
Future Generation Computer Systems 23 (2007) 776–786
www.elsevier.com/locate/fgcs
Dual-Level Key Management for secure grid communication in dynamic
and hierarchical groups

Xukai Zou, Yuan-Shun Dai∗, Xiang Ran

Department of Computer and Information Science, Purdue University School of Science, Indiana University, Purdue University, Indianapolis, 46202, USA

Received 31 March 2006; received in revised form 26 September 2006; accepted 11 December 2006
Available online 22 December 2006

Abstract

Grid computing is a newly developed technology for complex systems with large-scale resource sharing and multi-institutional collaboration.
The prominent feature of grid computing is the collaboration of multiple entities to perform collaborative tasks that rely on two fundamental
functions: communication and resource sharing. Since the Internet is not security-oriented by design, there exist various attacks, in particular
malicious internal and external users. Securing grid communication and controlling access to shared resources in a fine-tuned manner are
important issues for grid services. This paper proposes an elegant Dual-Level Key Management (DLKM) mechanism using an innovative
concept/construction of Access Control Polynomial (ACP) and one-way functions. The first level provides a flexible and secure group
communication technology while the second level offers hierarchical access control. Complexity analysis and Simulation demonstrate the
efficiency and effectiveness of the proposed DLKM in both computational grid and data grid. An example is illustrated.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Grid computing; Grid security; Group communication; Hierarchical access control; Key management
1. Introduction

Grid computing [14] is a recently emerging technology
focusing on large-scale resource sharing and multi-institutional
collaboration, see e.g. [19,11,17,15,3]. One of the most
important issues in the Grid is security [20,25]. The Internet
and networks are not security-oriented by design. Numerous
hackers constantly explore security holes existing in hardware,
software, processes, or systems to launch various attacks. There
are two types of attacks: passive and active [4,18,27]. Passive
attackers steal useful information by eavesdropping and/or
performing traffic analysis. Active attacks interfere with legal
communication and are typically in the forms of masquerading,
replaying, modification, and denial of services (DOS). The
countermeasures against attacks utilize encryption/decryption
for confidentiality, message authentication code for integrity,
digital signature for authentication, undeniable digital signature
Abbreviations: KMS: Key Management Server, DLKM: Dual-Level
Key Management, CA: Central Authenticator, RMS: Resource Management
System, ACP: Access Control Polynomial, HAC: Hierarchical Access Control.

∗ Corresponding author. Tel.: +1 317 274 3473.
E-mail address: ydai@cs.iupui.edu (Y.-S. Dai).

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.12.004
for non-repudiation, access control for authorization, and
intrusion detection/defence for availability/DOS [24]. Most of
these technologies are based on cryptography in which keys and
key management are the most important but complicated issues.

The Internet-based grid computing encounters the same
attacks and involves all the security requirements discussed
above. Furthermore, grid computing systems are group-
oriented, including a large number of users and shared
resources. They are also complex, dynamic, distributed and
heterogeneous. As a result, the attacks to grid systems may
become more serious and to defend them becomes more
difficult. For example, due to the distributed and heterogeneous
features of grid computing systems, centralized authentication
is generally unavailable and multiple-site co-authentication
is difficult to implement. Thus, the Single-Sign-On [16]
authentication comes into play. For another example, grid
computing is aimed at providing collaborative services. These
services are featured by two important functions: group-
oriented communication and information sharing/exchange
[30]. As long as communication and information exchange are
conducted over the Internet, communication messages should
be encrypted with a common key for confidentiality. However,

http://www.elsevier.com/locate/fgcs
mailto:ydai@cs.iupui.edu
http://dx.doi.org/10.1016/j.future.2006.12.004

X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786 777
Notations

SIDi Every valid user/machine is assigned a permanent
secret key SIDi

z A random integer which is changed and made
public every time

A(x) Access Control Polynomial (ACP)
P(x) Public polynomial sent to users for key distribu-

tion, P(x) = A(x)+ K
P The system prime used for modular computation
Ui A group member in a certain group
v j A certain vertex in the second level hierarchy
k̂i A secret group key
ki A private group key
f (x, y) The public one-way hash function
IDi A unique public identity assigned to each vertex

in the second level hierarchy
m The number of users in a certain node
n The number of vertices in the hierarchy structure
pi, j The public edge value on the edge from vi to v j
% Modular operation

due to the high dynamic nature of grid computing, how to
update group key(s) efficiently and effectively becomes a
challenging problem. As for resources sharing among different
nodes/organizations in the grid, every participating node would
like to offer its resources to be used by other nodes. However
this sharing must be in a controllable and fine-tuned manner.
Thus, security is of great concern to grid computing and the
solutions for different security problems need to be studied and
designed in a holistic manner.

To solve the above critical security problems that set obstacle
for the further deployment and applications of grid computing,
this paper presents a novel Dual-Level Key Management
(DLKM) scheme that is appropriate to grid context. At the
first level, Dynamic Groups and Key Distribution are the focus,
where a novel and efficient scheme using Polynomial as public
information to hide a group key is presented. These dynamic
and independent polynomials enable secret information to be
distributed to arbitrary and dynamic user groups. At the same
time, they are able to defend against different attacks including
collusion of malicious internal users. The second level is aimed
at solving Hierarchical Access Control (HAC) and makes use
of a new hybrid scheme. The HAC scheme allows a member
to derive the key of any of its descendants efficiently, but the
reverse is prohibited. Moreover, the first-level is the basis of the
second level and helps accurately distribute secret information
to any particular node in the second level hierarchy. One
important feature with DLKM is that it allows users, processes,
and resources to freely enter or leave a grid system without
jeopardizing required security. Thus, this technology could help
promote grid computing to a new era, in which security-critical
services offered on the grid is enabled.

The rest of the paper is organized as follows. Section 2
describes grid computing and presents a novel Dual-Level Key
Management (DLKM) System for grid computing and services.
Section 3 analyzes security-related measures, robustness and
complexity of the proposed DLKM. In Section 4, DLKM is
implemented into a grid service, where a numerical example
is illustrated and some performance measures from a real
grid computing case are depicted. Section 5 briefly discusses
the relation of the proposed DLKM with the grid security
architecture and with the existing SGC and HAC techniques.

2. Secure grid communication

2.1. Grid computing and security challenges

The real and specific problem that underlies the Grid
concept is coordinated resource sharing and problem solving
in dynamic, multi-institutional virtual organizations [17]. The
sharing that we are concerned with is not primarily file
exchange but rather direct access to computers, software, data,
and other resources. This is required by a range of collaborative
problem-solving and resource-brokering strategies emerging in
industry and science.

However, there is a significant security challenge on the
Grid resource sharing, that is, the data privacy to others outside
the group of shared resources. When those resources involved
in a task communicate with one another, the task owner may
not want other untrusted/unauthorized people to know the
communication data. Unfortunately, the Internet contains many
malicious factors (such as hackers, virus) especially for the grid.
One cannot expect everybody on the Internet to be trustworthy.
Thus, the information transmitted among remote sites/resources
should be encrypted.

