
Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security
United States Military Academy, West Point, NY, 15–17 June 2005

DGKD: Distributed Group Key Distribution with Authentication Capability

Pratima Adusumilli, Xukai Zou, Byrav Ramamurthy

Abstract— Group key management (GKM) is the most impor-
tant issue in secure group communication (SGC). The existing GKM
protocols fall into three typical classes: centralized group key distri-
bution (CGKD), decentralized group key management (DGKM), and
distributed/contributory group key agreement (CGKA). Serious prob-
lems remains in these protocols, as they require existence of central
trusted entities (such as group controller or subgroup controllers),
relaying of messages (by subgroup controllers), or strict member syn-
chronization (for multiple round stepwise key agreement), thus suf-
fering from the single point of failure and attack, performance bot-
tleneck, or misoperations in the situation of transmission delay or
network failure. In this paper, we propose a new class of GKM pro-
tocols: distributed group key distribution (DGKD). The new DGKD
protocol solves the above problems and surpasses the existing GKM
protocols in terms of simplicity, efficiency, scalability, and robust-
ness.

Keywords: Secure Group Communication, Group Key
Management, Centralized Key Distribution, (Distributed)
Contributory Key Agreement, Distributed Key Distribu-
tion.

I. Introduction

Secure group communications (SGC) over networks (e.g,
the Internet) refers to a setting in which a group of mem-
bers can send messages to and receive messages from group
members, in a way that outsiders are unable to glean any
information even when they are able to intercept the mes-
sages. SGC is an inseparable component of cyber security.
Broad critical applications such as collaborative work, tele-
conferencing/medicine, multi-partner military action, and
cyber forensics in critical fields depend on SGC for their
security.

The most important problem facing SGC is group key
management (GKM). The primary difficulty for GKM
comes from member dynamics. How to design robust,
scalable, efficient GKM protocols supporting high dynam-
ics is the focus of all SGC researches. Many GKM pro-
tocols have appeared in the literature and typically fall
into three categories: centralized group key distribution
(CGKD), decentralized group key management with re-
laying (DGKM), and (distributed) contributory group key
agreement (CGKA).

In CGKD schemes [1], [2], [3], [4], [5], [6], [7], [8], [9],
there is a central trusted authority (called group controller

This work was partially supported by the U.S. NSF grant CCR-
0311577.

P. Adusumili and X. Zou: School of Science, Purdue University at
Indianapolis, Indianapolis, IN.

B. Ramamurthy: University of Nebraska-Lincoln, Lincoln, NE.

(GC)) that is responsible for generating and distributing
the group key. Whenever a new member joins or an exist-
ing member leaves, the GC generates a new group key and
distributes the new key to the group. The problems with
the centralized schemes are the central point of failure, per-
formance bottleneck, non-scalability, and the requirement
of trustworthiness of the group controller by all members.
In DGKM schemes [10], [11], [12], [13], the group is di-
vided into multiple distinct subgroups and every subgroup
has a subgroup controller (SC) responsible for key man-
agement for its subgroup. In addition, an SC has the key
of its parental subgroup. When an SC receives a message
from one subgroup, it decrypts the message, encrypts the
message with the key of the other subgroup and sends to
the other subgroup, i.e., relaying the message. The prob-
lems with DGKM are that SCs can still be considered as
central and trusted entities (at a smaller scale) and the
messages undergo multiple relaying before they reach the
entire group. Relaying of every data message puts huge
burden on SCs. In CGKA schemes [14], [14], [15], [16], [17],
[18], the group key is generated/agreed up by uniform con-
tributions from all group members. These kind of schemes
assume equality and uniform work load among group mem-
bers. They are generally executed in multiple rounds and
require strict synchronization. The CGKA protocols are
primarily different variations of the n-party Diffie-Hellman
key agreement/exchange [14], [16], [19], [20], [17], [18]. The
main problem with using this key exchange mechanism is
that the group members need synchronization to iteratively
form parental keys from their two children’s keys. Once one
member is slow or one rekeying packet is delayed, the key
agreement process will be postponed or even misoperates.
Moreover, there are dependances among nodes’ keys (i.e.,
a blinded node key is dependent on the secret node key and
a parental key on its two child’s keys). This dependance
results in the breaking of all ancestral keys once one key is
compromised.

