and other
rules that may not be convenient to express in UML directly.

A Platform Specific Model (PSM) is an integration of the PIM with tech-
nology domain-specific operations (e.g., in CORBA, J2EE10, or .NET11). These
technology domain classes also are expressed in TLG. Each domain contains
rules that are specific to that technology, including how to construct glue code
for components implemented with that technology. Architectural considerations
are also specified, such as how to distinguish client code from server code. PSMs
may be expressed in TLG as an inheritance from PIM TLG classes and tech-
nology domain TLG classes. This means that PSMs will contain not only the
application-domain-specific rules, but also the technology-domain-specific rules.
The PSM also maintains the QoS characteristics expressed at the PIM level.
Because the model is expressed in TLG, it is executable in the sense that it
may be translated into executable code in a high-level language. Furthermore,

8 Model Driven Architecture - http://www.omg.org/mda
9 Common Object Request Broker Architecture - http://www.omg.org/corba

10 Java 2 Enterprise Edition - http://java.sun.com/javaee
11 http://www.microsoft.com/net

it supports changes at the model level, or even requirements level if the model
is not refined following its derivation from the requirements, because the code
generation itself is automated.

An example of high-level rules to generate connector code between client-side
and server-side operations is given below:

ClientUMM, ServerUMM :: UMM.
ClientOperations, ServerOperations :: {Interface}*.

Here it is assumed that UMM specifications exist for both the client and server
and that the operations of each are represented as a syntactic interface (although
we may wish to include semantic information in practice). The second level
of the grammar provides for generating code to map the client operations to
the server operations according to a specific component model. Additional rules
would specify the details of these mappings. Such rules may use both application-
specific and technology-specific domain knowledge.

3.4 Quality Validation

�������

���	���

��
���	
�

�������������
���	
�

��������������������
���

���������

��	�
�����

���
�
��
�		�����

���������

���

���
����

�������

����������	

����

��������	��

��
��
����	

�������

�	��
�

�	��
�

�	��
�

�	��
�

Fig. 5. An Overview of the AEG approach

After system integration, a validation procedure demonstrates the functional-
ity correctness and quality satisfaction of a DRE system. The Attributed Event
Grammar (AEG) approach [1], as shown in Figure 5, is introduced for creat-
ing and running test cases in automated black-box testing of real-time reactive
systems (e.g., reactive behaviors of triggering rifles).

The purpose of the attribute event grammar is to provide a vehicle for gen-
erating event traces (Step 1 in Figure 5). An event is any detectable action in
the environment that could be relevant to the operation of the System Under
Test (SUT). For example, an event may be a time interval or a group of sensors
triggered by a soldier that has a beginning, an end, and duration. There are
two basic relations defined for events: two events may be ordered or one event
may appear inside another event. The behavior of the environment (i.e., event

trace) can be represented as a set of events with these two basic relations de-
fined for them. Two events can happen concurrently as well. An event may have
attributes associated with it. Each event type may have a different attribute
set. Event grammar rules can be decorated with attribute evaluation rules. The
action is performed immediately after the preceding event is completed. Events
usually have timing attributes like begin time, end time, and duration. Some of
those attributes can be defined in the grammar by appropriate actions, while
others may be calculated by appropriate default rules. For example, for a se-
quence of two events, the begin time of the second event should be generated
larger than the end time of the preceding event.

The event traces generated by the generator (Step 2) are not completely
random since they fulfill constraints embedded in the environment model. Event
attributes provide inputs to the SUT, and the event trace structure facilitates
the necessary timing constraints. The test driver (e.g., a C program) can be
derived from the given event trace (Step 3). Generated test drivers may interact
with the system and adjust the evolving event trace based on the results of that
interaction. The environment model can contain descriptions of hazardous states
in which SUT could arrive. Thus, it becomes possible to conduct experiments
with the SUT in the simulated environment and gather statistical data about
the behavior of SUT in order to estimate operational effectiveness, safety and
other dependability properties of the SUT (Step 4). By changing the values
of parameters of the environment model (e.g., adjusting frequencies of some
events in the model and running experiments with the adjusted model), the
dependencies between environment parameters and the behavior of the system
can be identified. This approach integrates the SUT into the environment model,
and uses the model for both testing of the SUT in the simulated environment
and assessing risks posed by the SUT. Such an approach may also be applied to
a wide range of reactive systems, where environment models can be defined to
specify typical scenarios and functional profiles.