Point-to-point cryptographic schemes have been well
developed such as RSA, but Grid computing is featured by
collaboration among a group of users and their sharing of
computational or data resources. Therefore, it is very inefficient
to unicast common information one to another, but multicasting
shared information among the group is much more efficient.
The multicast information needs to be encrypted (by a group
key) so that others cannot understand the information even
though they might intercept it. Groups can be dynamic, because
users, resources or sites can attend or leave a group at any
time, and groups are organized in real-time according to the
availability and workload of various resources. In addition,
one member may belong to multiple groups simultaneously.
Thus, the follow-up challenges emerge as how to authenticate
the group members, how to distribute the group key to the
group members and how to update the group key securely and
efficiently when the group members change.

Another important feature of grid computing is Hierarchical
Access Control (HAC). This scenario is mainly related to the
management in grid computing. The grid environment consists
of resources and users (the number of users and resources
can vary from a few to millions). There are different relations
among users and resources. Some special members/nodes have
been authorized to monitor the tasks of certain resources or
to check the communication among some grid resources, such
as system administrators, service/resource providers, Resource
Management Systems (RMS) and so on. Hence, they should

778 X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786
be able to possess the access keys of the resources under their
authority while unable to obtain the keys of others out of their
authority. Today, a grid can become increasingly large so a
hierarchical controlling model is widely deployed, i.e. there are
different levels of system administrators, providers, users and
RMSs. The lower-level members/sites/nodes are controlled and
monitored by the higher-level ones. This needs hierarchical key
management.

In order to solve the above security challenges in a holistic
manner, we present a new and efficient methodology of Dual-
Level Key Management for grid computing as follows.

2.2. Dual-Level Key Management (DLKM)

DLKM consists of two levels: the first to solve the problem
of Dynamic Groups and Key Distribution; the second designed
for HAC, which is built upon the first level.

2.2.1. First level
It is assumed that every valid user/machine in the system

is assigned a permanent secret key, denoted by SIDi for
member Ui (the member here generally represents the
user/node/machine in the grid). For example, when a user or
an organization registers to the Grid via the Globus Toolkit
(http://www.globus.org/toolkit/), several certificates need to
be issued, including the host certificate that authenticates
the machine involved in the grid, the service certificate that
authenticates the services offered to the grid, and the user
certificate that authenticates use of the grid services. In this
registration process, the permanent secret key can be embedded
into the certificates issued to the member. Assume P is a large
prime which forms a finite field Fp.

Whenever there will be a group of users participating in a
grid service, the Key Management Server (KMS) will construct
a polynomial A(x) in finite field Fp[x] as:

A(x) =

∏
i∈ψ

(x − f (SIDi , z)) (1)

where ψ denotes this group under consideration and SIDi
are group members’ permanent secret keys assigned to the
members in ψ . f (x, y) is a public one-way hash function
and z is a random integer from Fp. A(x) is called an Access
Control Polynomial (ACP). As Eq. (1), it is apparent that A(x)
is equated to 0 when x is substituted with f (SIDi , z) by a valid
user with SIDi in ψ ; otherwise, A(x) is a random value.

The KMS selects a random group key K for group ψ and
computes the polynomial:

P(x) = A(x)+ K . (2)

Finally, the KMS publicizes (z, P(x)).
From this public information, any group member Ui can get

the key by:

K = P(f (SIDi , z)). (3)

Here Ui computes f (SIDi , z) first and then substitutes into
P(x).
For any other member Ur excluded by ψ , P(f (SIDr , z))
yields a random value from which Ur cannot get the hidden
key K . This key management mechanism guarantees that only
a user whose SIDi is included in A(x) can extract the key from
P(x).

With this scheme, dynamic groups can be easily managed to
accept and revoke users. If a new user Ut needs to be added, the
KMS creates a new SIDt and assigns it to Ut . Then, the KMS
includes (x − f (SIDt , z)) in the formation of A(x) and gets

A′(x) =

∏
i∈ψ

(x − f (SIDi , z))(x − f (SIDt , z)) (4)

A′(x) is used to mask key K by computing P ′(x) = A′(x)+ K .
Then (z, P ′(x)) is sent to Ut . After receiving (z, P ′(x)), Ut can
use SIDt to derive the key from Eq. (3).

If a current group member Ut needs to be revoked from the
group, the KMS just selects a new random z′ and recomputes
A′(x) by excluding the corresponding (x − f (SIDt , z′)). Then,
the KMS selects a new group key K ′, computes P ′(x) =

A′(x) + K ′, and multicasts (z′, P ′(x)). Now, the deleted user
Ut cannot extract K ′ from P ′(x).

2.2.2. Second level
The second level is to solve the HAC problem based on

the first level. In a hierarchy, a vertex in the higher level is
designated to have the access rights associated with the vertices
which are the descendants of the vertex. However, the reverse is
prohibited. Cryptography-based HAC works as follows. Every
node in the hierarchy is assigned a cryptographic key. The
vertex in the higher level can derive, from its own key, the keys
of its descendant vertices at the lower levels. The reverse is
not true. Let us see an example with a typical HAC scheme
proposed by Lin [21]. Suppose every node is assigned a public
identification and a private node key. Every edge between two
nodes is assigned a public edge value computed from a one-way
hash function. For example, suppose node vi with public IDi
and private ki is a parent of node v j with public ID j and private
k j , then the public value on the edge from vi to v j will be pi, j =

k j ⊕ f (ki , ID j) where f (x, y) is a one-way hash function.
Thus, vi can compute v j ’s key as k j = pi, j ⊕ f (ki , ID j).
Moreover, if vi is an ancestor of v j , vi can derive v j ’s key
iteratively along the path from vi to v j . However, v j cannot
reversely derive vi ’s key. The advantage of this scheme is that
since nodes’ keys are independent, the key change of one node
will not affect its descendant keys, but will cause update to
public edge information.

