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Abstract—In [3], Bai et al. have proposed a multiple secret
sharing scheme based on matrix projection. It is an elegant
scheme with several advantages such as small share size and
dynamic to secret changes. However, one of its disadvantages
is that the secrets are organized in a square matrix and hence
the number of secrets must be a square. So there is often a
necessity to stuff dummy secrets into the secret matrix if the
number of secrets is not a square. We present a new scheme
based on matrix projection method that can share any number
of secrets and make full use of every element of the secret
matrix. The proposed scheme is as secure as Bai’s scheme.
Besides, the proposed scheme can also take advantage of the
proactive characteristic of the Matrix Projection Method to
update shares periodically to improve security. Our scheme
increases the potential range of the threshold. The increment
of the threshold range is even more when we are using the
proactive feature of the scheme. It also further reduces the
share size to a constant (equal to that of a single secret). As with
Bai’s scheme, our scheme is partially verifiable based on the
properties of the projection matrix. The paper also summarizes
and classifies typical existing secret sharing schemes.
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I. INTRODUCTION

Secret sharing schemes have many interesting applica-
tions in the real world. In 1979, Shamir [27] and Blakley
[4] independently devised secret sharing schemes for the
application of key distribution. Informally, a secret sharing
scheme allows a dealer to protect a secret among a set of
w participants with each participant holding one share. The
access structure of the scheme is the set of subsets of the
participants that are authorized to reconstruct the secret using
their shares. A special case called (t, w)-threshold access
structure consists of subsets containing at least t participants.
In this case, any t out of w participants can recover the
secret.

A secret sharing scheme is called perfect if any subset
in the access structure can recover the secret while any
unauthorized subset cannot gain any information (in the in-
formation theoretic sense) about the secret. Shamir’s (t, w)-
threshold scheme is a perfect secret sharing scheme based
on Lagrange interpolating polynomial. Blakley’s (t, w)-
threshold scheme is not perfect because each participant
knows the secret lies on the hyperplane determined by
his/her share.

There are situations in which many secrets need to be
shared, possibly each with respect to a different access
structure. As an example, consider the following situation,
proposed in [28]. There is a missile battery and not all
of the missiles have the same launch code. The problem
is to devise a scheme which will allow any one, or any
selected subset, of the launch enable codes to be activated
in this scheme. The scheme needs an algorithm such that the
same pieces of private information could be used to recover
different secrets. This problem could be trivially solved by
realizing different secret sharing schemes, one for each of
the launch enable codes. This solution is inefficient since
each participant should hold multiple shares.

Another scenario in which the sharing of multiple secrets
is important was considered by Franklin and Yung [10].
They investigated the communication complexity of uncon-
ditionally secure multi-party computation, and its relations
with various fault-tolerant models. They presented a general
technique for parallelizing non-cryptographic computation
protocols at a small cost in fault-tolerance. Their technique
replaces polynomial based (single) secret sharing with a
technique allowing multiple secrets to be hidden in a single
polynomial. The technique applies to all of the protocols for
secure computation which use polynomial based threshold
schemes and applies to all fault-tolerant models.

Considering the potential application of multiple secret
sharing, Bai [3] introduced a multiple secret sharing scheme
based on matrix projection method for sharing a secret
square matrix. The scheme is a threshold scheme with the
threshold range related to the number of secrets. So either all
the secrets can be recovered when given an authorized subset
of shares or no secret can be recovered when only given
an unauthorized subset of shares. One of the characteristics
of the scheme is that the number of secrets is a square
since the secrets are organized into a square matrix. The
natural question to ask is how to implement secret sharing of
arbitrary number of secrets systematically. We can obviously
use Bai’s scheme and stuff dummy secrets into the secret
matrix if necessary. However, the participants have to keep
track of what elements of the secret matrix are target secrets
to share. This is an additional burden.