The following (oversimplified) example of a missile defense scenario of the
BTS demonstrates how to incorporate an interaction with the SUT into AEG.
We assume the SUT tracks the launched missile by receiving specific geographi-
cal data from the orientation and position sensors of IS-PCTracker on the soldier
(send sensor signal() action in the model simulates sensor inputs to the SUT),
and at a certain moment makes a decision to fire an anti-missile (i.e., interceptor)
by generating an output to a corresponding actuator (SUT launch interceptor()).
The catch construct represents an external event generated at runtime by the
SUT. The external event listener is active during the execution of a test driver
obtained from the generated event trace. This particular external event is broad-
cast to all corresponding event listeners. The following event grammar specifies
a particular set of scenarios for testing purposes.

Attack::= { Missile_launch } *

The Attack event contains several parallel Missile launch events.

Missile_launch::= Boost_stage / Middle_stage.completed := True/

Middle_stage WHEN (Middle_stage.completed) Boom

The Boom event (which happens if the interception attempts have failed) rep-
resents an environment event, which the SUT in this case should try to avoid.

Middle_stage::= ((CATCH SUT_launch_interception(hit_coordinates)
WHEN(hit_coordinates == Middle_stage.coordinates)

[p(0.1) interception
/ Middle_stage.completed := False;
send_hit_input(Middle_stage .coordinates);
BREAK; /] END_CATCH | move)

) *

The sequence of move events within Middle stage may be interrupted by receiv-
ing an external event SUT launch counterattack (hit coordinates) from the SUT.
This will suspend the move event sequence and will either continue with event
counterattack (with probability 0.1), which simulates the enemy-counterattack
event triggered by the SUT, followed by the BREAK command, which termi-
nates the event iteration, or will resume the move sequence. This model allows
several counterattack attempts through the same missile launch event. For sim-
plicity it is assumed that there is no delay between receiving the external event
and the possible counterattack event.

move ::= /adjust(ENCLOSING Middle_stage .coordinates) ;
send_sensor_signal(ENCLOSING Middle_stage.coordinates);
move.duration:= 1 sec /

This rule provides attribute calculations and sends an input to the SUT. In
general, external events (i.e., events generated by the SUT) may be broadcast
to several event listeners in the AEG, or may be declared as exclusive and will
be consumed by just one of the listeners. If there is not a listener available when
an external event arrives, there may be an error in the environment model,
which can be detected and reported at the test execution time. To alleviate this
problem, AEG may contain a mechanism similar to an exception handler for
processing external events which have missed regular event listeners.

The environment model defined by AEG can be used to generate (pseudo)
random event traces, where events will have attribute values attached, including
time attributes. The events can be sorted according to the timing attributes and
the trace may be converted into a test driver, which feeds the SUT with inputs
and captures SUT outputs. The functionality of this generated test driver is
limited to feeding the SUT inputs and receiving outputs and may be implemented
as an efficient C or even assembly language program that meets strict real-time
requirements. Only send and catch actions obtained from the event trace are
needed to construct the test driver; the rest of the events in the event trace are
used as “scaffolds” to obtain the ordering, timing and other attributes of these
actions. The generator takes as input the AEG model and outputs random event
traces. Necessary actions are then extracted from the trace and assembled into
a test driver.