We will adopt the above Lin’s scheme as our second level
HAC mechanism (with the following enhancement). One most
serious problem with Lin’s scheme is that when a member
leaves from a node such as vi , not only vi ’s key ki needs to
be changed and distributed to all the remaining users in node
vi , but also the keys of all vi ’s descendants need to be changed
since the revoked member already knew all these keys. This
is obviously a key updating problem. In order to solve this
problem, we adopt a mechanism proposed in [2] which in fact
adds one more key to any node and uses the one-way hash
function f (x, y) one more time. The idea is as follows. Suppose

http://www.globus.org/toolkit/

X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786 779
Fig. 1. An example of access hierarchy and their key and edge values.

every group node vi has one more key, i.e. a secret key k̂i , which
is distributed to the users of node vi securely. Then the group
private key ki is defined as ki = f (k̂i , IDi). Since the users in
node vi have the secret key k̂i , and IDi is public, every user in vi
can compute the private key ki himself. As before, public edge
values are defined on private keys. A parent node can derive the
private key ki of its descendant vi but not the secret key k̂i . The
change of IDi can alter ki easily. Hence, only when there are
users who leave from vi , k̂i needs to be changed and distributed
to the users in vi and ki needs to be updated from k̂i . All other
changes of ki can be easily done by just changing public IDi . In
summary, our second level HAC scheme is defined as follows:

(i) for every node vi , it is assigned a secret key k̂i , a public IDi ,
and a private key ki which is computed by itself as:

ki = f (k̂i , IDi) (5)

(ii) for every edge from vi to v j , a public edge value pi, j is
defined as:

pi, j = k j ⊕ f (ki , ID j). (6)

Fig. 1 illustrates an access hierarchy, keys and edge values.
Each vertex represents a group of members formed from the
first level.

Now, the access control and dynamic key update are ready.
Let us show different operations.

(i) Key derivation: Assume that vertex vi is a parent node of
vertex v j , vi can derive k j by using its own private key ki and
public information pi, j and ID j as:

k j = pi, j ⊕ f (ki , ID j). (7)

but vertex v j cannot compute ki because of the one-way feature
of the function.

(ii) Similarly, if vertex vi is an ancestor node of vertex
v j , following the path from vi to v j , vi can derive v j ’s key
iteratively from its own key.

(iii) When a vertex’s key needs to be updated, the update
does not affect the keys of other vertices but just the edge values
of its adjacent vertices. Assume vertex vi ’s key ki needs to be
changed. A new I D′

i is picked up from Fp and the new key
k′

i is computed as f (k̂i , I D′

i). Then, for vi ’s parent vertex vt ,
pt,i = k′

i ⊕ f (kt , I D′

i) is computed as public information.
Similarly, the edge values to vi ’s child node v j are updated as
pi, j = k j ⊕ f (k′

i , ID j).
(iv) Adding and removing a vertex can be processed in a

similar way. If a new vertex vi needs to be added, we just pick
up a new secret key k̂i , and a new IDi and assign them to node
vi . Then, we compute and publicize the edge values to its parent
vertices and child vertices. Similarly, if an existing vertex vi

needs to be removed, we delete all edges adjacent to vertex vi

and then remove vi .
(v) Adding/deleting an edge: Adding an edge means

computing and publicizing the edge value. As for deleting an
edge such as from vi to v j , if there exist other paths from
vi to v j , nothing needs to be done since vi still can compute
v j ’s key via other paths. But if this is the only path from vi

to v j , vi should not be able to compute v j ’s key (and all v j ’s
descendants’ keys) after deletion. This means that v j ’s key and
all v j ’s descendants’ keys need to be changed. This change can
be done by changing their public IDs only without regenerating
or resending the secret keys.

2.2.3. Combination of the two levels

Now, let’s see how the two levels work together. After the
two levels are combined, all members in a group represented
by vertex vi share one identical group secret key k̂i on the
second level. Each member U j has a personal secret key SID j ,
as registered at the first level. Every vertex vi has its own unique
group secret key k̂i and Ai (x). Here Ai (x) is composed out of
all SIDs of the members in vi and used to distribute k̂i to all
vi ’s members via the multicast of Pi (x). Then, all (and only)
the members in vertex i can derive the group secret key k̂i .
Following that, the group private key ki can be obtained via
Eq. (5) by members themselves.

At the first level, when a member Ur leaves a group (vertex
vi), a new group secret key k̂′

i is distributed by computing A′

i (x)
without the term (x − f (SIDr , z′)) and multicasting P ′

i (x).
Then, the remaining group members can derive the new group
private key k′

i by Eq. (5) but Ur cannot. The new k̂′

i and k′

i will
result in corresponding changes in the second level. Three types
of updates will be performed: (1) all vi ’s parent edge values; (2)
all the public IDs (thus, private node keys) in vi ’s sub-tree; and
(3) all the edge values in vi ’s sub-tree. These renewing steps
can effectively prevent the removed user Ur from extracting the
new keys of its former descendant vertices.

The advantage of DLKM is obvious by combining the two
levels. At the first level, A(x) and P(x) make key distribution
efficient and secure. Also, handling group dynamics is simple
by just assigning SIDi and/or adding/deleting corresponding
terms in A(x). At the second level, edge values computed from
a one-way hash function guarantee the higher level vertex’s
access control over the lower level vertices. Moreover, updating
a node’s private key can be done easily by changing the node’s
ID. As a result, their combination makes sure that the change to
one vertex does not have influence on other vertices (e.g. their
private node keys).

780 X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786
Fig. 2. General architecture of grid computing.

2.3. Secure grid computing by DLKM

The proposed DLKM can make grid services secure in
data communication and access control. To implement it into
the grid computing, it is important to merge DKLM with the
general architecture of grid computing, as depicted by Fig. 2.

In each domain of the grid system, there is a Central
Authenticator (CA) which issues the certificates for hosts, users
and services when they are first registered to the grid system.
The first step of DLKM to distribute personal secret keys can
be combined with the process of issuing the certificates from
the CA. Since registration is a point-to-point process between
the CA and a member, any two-party public/private key scheme
like RSA can be used to encrypt the initial information.

The CA can then act as the KMS to distribute keys using
DLKM in an efficient and secure manner. There are two typical
types of resource access in grid computing: (1) Access Local
Resources inside a domain as shown by Fig. 1; (2) Access
Remote Resources of other domains. How to secure both cases
is described as follows:

2.3.1. Access Local Resources
Based on the above architecture design, accessing local

resources can be done as follows (note: the generic process of
requesting grid services is also included):

(1) A user submits a request for a certain grid service to the
RMS controlling this domain;

(2) The RMS detects a group of available resources (including
computational resources and data resources);

(3) The RMS informs the CA. The CA randomly generates a
key K1 and then uses the private key ki of node vi to encrypt
K1 where vi is the vertex these resources belong to:

(4) The CA multicasts the encrypted key to these resources and
to the RMS;

(5) The resources with ki can decrypt K1. The RMS can derive
ki first. Note: The KMS is usually at the top of the hierarchy
and vi is its descendant. Then, the RMS can also obtain the
same K1;

(6) Thus, these resources together with the RMS can use
this common key K1 to communicate. For example, the
RMS needs to send jobs/programs to the resources, then
the resources need to communicate/access/exchange data,
and finally the results need to return to the RMS for
composition. All of these communication processes need
the common key K1 to encrypt communication messages
for data privacy;
(7) During the process, if certain members (such as system
administrators) need to monitor the whole process, they can
derive the private key ki as long as vi is their descendant,
and then decrypt K1 from the public information generated
by the CA. Therefore, they can monitor the process if they
want.