In this paper, we propose a scheme to share arbitrary
number of secrets based on matrix projection method. The
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Table I
PERFECT AND NON-PERFECT SECRET SHARING SCHEMES

Perfect Non-perfect
Shamir; Benaloh; Feldman; Brickell; Ghodosi; Mignotte;
Pedersen; Herzberg; Asmuth-Bloom; Blakley(ramp);
He Pang(ramp); Iftene;

Bai(ramp); Franklin(ramp);
Ours(MP,ramp)

Table II
THRESHOLD AND NON-THRESHOLD SECRET SHARING SCHEMES

Threshold Non-threshold
Shamir; Blakley; Mignotte; Martin; Brickell; Benaloh;
Feldman; Pedersen; Ingemarsson; Ghodosi;
Steinfelda; Herzberg; Pang; He; Iftene;
Asmuth-Bloom; Bai; Ours(MP) Jackson

scheme has the desirable properties that we do not have to
stuff dummy entries into the secret matrix and the search
space for each secret is not reduced compared to Bai’s
scheme so it is as secure. The scheme can also take advan-
tage of the proactive characteristic of the Matrix Projection
Method to periodically update shares without modifying the
secret. Our scheme also increases the potential range of
the threshold and reduces the share size. So it has more
application areas and performance advantages.

II. CLASSIFICATIONS AND PROPERTIES OF SECRET

SHARING SCHEMES

The literature has seen many secret sharing schemes
since Shamir [27] and Blakley [4] proposed their secret
sharing primitives independently in 1979. Here we list some
representative schemes such as Feldman [9], Pedersen [26],
Herzberg [16], He [14], Mignotte [24], Asmuth-Bloom [1],
Brickell [6], Ghodosi [11], Pang [25], Iftene [17], Ingemars-
son [18], Martin [23], Steinfelda [29], [30].

Secret sharing schemes can be categorized according to
whether they are perfect. Table I categorizes the secret
sharing schemes into two classes according to this criterion.

Secret sharing schemes can be classified according to the
access structures they could be used for. Table II categorizes
the schemes we have listed based on whether they are
threshold or non-threshold schemes.

Secret sharing schemes can be classified according to
whether they can share only one secret or can share multiple
secrets, as shown in Table III.

We also categorize the secret sharing schemes based on
the techniques they use, as shown in Table IV.

Secret sharing schemes can have many properties. It is
important to discuss their dynamics such as whether it is
easy to change the secret(s), whether it is easy to change
the access structure. Even if we don’t need to change the
secret(s) or the access structure, we may need to periodically
change the shares at different time rounds so that the shares

Table III
SINGLE AND MULTI-SECRET SHARING SCHEMES

Single secret sharing Multi-secret sharing
Shamir; Blakley; Mignotte; Chien; Yang; Shao;
Asmuth-Bloom; Brickell; Ghodosi; Franklin;
Iftene; Benaloh; Feldman; Pedersen; Pang; He;
Ingemarsson; Jackson; Martin; Bai;
Steinfelda; Herzberg Ours(MP)

Table IV
UNDERLYING TECHNIQUES OF SECRET SHARING SCHEMES

Polynomial based Shamir; Ghodosi; Feldman;
Pedersen; Herzberg; Yang; Pang;
Franklin; He

Systematic block codes based Chien
Vector space based Blakley
CRT based Mignotte; Asmuth-Bloom; Iftene
Matrix projection based Bai; Ours(MP)
Circuit based Benaloh

from different time rounds cannot be pooled together to
recover the secrets. This is called the proactive feature of a
secret sharing scheme and it can improve the overall security
of a secret sharing scheme. Another property is the verifiable
feature. We can verify whether the dealer or the participants
have followed the sharing protocols honestly when the secret
sharing scheme is verifiable.

We summarize the dynamics and verifiability of secret
sharing schemes, as shown in Table V. Regarding the ac-
commodation of changing access structures, some schemes
are “easy to add user”. This means that the dealer can easily
compute a new share and securely give it to the new user
without affecting existing users’ shares. Most of these kind
of schemes are polynomial based since a new share is just
a new point evaluated on the polynomial.