The main advantages of the approach are as follows: 1) The environment
model provides for automated generation of a large number of random test
drivers; 2) It addresses the regression testing problem: generated test drivers
can be saved and reused; 3) The generated test driver contains only a sequence
of calls to the SUT, external event listeners for receiving the outputs from SUT,
and time delays where needed to fulfill timing constraints, hence it is quite effi-
cient and could be used for real-time test cases; 4) Different environment models
for different purposes can be designed; 5) Experiments with the environment
model running with the SUT provide a constructive method for quantitative
and qualitative software risk assessment [28]; and 6) Environment models can
be designed in early stages, before the system design is complete and can be used
as an environment simulation tool for tuning the requirements and prototyping
efforts. The generated event traces can be considered as use cases that may be
used for requirements specification on early stages of system design.

4 Related Work

In recent years, there have been multiple research theories and industrial stan-
dards proposed for DRE systems (e.g., TAO [25]). Because various kinds of
complexities are omni-present in DRE systems, there are many possible solu-
tions to such complexities that have been introduced at different abstraction
levels. Among many tools presented by different institutes or vendors, the fol-
lowing are relevant to UniFrame.

– RAPIDware: RAPIDware [18] is a project for component-based develop-
ment of adaptable and dependable middleware. It uses rigorous software
development methods to support interactive applications executed across
heterogeneous networked environments throughout the entire software life-
cycle. RAPIDware consists of three major techniques to fulfill its objectives:
in terms of the design workflow, adaptable design techniques are utilized to
design components that comprise crosscutting concerns (e.g., QoS and secu-
rity); a programming paradigm is introduced to specify QoS requirements,
evaluate the system accommodation in terms of different configurations and
contexts, and validate functional and non-functional properties via auto-
mated checking; and a middleware development toolkit that assists software
engineers in implementing and selecting components and composing the en-
tire system.

– APEX: Advanced Programming Environment for Embedded Computing
Systems (APEX) [29] is a promising infrastructure for software development
in the domain of embedded systems, especially for digital signal processing.
Similar to UniFrame, APEX consists of five core techniques that cover the
entire software life-cycle: the Online Repository for Embedded Software is
a web-based repository systems to facilitate component management and
retrieval; the COTS Aware Requirement Engineering methodology adapts
and analyzes product requirements for any possible artifact reuse during the
software development; the Design for Independent Composition and Evalu-
ation techniques decomposes an embedded system into a set of independent

subsystems in the design workflow for better modularization; the Automated
Modification and Integration of Components utilities compose and customize
components by generating glue code using existing design patterns and class
templates, respectively; and the Environment for Automated Simulation and
Quality Analysis toolkit simulates the embedded systems and performs the
coverage and performance analysis.

There are three key differences between APEX, RAPIDware, and UniFrame.
First, UniFrame and RAPIDware are promising in seamlessly integrating a sys-
tem from homogeneous and heterogeneous components by respectively using au-
tomated glue/wrapper code generation and middleware techniques. APEX has
not explicitly discussed this issue [29]. Second, in order to reuse components effec-
tively and efficiently, UniFrame introduces a QoS-driven Product Line (QoSPL)
[17] framework to assist in constructing a set of DRE systems that share common
features in the design and analysis workflows. RAPIDware introduces a mid-
dleware development toolkit for selecting and integrating components. APEX
mainly concentrates on the reusability analysis at the requirements workflow
and exploits the analysis results to the following workflows. Finally, to our best
knowledge, the formalisms (e.g., stochastic Petri Nets) that APEX applies mostly
concentrate on performance analysis and validation. The usage of formalisms is
relatively less mentioned in other workflows. Conversely, both UniFrame and
RAPIDware use formalisms throughout the software development.