In step 3, we assume those resources belong to one
group/vertex. However, those available resources may belong to
different groups/vertices. The simple way to solve this problem
is that the CA encrypts K1 multiple times corresponding to the
multiple groups/vertices involved, and then multicasts. Again,
the join/leave/movement of users among groups has already
been described above Section 2.2.

2.3.2. Access Remote Resources
Suppose a user submits a request which need to use not only

the resources in the local domain but also the resources of some
other remote domains (controlled by RMS j , j = 1, 2, . . . , J).
Each domain has its own CA, so the combined group of local
and remote resources can get the key distributed as follows:

(1) A user submits a request for a certain grid service to the
local RMS;

(2) The local RMS finds that besides some local resources, the
request needs to use remote resources from other domains;

(3) The local CA picks up a random K1 and distributes K1
to those local resources and the local RMS (following the
same procedure as above);

(4) The local CA talks with other CAs of those remote domains
and distributes K1 to those CAs, as depicted by Fig. 2.
There are different ways to do it. One way is via the RSA
system as follows: (a) Each CA has a public key; (b) the
local CA uses the public key of the corresponding CA to
encrypt K1 by the RSA algorithm; (c) Each remote CA can
decrypt K1 using its own private key;

(5) Each remote CA uses its own hierarchy and the DLKM
mechanism to distribute K1 to related resources;

(6) Then, the group is formed and the group members
can communicate with one another securely knowing
the common key K1. The corresponding hierarchical
monitoring or data access is also allowed.

2.3.3. Data grid
The above schemes are suitable for the computational grid

services in which the computing resources are allocated to
share the workload. The data communication in this case is
mostly generated from the computational task. However, there
is another type of grid services which is called the Data Grid
whose purpose is mainly data access. Many data sources are
offered as resources for other grid nodes/members to access.
For example, some bioinformatics problems were solved by
the data grid via mining different public databases through the
Internet, see e.g. [10].

Nevertheless, some data sources may contain sensitive data
and do not allow unauthorized members or machines to access.
This condition is very important for further development of data
grids. However, the current grid computing schemes make a

X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786 781
data source unable to deny some data requests during the grid
service because these requests are issued by other nodes that
are assigned by the RMS. Moreover, the data source does not
know in advance who requests such type of service because the
service request also goes to the RMS from users. In this case,
many sensitive data sources dare not dedicate themselves into
the data grid due to the dearth/loss of access control on their
own data. The proposed DLKM can solve this concern.

The above procedure for computational grids can be easily
adjusted to the data grid for access control. The steps of
distributing the common key K1 are similar. Moreover, for a
certain sensitive data source which needs to confine its data
access only to trusted users or machines, the data source should
not use the common shared key K1 to encrypt the data. Rather,
it uses its own group private key ki (suppose it belongs to
vertex/group vi). Then, only those users who are its ancestors
and allowed/trusted to read the data can derive ki via the
hierarchical relation (as Fig. 1). The following protocol should
be abided by:

(1) Sensitive data sent from a data source should be encrypted
by its group private key ki ;

(2) When a trusted machine receives the encrypted data, it can
derive ki ;

(3) On the other hand, if a machine is not a trusted one, it cannot
get the correct key ki . In this case, it will report to the RMS
and then the RMS will reassign the job to another machine
(computational resource) that is trusted by the data source
according to the publicized hierarchy of groups.

(4) Then, once a machine obtains ki , it can decrypt the data, and
then operates on the data. If the results out of the sensitive
data are also sensitive, then the machine encrypts the results
with ki again before sending back. The encrypted results
are sent to the member/user who requested this grid service
either directly or through the RMS;

(5) When the user obtains the encrypted sensitive results, he
can use his own group private key to derive ki and then
decrypts the results. If he has no right (i.e. neither an
ancestor nor in a same group of the sensitive data source),
the results are indecipherable to him without deriving the
correct key ki .

By this DLKM mechanism, data sources can also control
access to their data using keys and encryption without violating
the advantages of the grid computing (large-scale resource
sharing). Only those trusted members or sites can derive the key
and understand the data, whereas other unauthorized users are
unable to understand the encrypted message even though they
may be recruited in the grid task and know the common key K1.
Apparently, the hierarchical design that defines the relations of
trust/accessibility is very important. If certain data sources are
not satisfied with the CA’s hierarchical design, they can suggest
the CA to modify or select to quit if the CA cannot accept their
requirements. Such strategy between the CA and members is
bi-directed via our DLKM scheme, which is flexible and fair
to both parties who consent on the publicized hierarchy for
maintaining appropriate security levels.
2.3.4. Non-monitored grid service
For certain special users (such as a government), they have

the right to select a non-monitored option for requesting some
special grid services. This means they do not want other
people (such as an administrator) to monitor their requested
services/results. This requirement is easy to solve by our
DLKM along the following steps:

(1) The special request arrives at the RMS and the RMS assigns
the available resources to finish the service while notifying
the CA with the non-monitored requirement.

(2) The CA randomly generates a key K1, and then uses
the first-level mechanism (rather than the second-level) in
our DLKM to hide and distribute K1 directly. That is,
the CA computes P(x) =

∏
i∈ψ (x − f (SIDi , z)) + K1

and publicizes (z, P(x)) where ψ is the set of involved
resources and SIDi are the first-level secrets of those
resources.

(3) Then, the involved resources can derive K1 whereas others,
including those ancestors in the hierarchy, cannot obtain
K1.

Thus, the non-monitored grid services can also be offered by
our DLKM. Note that not everybody is allowed to request such
non-monitored services. Only those special users who need to
be strictly authenticated can request them. Without monitoring,
some malicious users are easily able to abuse the power of grid
computing for their evil purposes.

3. Security and algorithm analysis

This section analyzes the complexity, robustness and other
measures of the proposed scheme.

3.1. Security degree

3.1.1. Internal attacks
Internal attack means the users in the same node try to

find, individually or by collusion, something they do not know.
However, in our scheme, the users in the same node vi share the
same secret key k̂i and private key ki . There is nothing except
SIDi which one user knows but other users do not know. The
only possible attack by an internal individual is that an internal
spy attempts to find SIDs of other users in the same group
from P(x). However, our scheme at the first level defends well
against this type of attack in an elegant way: the internal spy
can obtain K and then subtract K from P(x) to get A(x). By
setting A(x) = 0, the internal spy tries to find the root. Even
though the internal spy may find a root somehow, the root will
be f (SID, z) but not SID. In addition, one cannot get SID from
f (SID, z). The only benefit of knowing f (SID, z) is to get K
by plugging it into this very P(x) (For any other P ′(x), its z′

is different, so does f (SID, z′)). However, the internal spy had
got K already. Thus, the clever utilization of one-way function
can prevent the internal individual attack.