III. REVIEW OF TYPICAL MULTIPLE SECRET SHARING

SCHEMES AND BAI’S SCHEME

Blundo [5] laid foundations for a general theory of multi-
secret sharing schemes by using the entropy approach. They
considered the case in which m secrets are shared among
a group of participants on a single access structure in
such a way that 1) any qualified subset of participants can
reconstruct all the secrets, 2) any non-qualified subset has
absolutely no information on any secret, and 3) any non-
qualified subset knowing the values of a number of secrets
might determine some (possibly no) information on other
secrets. They proved lower bounds on the size of information
held by each participant in any multi-secret sharing scheme
and provided an optimal protocol for multi-secret sharing
schemes on a particular access structure.

Jackson, Martin, and O’Keefe [20] considered the prob-
lem where participants can reconstruct more than one secret
using the information they hold. In particular, they con-
sidered the situation in which there is a secret associated
with each set K ∈ P , where |K| = k. This secret can
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Table V
DYNAMICS ACCOMMODATION CAPABILITY AND VERIFIABILITY

Schemes Change Change Proac-? Verifi-
Secrets? Access Structure? tive? able?

Shamir rerun easy to add user No No
Blakley rerun easy to add user No No
Mignotte rerun rerun No No
Asmuth-Bloom rerun rerun No No
Brickell rerun rerun No No
Ghodosi rerun rerun No No
Iftene rerun rerun No No
(compartment)
Iftene rerun rerun No No
(weighted)
Benaloh rerun rerun No No
Feldman rerun easy to add user No Yes
Pedersen rerun easy to add user No Yes
Ingemarsson easy easy No No
Jackson rerun rerun No No
Martin rerun easy No No
Steinfelda rerun easy No No
Herzberg rerun easy to add user Yes No
Pang easy rerun Yes Yes
Franklin rerun rerun No No
He(multi-stage) rerun easy to add user Yes No
He(multi-secret) rerun easy to add user Yes No
Bai easy easy to add user Yes Partial
Ours(MP) easy easy to add user Yes Partial

be reconstructed by any t(t ≤ k) participants of K. They
proved bounds on the size of information that participants
must hold in order to ensure that up to w participants
(0 ≤ w ≤ n−k+t−1) cannot obtain any information about
a secret they are not associated with. In [21] the authors
provided an optimal scheme, with respect to the information
given to each participant, for some values of the parameters
t and w.

In [14], He and Dawson pointed out one drawback of
the one-time-use secret sharing scheme, that is, the secret
share of each participant can be used in only one sharing
session. Once a qualified group of participants reconstructs
the secret by pooling their shares, both the secret and the
associated shares become known to everyone in the group.
Several multi-secret sharing schemes were proposed [14],
[12], [13], [15]. In such schemes, each participant only
needs to keep one share that can be used in several sharing
sessions without being refreshed. The reconstruction of a
secret will not compromise the secrecy of the remaining
sharing sessions. However, these schemes can share only
one secret in one sharing session.

In [7], Chien et al. proposed a multiple secret sharing
scheme based on systematic block codes in which multiple
secrets can be shared in each sharing session. In [8], [22],
Yang et al. proposed two different implementations of the
scheme [7] based on Shamir’s secret sharing scheme. These
schemes are not verifiable, that is, the schemes do not pro-
vide a way to check whether the dealer or every participant
is honest. In [19], Shao et al. proposed a verifiable multi-
secret sharing scheme in which the participants’ shares can
be negotiated over a public channel but cannot be reused. In
[25], Pang et al. proposed a verifiable (t, n) multiple secret

sharing scheme in which the shares can be reused, multiple
secrets can be shared in each sharing session, the shares can
be negotiated over a public channel and it is easy to check
the dealer and every participant’s honesty.

A. Review of Bai’s Scheme

We briefly describe Bai’s multiple secret sharing scheme
based Matrix Projection Method [3].

Assume all matrix elements and operations are in the finite
field Zp where p is a large prime. Let A be an m×k matrix
of rank k (m ≥ k > 0), and

S = A(A′A)−1A′,

where (•)′ is the transpose of a matrix. The m × m matrix
S is called the projection matrix of matrix A.