5 Conclusion and Future Work

Rapid advances in hardware, software, and networking technologies are enabling
an unprecedented growth in the capabilities of complex DRE systems. How-
ever, the traditional development pressures continue to force the introduction
of creative ways to develop systems more rapidly and with less cost. For years,
many such creative ways have been derived from the concepts of essential and
accidental complexities [3]. UniFrame addresses such complexity by utilizing a
unified component and resource discovery technique, a timed colored Petri Nets
modeling toolkit, an automatic code generation paradigm, and an event trace
approach. Additionally, the last formal method technique enhances the confi-
dence of DRE system construction by specifying event traces, generating and
executing test cases, and validating quality issues.

Currently, various prototypes of URDS have been constructed and exper-
imented with. These prototypes contain the features of pro-active discovery,
multi-level matching (matching restricted to only a few levels), and customiza-
tion based on reinforcement learning principles. The results of these experimen-
tations are promising and hence, efforts are underway to customize the URDS
to the domain of MARS. The scope of design space exploration and elimination
that QoS-UniFrame covers is mostly on software and hardware issues. Design and
analysis paradigms to address network latencies are under the situation of local
area network communication such that the latencies can be ignored. Enriching
the notations of timed colored Petri Nets to comprise various communication

approaches and heterogeneous protocols over network is our current plan. In
addition, as a part of the prototype of the product line engineering framework,
QoS-UniFrame is planned to cohesively collaborate with QoS-driven TLG [15]
for DRE product line construction. As for AEG, the first prototype of the test
driver generator has been implemented at Naval Postgraduate School and used
for several case studies. In the area of AR, extensive work has been done on the
registration and calibration aspects that relate the coordinate systems, including
those of trackers [26][27][31].

References

1. Auguston, M., Michael, J. B., Shing, M.-T.: Environment Behavior Models for
Scenario Generation and Testing Automation. Proc. ICSE Workshop Advances in
Model-Based Software Testing (2005)

2. Beugnard, A., et al.:Making Components Contract Aware. IEEE Computer (1999)
32(7) 38–45

3. Brooks, F. P.: No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer (1987) 20 10–19

4. Bryant, B. R., Lee, B.-S.: Two-Level Grammar as an Object-Oriented Require-
ments Specification Language. Proc. 35th Hawaii Intl. Conf. System Sciences
(2002), http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/PDFdocuments/

STDSL01.pdf

5. Bryant, B. R., et al.: Formal Specification of Generative Component Assembly Us-
ing Two-Level Grammar. Proc. 14th Intl. Conf. Software Engineering and Knowl-
edge Engineering (2002) 209–212

6. Czarnecki, K., Eisenecker, U. W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

7. Klinker, G. J., et al.: Confluence of Computer Vision and Interactive Graphics
for Augmented Reality. Presence: Teleoperators and Virtual Environments (1997)
6(4) 433–451

8. Heineman, G., Councill, W. T.: Component-Based Software Engineering. Addison-
Wesley (2001)

9. Jensen, K.: Coloured Petri Nets V Basic Concepts, Analysis Methods and Practical
Use, Volume 1, Basic Concepts. Monographs in Theoretical Computer Science.
Springer-Verlag (1997)

10. Kiczales, G., et al.: Getting Started with AspectJ. Communication of the ACM
(2001) 44(10) 59–65

11. Kordon, F., Lemoine, M., eds.: Formal Methods for Embedded Distributed Sys-
tems: How to Master the Complexity. Springer-Verlag (2004)

12. Lee, B.-S., Bryant, B. R.: Automation of Software System Development Using Nat-
ural Language Processing and Two-Level Grammar. Proc. 2002 Monterey Work-
shop on Radical Innovations of Software and Systems Engeering in the Future.
Springer-Verlag Lecture Notes in Computer Sciences (2004) 2941 219–223

13. Lee, B.-S., Bryant, B. R.: Applying XML Technology for Implementation of Nat-
ural Language Specifications. Intl. Journal of Computer Systems, Science and En-
gineering (2003) 5 3–24