To overcome the above problems we propose a new class
of GKM protocols: called distributed group key distribu-
tion (DGKD). The DGKD protocol does not assume any
trusted and more powerful third party but allows the equal-
ity of capability, responsibility, and trustiness among all
group members. The protocol organizes the members in a
tree structure and performs any rekeying operation in just
two rounds, which do not need to be strictly synchronized.

c©2005 IEEE, $10.00 286

The new protocol also allows strong yet simple authentica-
tion. In addition, DGKD has the following advantages: (1)
one key (not two keys) per node; (2) independance of nodes’
keys; (3) robust against transmission delay, network failure
or compromise of node keys. All these properties make the
new protocol simple, robust, efficient and scalable.

The rest of the paper is organized as follows. Section
II briefly describes the related work in the area of SGC.
We propose the new protocol in Section III and the issues
of performance and security are discussed in Section IV.
Finally we conclude the paper in Section V.

II. Related work

Extensive research has been conducted on GKM and a
considerable number of protocols have been developed [21],
[22], [23], [24], [25], [26], [27], [28], [29], [14], [3], [30], [31],
[15], [10], [32], [33], [4], [5], [16], [34], [35], [36], [37], [38],
[12], [7], [39], [40], [41], [17], [18], [42], [43], [44], [9], [45],
each with different properties and performance.

SGC applications can typically be divided into broad-

cast/multicast communication, i.e., one sender and mul-
tiple receivers, or one-to-many communication and group

(or many-to-many) communication, i.e., every sender also
being a receiver. Some GKM schemes [21], [46], [15], [10],
[11], [13] are suitable for broadcast applications, some other
schemes [28], [14], [15], [16], [41], [17], [18] for many-to-
many applications, and there are also some schemes [3],
[12], [7], [9] suitable for both kinds of applications. Based
on how the group key is formed and distributed, the GKM
protocols are classified as CGKD, DGKM, and CGKA.
Based on the kind of cryptosystem used, the schemes for
SGC can be divided into public-key based schemes [46],
[11], [13] and secret-key based schemes. Based on the kind

of security, the SGC schemes may be classified as uncon-

ditionally secure or computationally secure [47], [43]. Fur-
thermore some schemes may resist against any number of
colluding adversaries, whereas others [22], [23], [24], [25],
[26], [27], [32], [43] only resist against the collusion of up
to certain number of adversaries. For a comprehensive sur-
vey of state-of-art techniques and challenging problems in
the area of SGC, readers are referred to the book “secure
group communications over data networks”, which is pub-
lished by Springer [48].

Among all the GKM protocols, the tree based GKM
scheme (with various variants) [1], [2], [3], [49], [19], [6],
[7], [41], [8], [9], [50], [51] is the most typical approach.
The scheme is simple, efficient, scalable, and easy to im-
plement. The scheme can be used for both one-to-many
multicast communication as well as many-to-many group
communication. Moreover the tree based GKM scheme has
versions of both CGKD and CGKA.

III. Distributed Group Key Distribution
(DGKD): a new class of GKM Protocols

A. Principle and assumption

There are some assumptions in existing schemes. In
CGKD/DGKM, a secure channel is assumed to exist be-
tween the GC/SC and each of the potential group mem-
bers/subgroup members. This secure channel is gener-
ally implemented by public key cryptosystems. In CGKA,
which is typically based Diffie-Hellman key exchange which
suffers from the Man-in-the-Middle attack, it is assumed
that each group member is equipped with some authenti-
cation capability which is also implemented by public key
cryptosystems. Similarly, DGKD assumes that every group
member has a publicly known (unforgeable) public key.

The new DGKD protocol adopts a tree structure and uti-
lizes three basic mechanisms to implement distributed key
generation and distribution: 1) the leaf key of a node is
the public key of the corresponding group member and all
the intermediate nodes’ keys are secret keys, 2) the spon-
sor of a joining or leaving member initiates the key gen-
eration and rekeying process and sends the new keys to
co-distributors (i.e., the first round), 3) the co-distributors
then help distribute the new keys to group members in a
distributed/parallel manner (i.e., the second round).

All group members have the same capability and are
equally trusted. Also, they have equal responsibility, i.e.
any group member could be a potential sponsor of other
members or a co-distributor (depending on the relative lo-
cations of the member and the joining/leaving members
in the tree). Thus there is no dependance on a single en-
tity and even if a sponsor node fails a new sponsor for the
joining/leaving member is chosen by other members. This
improves the robustness of the protocol.

B. Sponsor

A sponsor is a member and the sponsor of a subtree is
defined as the member hosted on the rightmost leaf in the
subtree (note: “rightmost” can be equally replaced with
“leftmost”). Every node has an associated sponsor field as
shown in Figure 1.