Suppose we have k linearly independent k× 1 vectors xi

and compute
vi = Axi,

where 1 ≤ i ≤ k. These m × 1 vectors vi can be used to
construct an m × k matrix

B =
[

v1 v2 . . . vk

]
.

According to Invariance Theorem [3], the projection matrix
of B is the same as that of A:

A(A′A)−1A′ = B(B′B)−1B′

Now suppose the dealer wants to share a secret m × m
matrix S. Then a (k, n)-threshold secret sharing scheme
based on Matrix Projection Method can be constructed in
the following two phases.

• Phase One: Construction of Shares from the Secret
Matrix S

1) Construct a random m × k matrix A of rank k
where m > 2k − 3;

2) Choose n random k×1 vectors xi any k of which
are linearly independent;

3) Calculate n shares vi = Axi mod p for 1 ≤ i ≤
n;

4) Compute a projection matrix S =
(A(A′A)−1A′) mod p;

5) Calculate a remainder matrix R = (S−S) mod p;
6) Destroy the matrix A, the vector xis, the projec-

tion matrix S, the secret matrix S;
7) Distribute n shares vi to n participants and make

the remainder matrix R publicly known.
• Phase Two: Secret Reconstruction

1) Collect k shares vi1 , vi2 , . . . , vik
from the partic-

ipants;
2) Construct an m × k matrix

B =
[

vi1 vi2 . . . vik

]
;

3) Calculate the projection matrix S =
(B(B′B)−1B′) mod p;

402



4) Compute the secret S = S + R mod p.

Note that in step 1 of Phase One, the requirement that
m > 2k − 3 comes from a condition to correctly apply
Matrix Projection Method to multiple secret sharing (See
[2]). In steps 2 and 3 of Phase Two, when the group of
participants have computed B and S, they can check if B
has a rank k and if the projection matrix of B satisfies the
previously mentioned five properties. If any of these checks
fails, they know that there must have been some accidental
errors or dishonest behavior. In this sense, the scheme is also
partially verifiable.

IV. OUR MULTIPLE SECRET SHARING SCHEME BASED

ON MATRIX PROJECTION METHOD

One of the characteristics of Bai’s scheme is that the
number of secrets is a square m2 since the secrets are
organized into an m × m square matrix S that is being
processed to produce the shares vi and the public matrix
R. The natural question to ask is how to implement secret
sharing of arbitrary number of secrets systematically. We can
obviously use Bai’s scheme and stuff dummy secrets into the
secret matrix S if necessary. However, the participants have
to keep track of what elements of the secret matrix are target
secrets to share. This is an additional burden. Besides, the
threshold k is bounded linearly by m, which is the square
root of the number of secrets. So the possible range of the
threshold k is limited at the scale of the square root of the
number of secrets, while in our scheme the range of k is
limited at the scale of the number of secrets (see below).

We next propose a scheme to share arbitrary number
of secrets based on the matrix projection method. The
scheme has the desirable properties that we do not have to
stuff dummy entries into the secret matrix and the search
space for each secret is not reduced compared to Bai’s
scheme so it is as secure. The performance of the scheme
is also good and the scheme can also take advantage of
the proactive characteristic of the Matrix Projection Method
to periodically update shares without modifying the secret
matrix.

A. Principle

Suppose m(m ≥ 2) is an integer and we have m secret
numbers to share: s1, s2, · · · , sm. Each number has a binary
representation of N bits. That is, 0 ≤ si < 2N , for i =
1, · · · ,m.

Now we choose the smallest prime p such that pm ≥ 2N .
(Note that it does not matter if we choose a prime larger
than this smallest one.) It’s plain that p ≥ 2N/m. Since
0 ≤ si < pm, we can represent si based on radix p with m
“digits”. That is, for each i = 1, · · · ,m, we have

si = si,m−1p
m−1 + si,m−2p

m−2 + · · · + si,1p + si,0,

0 ≤ si,j ≤ p − 1, j = 0, . . . ,m − 1

Furthermore, this representation is unique. Then we can
construct an m × m matrix S using the representations of
si’s based on radix p as follows:

S =

⎛
⎜⎜⎜⎝

s1,0 s1,1 . . . s1,m−1

s2,0 s2,1 . . . s2,m−1

...
...