14. Liu, S.-H., Mernik, M., Bryant, B. R.: Parameter Control in Evolutionary Algo-
rithms by Domain-Specific Scripting Language PPCEA. Proc. Intl. Conf. Bioin-
spired Optimization Methods and their Applications (2004) 41–50

15. Liu, S.-H., et al.: Quality of Service-Driven Requirements Analyses for Component
Composition: A Two-Level Grammar++ Approach. Proc. 17th Intl. Conf. Software
Engineering and Knowledge Engineering (2005) 731–734

16. Liu, S.-H., et al.: QoS-UniFrame: A Petri Net-Based Modeling Approach to Assure
QoS Requirements of Distributed Real-time and Embedded Systems. Proc. 12th

IEEE Intl. Conf. and Workshop Engineering of Computer Based Systems (2005)
202–209

17. Liu, S.-H., et al.: QoSPL: A QoS-Driven Software Product Line Engineering Frame-
work for Distributed Real-time and Embedded Systems. Proc. 18th Intl. Conf.
Software Engineering and Knowledge Engineering (2006) 724–729

18. Michigan State University. RAPIDWare: Component-Based De-
velopment of Adaptable and Dependable Middleware. (2006)
http://www.cse.msu.edu/rapidware

19. Olson, A. M., et al.: UniFrame: A Unified Framework for Developing Service-
Oriented, Component-Based Distributed Software Systems. Service-Oriented Soft-
ware System Engineering: Challenges and Practices, eds. Stojanovic Z., Da-
hanayake, A., Idea Group Inc. (2005) 68–87

20. Raje, R. R., et al.: A Unified Approach for the Integration of Distributed Het-
erogeneous Software Components. Proc. 2001 Monterey Workshop Engineering
Automation for Software Intensive System Integration (2001) 109–119

21. Raje, R., et al.: A QoS-based Framework for Creating Distributed and Heteroge-
neous Software Components. Concurrency and Computation: Practice and Expe-
rience (2002) 14 1009–1034

22. Reicher, T.: A Framework for Dynamically Adaptable Augmented Reality Systems.
Doctoral Dissertation, Institutfür Informatik. Technische Universität München
(2004)

23. Siram, N. N., et al.: An Architecture for the UniFrame Resource Discovery Service.
Proc. 3rd Intl. Workshop Software Engineering and Middleware (2002) 20–35

24. Siram, N. N.: An Architecture for the UniFrame Resource Discovery Service. Mas-
ter Thesis, Dept. of CIS. Indiana Univ.-Purdue Univ. Indianapolis (2002)

25. TAO (The ACE ORB). Distributed Object Computing (DOC)
Group for Distributed Real-time and Embedded Systems. (2006)
http://www.cs.wustl.edu/∼schmidt/TAO.html

26. Tuceryan, M., Genc, Y., Navab, N.: Single Point Active Alignment Method
(SPAAM) for Optical See-through HMD Calibration for Augmented Reality. Pres-
ence: Teleoperators and Virtual Environments (2002) 11(3) 259–276

27. Tuceryan, M., et al.: Calibration Requirements and Procedures for a Monitor-based
Augmented Reality System. IEEE Trans. on Visualization and Computer Graphics
(1995) 1(3) 255–273

28. Tummala, H. et al.: Implementation and Analysis of Environment Behavior Models
as a Tool for Testing Real-Time, Reactive System. Proc. 2006 IEEE Intl. Conf. on
System of Systems Engineering (2006) 260–265

29. University of Texas at Dallas. APEX: Advanced Programming Environment for
Embedded Computing Systems. (2006) http://www.utdallas.edu/research/esc

30. Wang, N., et al.: QoS-enabled Middleware. Middleware for Communications. Wiley
and Sons (2003)

31. Whitaker, R., et al.: Object Calibration for Augmented Reality. Proc. Eurographics
’95 (1995) 15–27

32. Zaremski, A. Wing, J.: Specification Matching of Software Components. ACM
Trans. on Software Engineering (1995) 6(4) 333–369