As for the collusion of multiple internal users in the sense
that w internal spies collude to derive other members’ personal
secrets using all of their SIDi (i = 1, 2, 3, . . . , w), our novel

782 X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786
idea of A(x) can make such collusion meaningless. This is
very different from other polynomial based techniques [6,5,31].
In those previous polynomial based schemes, t + 1 or more
internal users may find the entire polynomial by interpolating
their t + 1 points (i.e. (IDi , h(IDi))) (where t is the system
security parameter and is the degree of the polynomial in
general). However, polynomial interpolation is useless here
because the users do not have points but just one value (i.e. SIDi
but no A(SIDi)) or to say, f (SIDi , z) but A(f (SIDi , z)) = 0.
Again, f (SIDroot, z) may be obtained but SIDroot cannot. In the
next activity when the random value z is changed to z′, this
last f (SIDroot, z) becomes useless. In summary, this DLKM is
perfect against internal collusion of any degrees.

3.1.2. Attack across groups
Attacking across groups means the members in different

vertices/groups collude to find other group private keys ki
or other users’ secret keys SIDi . It may occur in different
scenarios, e.g. two users in different child nodes collude to get
the key used in their parent node, one user in a sibling node
and another user in a child node collude to attack parents. . . .
However, no matter what kinds of combinations they are, their
attacks are useless in our DLKM. At the first level, external
collusion is meaningless because all the P(x)s, no matter
whether they are in different or same vertices, are independent
due to the random z which is selected every time. The internal
attack has been proved useless as above. Similarly at the second
level, the attempt to extract another group’s private key ki has to
violate the property of one-way function, thus being impossible.

3.1.3. Information glean
A hacker may attempt to glean many publicized P(x)s,

dreaming to break the system by analyzing the relation among
P(x)s. As discussed above, this will not work here since all
P(x)s are independent.

In short, the proposed DLKM is perfect in defending against
both internal collusions or external attacks, just like the gold in
Fort Knox!

3.2. Complexity analysis

Assume the number of nodes in the hierarchy is n and the
maximum possible number of users in a node is m. The one-
way hash function is used at both levels. The time complexity
of the one-way function is totally determined by the function
itself and independent from both n and m. We will ignore its
complexity in the following analysis.

3.2.1. The analysis at the first level
At the first level, there are multiple user groups and each is

associated with a node in the hierarchy. The CA manages all
user groups, but it manages each of them independently. There
are three typical operations: initialization, user join and user
leave, and three kinds of complexities: storage, computation
and communication. The CA needs to store all the information
about the hierarchy, nodes, user groups, and users (personal
secrets), thus its space complexity is O(mn). However, since
we assume the CA is more powerful than users, this space
requirement for the CA is not a problem. For every user, the
only thing the user needs to store is his personal secret key
SIDi . Thus, the storage requirement at the user end is O(1).
Note, this is an important feature which makes the scheme
applicable in the devices of limited capability such as PDAs.
Let us consider three operations one by one. For initializing a
node (i.e. the user group of the node), the CA has to calculate
A(x) = (x− f (SID1, z))·(x− f (SID2, z)) · · · (x− f (SIDm, z))
and P(x) = A(x)+k and then multicast P(x) (along with z) to
all users in the node. The time complexity for computing A(x)
is O(m2). If A(x) has been computed, the time complexity for
computing P(x) is just O(1). Otherwise, the time complexity
for P(x) is O(m2). Multicasting P(x) means multicasting its
coefficients. Since P(x) has degree m and m + 1 coefficients,
the message size is O(m). So the communication complexity
for initialization is one multicast and O(m) per multicast.

Let’s consider the complexities for the new user join
operation. The CA just computes a new P(x) and only unicasts
it (along with z) to this joining user. So, the time complexity is
O(m2) and the communication complexity is one unicast and
O(m) per unicast. Note in the case when a user joins, the user
is not allowed to get the previous key for ensuring backward
secrecy, then a new secret key k̂i needs to be selected and
multicast to all users including the joining user in the node.
In this case, the communication complexity is one multicast
and O(m) per multicast. When a user leaves or is revoked,
a new group key must be generated and distributed to all the
remaining users in the same node. Similarly, the computation
complexity is O(m2) and the communication complexity is
one multicast and O(m) per multicast. Finally, let us consider
the computation cost for a user to compute the key k from
P(x). Computing k is a simple matter to compute f (SIDi , z)
and substitute the result for x in P(x). Since the degree of
P(x) is m, the computation complexity is O(m2). One dynamic
scenario is that some users may join and some other users
may leave the same group at the same time. The elegance of
distributing the key via P(x) is that the CA just includes the
SIDs of the new joining users and excludes the SIDs of the
leaving users in the formation of new A(x). Thus, multiple joins
and leaves can be performed in the same efficiency. The Table 1
summarizes complexities at the first level.

3.2.2. The analysis at the second level
One frequent operation for HAC is key derivation, i.e. a

node derives the key of its descendant from its own key. This
derivation will follow the path from the node to the descendant
and use the one-way function iteratively. Obviously, the longer
the path, the more complexity the key derivation. The worst
case is O(n). To decrease the key derivation complexity, some
methods proposed by Atallah et al. [2] are presented to simplify
the second-level computation. The time complexity is relieved
by adding some shortcuts. After shortcuts were added, during
the process of key derivation, one does not need to follow
every edge from the beginning node to the destination node any
more. Instead, by using shortcuts, we can jump from one special
node to another special node, covering many edges in between.

X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786 783
Table 1
Complexities for the first level

Space Computation Communication

Key storage for each user O(1)
Key computation for each user O(m2)

Key initial distribution O(m2) O(1) multicast, O(m) per multicast
Key update in joining phrase O(m2) O(1) unicast, O(m) per unicast
Key update in leaving phrase O(m2) O(1) multicast, O(m) per multicast
Key update for multiple joins and leaves simultaneously O(m2) O(1) multicast, O(m) per multicast
Table 2
Time complexities for the second level

Dynamic operations Without shortcuts With shortcuts

Key derivation O(n) O(log log n)
Add a leaf/internal node O(F)/O(F + S) O(n)/O(n)
Delete a leaf/internal node O(1)/O(n) O(1)/O(n)
Add an edge O(1) O(n)
Delete an edge O(1) or O(n) O(n)

As a result, for an n node hierarchy with shortcuts, the key
derivation time complexity is O(log log n) one-way function
computations with O(n) public space [2].

The typical dynamic operations at the second level include
adding/deleting a node/edge. In addition, the shortcut operation
may be combined with each of these operations. Let us analyze
them one by one; results are shown in Table 2.