...
...

sm,0 sm,1 . . . sm,m−1

⎞
⎟⎟⎟⎠

Note that we have chosen each row of S to be the p-radix
representation of an original secret. It is equally reasonable
to choose the columns of S. Treating S as a new secret
matrix, we can construct a (k, n) threshold secret sharing
scheme using Matrix Projection Method which performs
matrix operations in Zp where p is the above chosen prime.
When we recover S from any k out of n shares, we can
compute the original m secret numbers using the above
formula. Here we can see that no matter what value m takes
we are always sharing a square secret matrix of which every
element is utilized. So there is no need to stuff dummy
secrets into the matrix. This releases the burden of the
participants to keep track of how many secrets are actually
shared in the matrix and what positions they occupy in
the matrix. In fact, we also get a hidden advantage. When
we are trying to share m secrets, the dimension of the
secret matrix increases from Ω(m1/2) to m in our scheme
comparing to Bai’s scheme. Since we have a threshold
constraint m > 2k−3, i.e. k < (m+3)/2, we also increase
the potential range of the threshold k. Consequently more
access structures can be realized by our scheme than Bai’s
scheme in which the range of k is at the scale of the square
root of the number secrets.

B. Dynamics and Proactivity of Our Proposed Scheme

Like He’s multi-stage secret sharing scheme [14] and He’s
multi-secret sharing scheme [15], our multiple secret sharing
scheme based on the matrix projection method can change
the secrets without changing the shares of the participants
as long as the new set of shared secrets are within the same
range as the old set of shared secrets. When a new set of m
secrets are to be shared, only the m × m public remainder
matrix R needs to be updated. This is very efficient because
secure channels between the dealer and the participants are
not required when sharing these new secrets.

The proactive feature of the secret sharing scheme
based on the matrix projection method is achieved through
Pythagorean triples. We first introduce Pythagorean triples
[32]. The Pythagorean triples are three integers {Z1, Z2, Z3}
that satisfy the following equation:

Z2
1 + Z2

2 = Z2
3 .

The general form of a Pythagorean triples is

Z1 = a2 − b2, Z2 = 2ab, Z3 = a2 + b2
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where a > b are both positive integers. Suppose k ≥ 2
is an integer and g, h are two random integers that satisfy
1 ≤ g, h ≤ k, g �= h. We can use the Pythagorean triples
{Z1, Z2, Z3} to construct a k× k matrix L = (lij)k×k with
its elements defined as follows:

lij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Z1
Z3

(mod p) if i = j = g,
Z1
Z3

(mod p) if i = j = h,
Z2
Z3

(mod p) if i = g, j = h,
−Z2

Z3
(mod p) if i = h, j = g,

1 if i = j, i �= g, i �= h,
0 otherwise.

The matrix L is orthogonal since LL′ = Ik×k (the identity
matrix). Given this orthogonal matrix L, we can also con-
struct the following (m + k) × (m + k) orthogonal matrix
T :

T =
[

Im 0m×k

0k×m Lk×k

]
.

The proactivity of the secret sharing scheme based on
the matrix projection method can be achieved as follows.
Suppose we have m secrets s1, . . . , sm to share among a
group of n participants. First we can still choose a prime p
and construct an m × m secret matrix each row of which
consists of a p-radix representation of an original secret
number. Suppose we are sharing these secrets with respect
to a (k, n)-threshold access structure. The actually shared
secret matrix will be an (m + k)× (m + k) matrix with its
upper left m × m submatrix equal to the desired matrix.
At the end of each time round t = 0, 1, . . ., the dealer
chooses random numbers 1 ≤ gt, ht ≤ k, gt �= ht and 0 <
bt < at < p and computes the Pythagorean triples Z1t =
a2

t − b2
t mod p, Z2t = 2atbt mod p, Z3t = a2

t + b2
t mod p.