The sponsor field at a particular node is updated when
it is along the joining or leaving member’s path. We show
the joining algorithm for updating the sponsor field in Fig-
ures 2.

When a member joins, the sponsor field along the joining
members path is updated from bottom to the root. If the
new members id is greater than the sponsor id of the node
then update the sponsor id with the new member’s id. This
is continued until the root (See Figure 3).

When m7 joins, the sponsor field along its path is up-
dated. The sponsor id of the node k6−7 is lesser than the
id of m7, so it is updated to 111. Similarly the sponsor id’s
of nodes k4−7 and k0−7 are updated to 111. Whenever the

c©2005 IEEE, $10.00 287

m

k

mm
pk

k
Sid = 101Sid = 011Sid = 001

Sid = 111Sid = 011

Sid = 111

000 001 010 011 111110101100

m
pk

k

k k

kk

pkpk
m m m m

pk

Sid = 111

pk pk pk

41 70

0

0−3

6

(KEK)

2 5

2−3

(KEK)4−7

(TEK)0−7

6 7

(KEK)
6−7

54321

(KEK)

3

0−1 4−5(KEK)

(KEK)

Fig. 1. A tree showing sponsor for each node.

Every member
.iterate over all the nodes along the joining
members path from leaf to the root

.if the joining members id is greater than the
sponsor id for that node

.sponsor id = joining members id

.continue
. else

.break

Fig. 2. Sponsor update: Join.

sponsor id for a node is greater than the joining members
id then the check can be stopped.

When a member leaves, every member checks along the
path of the leaving member to update the sponsor field. If
a node has the leaving member as the sponsor then they
update the sponsor field with the sponsor id/member id of
the other child if exists. This continues upto the root (See
Figure 4).

When m7 leaves, the sponsor field along its path is up-
dated. Since the leaving member is the sponsor all along
its path, the sponsor field has to be updated by checking
for the new sponsor for all the nodes. m6 becomes the new
sponsor for node k6−7. For node k4−7 the member ids of
both its children are compared and the greater becomes
the new sponsor, in this case m6. This continues until the
root.

C. Co-distributors

When a sponsor changes the keys along the path, it needs
to distribute them. The sponsor has to distribute the keys
to all the members whose keys have been changed. But
it does not know the keys along the other paths to dis-
tribute the new keys. So, a co-distributor is required to dis-
tribute them. The co-distributor is the sponsor of a node
on another path whose key is not known to the original
sponsor. The sponsor encrypts the changed key with the
co-distributors public key and broadcasts this information.

m
pk

m
pk pk

New Sid = 111

New Sid = 111

 New Sid = 111

111

,

Sid = 110

Sid = 110
k

kk

m m

,

,

m

Sid = 110

pkpkpkpk

New Member

mm

k

m
pk

k

k

k

4 5

6−7
(KEK)

763

(TEK)

(KEK)

(KEK)

0−7

0 3 6 7

4−5

0−3

54

0

2

4−7

1

(KEK)2−3

21

(KEK)0−1

(KEK)

Fig. 3. Updating the sponsor field when a member joins.

m
pk

m
pk pk

New Sid = 110

New Sid = 110

 New Sid = 110

Sid = 111

Sid = 111

Sid = 111

,

k

kk

m m

,

pk
m

,

pkpkpk
mm

k

m

k

k

k

3 4 5

6−7
(KEK)

6

(KEK)

(TEK)

(KEK)

4−5

0−3

0−7

0 3 6 754

0

2

4−7

1

(KEK)2−3

21

(KEK)0−1

(KEK)

Fig. 4. Updating a sponsor field when a member leaves.

Thus, the co-distributor helps the sponsor in distributing
the changed common keys along the other paths.

D. Initial group key generation and distribution Protocol

Suppose n members m1,......,mn decide to form a group.
They build a virtual key tree and selects a sponsor to de-
cide an order in which they join the tree. Every member
updates the key tree by adding members in the key tree
based on that order and they update the sponsor field in
all the intermediate nodes. Then every member checks if it
is responsible for generating any keys along its path. If so,
it generates them and distributes the keys either directly
or with the help of co-distributors. When two sponsors are
responsible for generating the same key then the rightmost
among them generates it. As more members join the key
tree the sponsors and the height of the key tree increase.