When adding a node (it is assumed that the edges between
the node and its parents (if any) as well as its children (if any)
are also added), the time complexity depends on the position
where the new node is added. If the new node is added as a
leaf node without any descendants, the time complexity should
be constant because only the edge value between the new node
and its parent is created. If it is possible/allowed for a node to
have multiple parents, the complexity depends on the number
of parents. Assume this number is F , then the complexity is
O(F). When the new node is added as a parent of some existing
nodes, the edge values between the new node and its children
also need to be computed. Suppose the number of children is S.
The time complexity is O(S). If shortcuts are used, we have to
recompute shortcuts. The computation for shortcuts is in linear
time of n. Thus the total time complexity is O(n) (Shortcuts
are created between centroids and the root. When a new node is
added or deleted, the position of centroids will move. We have
to compute a shortcut again).

Let us consider the operation of deleting a node. When
the removed node is a leaf, nothing needs to be done except
discarding the parameters related to the node, so the time
complexity is constant. However, if the removed node is an
internal node, the situation is quite different. The IDi used in the
descendant nodes will be changed. ki will also be recomputed
through ki = f (k̂i , IDi). All edge values related to these
changed ID and k will be recomputed. Since the extreme
case is that all the nodes are the descendants of the deleted
node, the worst case time complexity for deleting a node is
O(n). In addition, if shortcuts are used, shortcuts will be also
recomputed which is also in the linear time of n. Thus, the time
complexity is O(n).
Let us consider the time complexity for adding/deleting an
edge. For adding an edge, the CA just computes the edge
value, which is constant. If shortcuts are used, they need to be
recomputed, which is O(n). As for deleting an edge, the CA
may just discard the edge value. In case shortcuts are used, there
is a need to recompute shortcuts, which is O(n). One issue is
that if the deleted edge was the only way for the patent node u
of the deleted edge to get to its child node s previously, u should
not reach s anymore after deletion. This means that all ID values
of s and its descendants need to be changed. So all the private
keys of these nodes will be recomputed and all the edge values
related to these key and ID values need to be recomputed. This
complexity is O(n).

3.2.3. The analysis for combination of two levels
When a member joins an existing node vi , what needs to be

done is to only distribute the existing k̂i to this new member
with a new P(x). The time complexity will be the same as that
for the user join the operation at the first level. It is O(m2).

When a member is removed from a node vi , the situation is
more complicated. The CA will not only change k̂i , select a new
IDi and recompute ki but also select a new ID j and recompute
k j for all its descendant nodes v j . After that, all edges’ values
in the sub-tree rooted at vi will be recomputed. These steps are
in linear time of n. Then the CA needs to compute Pi (x) by
excluding the removed member and distribute Pi (x) to all the
remaining members in vi . This will take O(m2). Thus, the total
time complexity is O(m2

+n). If shortcuts are used, although no
node is deleted and the structure of hierarchy does not change,
we also have to recompute the shortcuts because many edge
values have been changed. This will contribute another O(n).
So, the total time complexity is O(m2

+ n).
From the above description, we can see that when a member

moves from one node to another, he was just removed from one
node and then joins the other. Thus the time complexity is the
sum of complexities for joining and leaving, being O(m2

+ n)
too.

In summary, DLKM has very good performance with
efficient support for dynamics.

4. Illustrative example

The proposed DKLM has been implemented in a study of
the grid computing case in our TEGO (Trusted Electronics
and Grid Obfuscation) centre (tego.iupui.edu). To help readers
understand better, this case study contains two parts: one
is an illustration of a simplified example to show the key

784 X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786
Fig. 3. A part of the sample hierarchy for grid computing.

generation/publication/derivation processes; while the other is
the practical implementation in a real case. Suppose the prime
is P = 13 and the one way function is f (x, y) = 2x⊕y mod P .

4.1. Initialization

Suppose the hierarchy at the second-level is designed as
Fig. 3. Suppose there are m users in the group represented
by the middle vertex 6. For illustration, we use a simplified
example with m = 2 users. User 1 has personal secret SID1 = 7
and User 2 has SID2 = 9. Then, the group secret key needs to
be distributed to both users (suppose k̂6 = 11 and z = 5). By
Eqs. (1) and (2), the following polynomial is generated:

P(x)%13 = {A(x)+ K }%13

= {(x − 27⊕5)(x − 29⊕5)+ 11}%13

= x2
− 5x + 2. (8)

Then, the coefficients of polynomial (8) are publicized in an
array as {1,−5, 2}. User 1 computes f (SID1, z) = 27⊕5

= 4
and substitutes 4 for x into Eq. (8) to obtain −2%13 = 11.
User 2 obtains 11 too. Thus, both of them get k̂6 = 11. Suppose
another user not in this group with SID3 = 6 to substitute his
f (SID3, z) (=8) into Eq. (8), then he derives 26%13 = 0 which
is not the key.

The above is just an illustrative example. In our real case
study, the system prime P is not so small as 13 but a number
with 128 bits. The number m of users in a group should also
be much more than two, and the degrees of polynomials are
much higher than three. In addition, a strong secure one-way
hash function other than the one above can be used.

Generating polynomials is one of the most time-consuming
operations. Its performance (running time) for different group
sizes from 5 to 3000 is depicted by Fig. 4. Fig. 4(a) shows
the efficiency of the algorithm. Usually the number of group
members will not be so much up to 3000. Otherwise, the group
members can be divided into multiple sub groups. Fig. 4(b)
validates that the complexity of this algorithm is O(m2).

As another example to illustrate the second level’s key
creation and derivation, we will show how users compute
private group keys with the received secret information
(i.e. secret group keys), and how users use their private keys
and public information to derive the private group key of a
descendant vertex. Suppose ID6 was selected as 4 and k̂6 as
11. Vertex 9 has ID9 = 7 and secret key k̂9 = 5. After the
secret keys were distributed to users in two vertices, the private
key used in group 6 can be computed by two users as k6 =

f (k̂6, ID6) = 211⊕4%13 = 8. Similarly, every user in group
9 can compute private key k9 = f (k̂9, ID9) = 25⊕7%13 = 4.
Furthermore, the KMS computes and publicizes the edge value
from vertex 6 to vertex 9, that is, p6,9 = k9 ⊕ f (k6, ID9) =

4 ⊕ 28⊕7%13 = 12. When any user in vertex 6 wants to visit
resources in vertex 9, he just needs to plug k6, ID9, and p6,9 in
k j = pi, j ⊕ f (ki , ID j) to compute k9 = p6,9 ⊕ f (k6, ID9) =

12 ⊕ 28⊕7%13 = 4. Once this group key is obtained, all
resources in vertex 9 are available.

4.2. Illustration by a grid service

Now, suppose user 1 in vertex 6 requests a grid service that
needs to use sensitive data sources in vertex 9. The available
resources assigned by the RMS belong to both vertex 5 and
vertex 8. The private and public information on both vertices
and links of those involved elements are marked in Fig. 3.