The dealer then computes the k × k orthogonal matrix Lt

and (m + k) × (m + k) orthogonal matrix Tt and securely
distributes the matrix Tt to each of the participants. Upon
receiving this matrix at the end of each time round t, each
participant can update his share as vi,t = Ttvi,t−1 with vi,0

being the first round share. With the shares updated in this
manner, shares from the same round can recover the secret
matrix as normal while shares from different time rounds
cannot be pooled together to recover the secret matrix. Thus,
the proposed scheme easily achieves proactivity.

To achieve the proactive feature, we have to incur the dis-
advantage of stuffing dummy secrets into the secret matrix.
The number of dummy secrets will be (m + k)2 − m2 =
2mk+k2. However, this time the threshold k must satisfy the
new requirement m+k > 2k−3, that is, k < m+3. So the
range of threshold actually increases furthermore comparing
to the original range k < (m + 3)/2. This is the further
advantage of using the proactive feature of the scheme.

C. Security and Performance Analysis of our Proposed
Scheme

1) Security Analysis: As we have assumed we are sharing
m secrets and each secret has a binary representation of N
bits. In Bai’s scheme, the search space of each entry of the
secret matrix will be 2N . In our scheme, the search space of
each entry of the secret matrix will be roughly 2N/m. (The
actual search space should be as large as the prime p we have
chosen to be larger than 2N/m). However, an adversary has
to simultaneously collect m entries of the secret matrix to
correctly recover one secret. The combined search space for
each secret number is roughly (2N/m)m = 2N and is not
reduced. We conclude that our scheme is at least as secure
as Bai’s scheme.

2) Performance Analysis: In Bai’s scheme, when we need
to share m secret numbers, we must construct a secret matrix
with at least m entries. The number of rows or columns
of the secret matrix is Ω(m1/2). Each entry of the matrix
occupies N bits. Thus each share, which is a vector of
length Ω(m1/2), occupies N ·Ω(m1/2) = Ω(Nm1/2) bits. In
addition, we need to broadcast the public remainder matrix
R which is Ω(m1/2) · Ω(m1/2) · N = Ω(Nm) bits.

In our scheme, when we need to share m secret numbers,
we must construct a secret matrix with m2 entries. Each
entry of the secret matrix occupies roughly Ω(N/m) bits.
Each share occupies roughly Ω(N/m) ∗ m = Ω(N) bits.
The broadcast public matrix R is roughly Ω(N/m) ∗m2 =
Ω(Nm) bits. We can see that although the matrix R is about
the same size in the two schemes, each share can be much
smaller in length than that in Bai’s scheme and is constant
size (the same as that of a single secret). We conclude that
our scheme is space efficient.

In terms of computation complexity, we point out that
although our scheme needs to first convert the secret num-
bers into a square matrix and later back, all the other matrix
arithmetics are done reducing a smaller modulus (roughly
the m-th square root of the original modulus). These matrix
operations are faster when done reducing a smaller modulus
[31]. So the total computation time on both the dealer’s part
and the participants’ part should be no more than those in
Bai’s scheme.

V. CONCLUSION

We proposed a multiple secret sharing scheme based on
matrix projection method. It is secure in most applications.
The scheme has the advantage that we can share any number
of secrets and do not need to stuff dummy elements into the
secret matrix. It also increases the potential range of the
threshold parameter thus increasing the range of threshold
access structures that can be realized. The scheme also re-
duces the share size comparing to Bai’s scheme. Particularly,
it achieves constant share size-that of a single secret. We
can also take advantage of the proactive characteristic of
the matrix projection method to update shares periodically
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without changing the secrets to increase the scheme’s overall
security. When we are using the proactive feature of the
scheme, the threshold range can be further increased. The
scheme is partially verifiable based on the properties of
the projection matrix. And the scheme is dynamic to secret
change-it only needs to change the public remainder matrix
to share a new set of secrets.
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