As shown in the part of the data grid in Section 2.3, suppose
a common key used by all four groups (and their ancestors) is
randomly selected as K1 = 3 by the CA. Along the hierarchy,
the CA should encrypt K1 with the key of group 8 (k8 = 7)
once and with the key of group 9 (k9 = 4) another time. Then,
the CA multicasts the encrypted key to group 8 with the former
one, and to groups 1,3,5,6,9 with the latter one. Groups 8 and
9 can directly decrypt K1 = 3. If a member in group 1 (such
as the RMS) needs to get K1, it can find a path from group 1 to
group 9 and then derive the keys of those intermediate vertices
one by another along the public information of links and nodes.
For instance, the RMS can get k3 = p1,3 ⊕ f (k1, ID3) =

7 ⊕ 21⊕4%13 = 9, then k5 = 11 ⊕ 29⊕8%13 = 2, and finally
k9 = 4⊕22⊕7%13 = 4. Thus, the RMS can decrypt K1 using k9
from the multicast message it received. Similar procedures are
applicable to other groups. Then, common data can be securely
exchanged among them with K1 = 3.

On the other hand, the sensitive data from a data source
in group 9 will be communicated with k9 = 4 (not K1).
Thus, the sensitive data can be protected from unauthorized
resources/users such as the dynamic IP resources in group 8
though they know the common key K1 = 3. For instance,
the computational resources in group 5 access the sensitive
data from a database in group 9. The sensitive data is
encrypted by k9 = 4 that can be derived by group 5. Then,
these computational resources compute the results from the
decrypted data, encrypt the results with k9, and send the results
to the RMS in group 1. After composing all results, the RMS
returns the final results to the user in group 6 who requested
for this service. The insensitive results in the final results are
encrypted by K1 = 3 whereas sensitive results are encrypted
by k9 = 4. Thus, the authorized users can derive both keys
and know the entire results. In case some malicious resources
in group 8, holding K1 = 3, attempt to access the sensitive
data, or some resources are accidentally assigned by the RMS
for operating on the sensitive data, those malicious attempts

X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786 785
(a) Running time vs. group members (m). (b) Time is linear to m2.

Fig. 4. Performance for generating polynomials to numbers of group members.
from unauthorized users cannot understand the data without
the correct key (k9 = 4). Moreover the accidentally assigned
resources can report to the RMS to reassign other authorized
resources to continue the jobs. As a result, a data source can also
control its data privacy through the above process rather than
makes itself known by all involved or assigned resources/users.

5. Discussions

Cryptographic key and key management have been
intensively investigated for secure group communication
(SGC), e.g. [7,12,22] and hierarchical access control (HAC),
e.g. [8,28]. The group communication is further considered
in two formats: one-to-many multicast e.g. [29], and many-
to-many communication, e.g. [13]. In terms of group key
management for SGC, typical existing group key management
schemes can be classified as four categories [30]: (1) centralized
key distribution, e.g. key graph and one-way function chain
(OFC) [9]; (2) decentralized key management, e.g. Iolus [23];
(3) distributed/contributory group key agreement, e.g. DISEC
[13]; and (4) distributed group key distribution, e.g. optimized
group key rekeying [26].

For HAC key management, Akl and Taylor [1] proposed
the first cryptographic HAC scheme and then many other
HAC schemes followed. Typical existing cryptographic HAC
mechanisms can be classified as [30]: unconditionally secure
and conditional secure. The former assumes node keys are
totally independent whereas the latter establishes dependent
relations among node keys using a one-way function. The latter
is further classified as directly dependent key and indirectly
dependent key. Direct dependence means that a child’s key is
directly computed from its parent key. Only the roots’ keys
are randomly selected and all other keys are computed. The
first cryptographic HAC scheme [1] belongs to this class. In
contrast, indirect dependence means that all nodes’ keys are
randomly selected and they are independent, but there are some
public information computed, via a one-way hash function,
from the keys of two nodes which have parent–child relation.
From the public information, a parent node can compute the
key of its child.
As it is well recognized, grid computing intensively involves
collaborative tasks which multiple entities work together to
complete via interactions, data exchange and resource sharing.
Thus, secure group communication and hierarchical access
control would be necessary in the grid security architecture.
Our proposed Dual Level Key Management solution is the
first to integrate SGC and HAC systematically for secure
grid computing services. In addition, the prior schemes pose
certain assumptions which are difficult to implement in reality
and/or have some problems. For example, most schemes require
that group members be organized/ordered as a tree (called
as member serialization) which exposes group members and
their positions. They also require multiple encryptions and/or
multiple round broadcasts for key updating. In contrast, our
ACP based key distribution solution has no serialization issue,
can hide membership, and is able to perform rekeying with just
one polynomial multicast, no matter how many members join
or leave.

6. Conclusion

In this paper, we proposed a Dual Level Key Management
scheme and analyzed its security and performance. The scheme
is highly secure and efficient and is able to support highly
dynamic operations at both user level and group level. We also
showed how the scheme can be used for securing different Grid-
based services. The illustrative example showed the efficiency
of the proposed DLKM and validated its correctness. It also
helped readers to clearly understand the proposed DLKM and
know how to implement it in real grid computing services.

Acknowledgments

The authors sincerely appreciate the constructive comments
from journal editors and anonymous reviewers. This work was
partially supported by US NSF grant CCR-0311577.

References

[1] S.G. Akl, P.D. Taylor, A cryptographic solution to the problem of access
control in a hierarchy, ACM Transactions on Computer Systems (TOCS)
1 (3) (1983) 239–248.

786 X. Zou et al. / Future Generation Computer Systems 23 (2007) 776–786
[2] M.J. Atallah, K.B. Frikken, M. Blanton, Dynamic and efficient key
management for access hierarchies, in: ACM Conference on Computer
and Communication Security, CCS 05, 2005, pp. 190–202.

[3] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, D. Zagorodnov, Adaptive computing on the Grid using
AppLeS, IEEE Transactions on Parallel and Distributed Systems 14 (14)
(2003) 369–382.

[4] M. Bishop, Computer Security: Art and Science, second ed., Addison
Wesley, ISBN: 0-201-44099-7, 2003.

[5] C. Blundo, L.A.F. Mattos, D.R. Stinson, Generalised beimel-chor scheme
for broadcast encryption and interactive key distribution, Theoretical
Computer Science 200 (1998) 313–334.

[6] C. Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung,
Perfect secure key distribution for dynamic conferences, in: Advances
in Cryptology, CRYPTO’92, in: LNCS, vol. 740, Springer, Berlin, 1993,
pp. 471–486.

[7] A. Boukerche, C. Dzermajko, K. Lu, Alternative approaches to multicast
group management in large-scale distributed interactive simulation
systems, Future Generation Computer Systems 22 (7) (2006) 755–763.

[8] G. Bu, Z. Xu, Access control in semantic grid, Future Generation
Computer Systems 20 (1) (2004) 113–122.

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas,
Multicast security: A taxonomy and some efficient constructions,
in: Proceedings of the IEEE INFOCOM. vol. 2, 1999, pp. 708–716.

[10] Y.S. Dai, M. Palakal, S. Hartanto, X. Wang, Y. Guo, A grid-based pseudo-
cache solution for MISD biomedical problems with high confidentiality
and efficiency, International Journal of Bioinformatics Research and
Applications 2 (3) (2006) 259–281.

[11] S.K. Das, D.J. Harvey, R. Biswas, Parallel processing of adaptive meshes
with load balancing, IEEE Transactions on Parallel and Distributed
Systems 12 (12) (2001) 1269–1280.

[12] E. Dawson, A. Clark, M. Looi, Key management in a non-trusted
distributed environment, Future Generation Computer Systems 16 (4)
(2000) 319–329.

[13] L. Dondeti, S. Mukherjee, A. Samal, DISEC: A distributed group key
management scheme for secure many-to-many communication, in: Fifth
IEEE Symposium on Computers and Communications, Antibes-Juan les
Pins, France, 2000, pp. 693–698.

[14] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan-Kaufmann, 2003.

[15] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, Grid services for distributed
system integration, Computer 35 (6) (2002) 37–46.

[16] I. Foster, C. Kessekan, G. Tsudik, S. Tueckel, A security architecture for
computational grid, in: Proceedings of ACM Conference on Computer
and Communication Security, CCS, 1998, pp. 83–92.

[17] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling
scalable virtual organizations, International Journal of High Performance
Computing Applications 15 (2001) 200–222.

[18] C. Kaufman, R. Perlman, M. Speciner, Network Security: Private
Communication in a Public World, second ed., Prentice Hall, ISBN: 0-
13-046019-2, 2002.

[19] A. Kumar, An efficient SuperGrid protocol for high availability and load
balancing, IEEE Transactions on Computers 49 (10) (2000) 1126–1133.

[20] J. Li, D. Cordes, A scalable authorization approach for the Globus grid
system, Future Generation Computer Systems 21 (2) (2005) 291–301.

[21] C.H. Lin, Dynamic key management scheme for access control in a
hierarchy, Computer Communications 20 (15) (1997) 1381–1385.

[22] I.-C. Lin, M.-S. Hwang, C.-C. Chang, A new key assignment scheme
for enforcing complicated access control policies in hierarchy, Future
Generation Computer Systems 19 (4) (2003) 457–462.

[23] S. Mittra, Iolus: A framework for scalable secure multicasting, Journal of
Computer Communication Reviews 27 (4) (1997) 277–288.

[24] C.P. Pfleeger, S.L. Pfleeger, Security in Computing, third ed., Prentice
Hall, ISBN: 0-13-035548-8, 2003.
[25] D.J. Power, E.A. Politou, M.A. Slaymaker, A.C. Simpson, Securing web
services for deployment in health grids, Future Generation Computer
Systems (5) (2006) 547–570.

[26] O. Rodeh, K. Birman, D. Dolev, Optimized group re-key for group
communication systems, in: Network and Distributed System Security,
CA, USA, 2000.

[27] D.R. Stinson, Cryptography: Theory and Practice, second ed., CRC Press,
ISBN: 1-58488-206-9, 2002.

[28] L. Wang, K. Chen, Comments on a theorem on grid access control, Future
Generation Computer Systems 22 (4) (2006) 381–384.

[29] N. Weiler, SEMSOMM: A scalable multiple encryption scheme for
one-to-many multicast, in: Proceedings of the 10th IEEE International
WETICE Enterprises Security Workshop, CA, USA, 2001, pp. 231–236.

[30] X. Zou, B. Ramamurthy, S. Magliveras, Secure Group Communication
over Data Networks, Springer, ISBN: 0-387-22970-1, 2004.

[31] X. Zou, S. Magliveras, B. Ramamurthy, A dynamic conference scheme
extension with efficient burst operation, Congressus Numerantium 158
(2002) 83–92.

Dr. Xukai Zou is a faculty member with the Computer
Science Department of Purdue University School of
Science at IUPUI. He received his Ph.D. in Computer
Science from University of Nebraska-Lincoln. His
research is in Applied Cryptography, Communication
Networks and Security, Design and Analysis of
Algorithms, and Grid Computing. He has published
three books and over twenty articles in these areas
recently. Dr. Zou is a recipient of the U.S. NSF

Cyber Trust Awards and the leading author of the Books “Secure Group
Communication over Data Networks” (Springer) and “Trust and Security in
Collaborative Computing” (World Scientific). Dr. Zou is a Program Chair and
a Program Committee Member for a number of international conferences and
serves on the Editorial Board and as a reviewer for many international journals
and conferences.

Dr. Yuan-Shun Dai is Assistant Professor of the Computer Science
Department of Purdue University School of Science, at IUPUI. He received his
Ph.D. from National University of Singapore, majored in Systems Engineering.
He has published three Books, and more than 40 Articles including six
IEEE/IIE/ACM Transactions papers. He was featured by Industrial Engineer
Magazine (December, 2004 page 51), the most important magazine in
industries, due to his research achievement and contribution to the Industries
and Engineers. His research is in grid computing, dependability, autonomic
computing, security, fault tolerance.

He is a Programme Chair for a regular and prestigious IEEE conference,
the 12th Pacific Rim Symposium on Dependable Computing (PRDC2006).
He is also a General Chair for the 2nd IEEE Symposium on Dependable
Autonomic and Secure Computing (DASC06), a General Chair for IEEE
International Workshop on Trusted and Autonomic Computing Systems
(TACS06), a General Chair of the 1st IFIP workshop on Trusted and Autonomic
Ubiquitous and Embedded Systems (TAUES05), and a Programme Chair of the
first IEEE workshop on Reliability and Autonomic Management in Parallel
and Distributed Systems (RAMPDS05). He serves as the Guest Editor for
the Journal of “Computer Science” on a special issue of “Reliability and
Autonomic Management”, and also serves for many technical/programme
committees at international workshops, symposiums and conferences.

Xiang Ran is a graduate student and research assistant
in Computer Science Department of Purdue University
School of Science at IUPUI. He received his bachelor
degree in Information Engineering from Chengdu
University of Technology. His research focus is
Network Security and Distributed Computing. He is
obsessed with system design and computer network
technology.

	Dual-Level Key Management for secure grid communication in dynamic and hierarchical groups
	Introduction
	Secure grid communication
	Grid computing and security challenges
	Dual-Level Key Management (DLKM)
	First level
	Second level
	Combination of the two levels

	Secure grid computing by DLKM
	Access Local Resources
	Access Remote Resources
	Data grid
	Non-monitored grid service

	Security and algorithm analysis
	Security degree
	Internal attacks
	Attack across groups
	Information glean

	Complexity analysis
	The analysis at the first level
	The analysis at the second level
	The analysis for combination of two levels

	Illustrative example
	Initialization
	Illustration by a grid service

	Discussions
	Conclusion
	Acknowledgments
	References