As illustrated in Figure 5, m7, m5, m3 and m1 are re-
sponsible for generating the keys. m7 generates all the keys
(k6−7, k4−7 and k0−7) along its path to the root. Then it
encrypts as follows and broadcasts: {k6−7, k4−7, k0−7}pk6

,
and {k0−7, k4−7}pk5

. m5 will decrypt k0−7 and k4−7 and
encrypt it as {k0−7, k4−7}k4−5

where k4−5 is generated by
m5 and sent to m4. Similarly keys are generated by m3

in the left subtree along its path and the root key which
is generated by the rightmost sponsor m7 is sent to the
co-distributor of the left subtree m3 as follows. {k0−7}pk3

c©2005 IEEE, $10.00 288

m

Sponsor
Co−Distributor

Sponsor
Co−Distributor
Sponsor Sponsor

m
pk

k
Sid = 101Sid = 011Sid = 001

Sid = 111Sid = 011

Sid = 111

000 001 010 011 111110

k

k k

kkk

m m m m m

Sid = 111

pk pk

101

Co−Distributor

pk pk pk pk pk
m

100

1

0

2 653

(KEK)2−3

(KEK)4−7

(TEK)0−7

6 7

0−3

6−7

54

7

0−1

321

(KEK)4−5(KEK)

0

(KEK)

(KEK)

4

Fig. 5. Initial key generation Example

is broadcast and m3 will decrypt k0−7 and encrypts it as
{k0−7}k0−3

and broadcasts it. Thus every member has the
newly generated keys along its path. Only two rounds
are required for this protocol, one round for generating
keys and distributing along the path and another for co-
distributors to distribute them.

E. Join protocol

Step 1: New member broadcasts request for join
. mn+1 (PKn+1) ———> m1,..,mn

Step 2: Every member
. updates the key tree by adding a new member node
. Find sponsor for joining member:

. if sibling present, sponsor = sibling

. else sponsor = mn+1

. update the sponsor field along the path of the joining
member to the root if required

Step 3: If joining member’s sponsor is itself
. generates new secret keys along the joining members path
and distribute them to co-distributors and to other members
directly by encrypting with common key and broadcasting

Step 4: If co-distributor is itself
. encrypt the key sent by the joining members sponsor with
appropriate key and broadcast

Fig. 6. Join Protocol.

Suppose there are n members in the group m1,......,mn.
A new member mn+1 makes a join request by broadcasting
its public key PK. The rightmost member in the key tree
authenticates the new member, decides the insertion loca-
tion for the new member and broadcasts this information
to other members. Additionally the rightmost member also
sends the virtual key tree and list of public keys of other
members to the new member. All other members update
the key tree by adding a new member node in the specified
location. Then every member checks to see if it is the spon-
sor of the joining member. If the new member has a sibling
it becomes the sponsor and generates new keys along the
path. If there is no sibling then the joining member itself

becomes the sponsor and generates the new keys along its
path and distributes them. Members update the sponsor
field appropriately if required. Figure 6 describes the join
protocol and Figure 7 shows the protocol operation when
a new member joins.

m

Sponsor

Co−Distributor

Co−Distributor

New Member

m

Sid = 111

Sid = 011

,

,

,

Sid = 101

m
m

pkpkpkpkpkpkpkpk

k

k

k k

kkk

mm m m

2−3 (KEK)

(KEK)

3

1 2 3 6 7

4

0

0

4−70−3

0−7

6 7

(KEK)
6−7

5

(KEK)

5

21

(KEK)4−5(KEK)0−1

(TEK)

4

Fig. 7. A new member joins (becomes m5), m4 is sponsor and m3

and m7 are co-distributors.

When a new member joins, m7 determines the posi-
tion(i.e., m5) and places the member there. m7 broad-
casts the position of the new member to other members.
All members also determine that m4 is the sponsor of m5.
So m4 initiates the rekeying process as follows: 1) gener-
ates new keys k′

4−5, k′

4−7, and k′

0−7. 2) after determining
the co-distributors m3 and m7, encrypts as follows and
broadcasts: {k′

4−7, k
′

0−7}pk7
, and {k′

0−7}pk3
, 3). m3 will

decrypt k′

0−7 and encrypt it as {k′

0−7}k0−3
and m7 will de-

crypt k′

4−7 and k′

0−7 and encrypt them as {k′

4−7}k6−7
and

{k′

0−7}k4−7
, 4). m4 also encrypts and sends the keys to m5

as {k′

4−5, k
′

4−7, k
′

0−7}pk5
. As a result, all the members will

get the new keys.
When a new member joins, only the keys along its path

to the root have to be changed and distributed, which can
be achieved in two rounds with atmost log2n keys being
changed.

F. Leave protocol

Step 1: Every member
. updates the key tree by removing the leaving member node
. updates the sponsor field appropriately along the leaving
members path if required
. determines the sponsor for changing keys along the leaving
members path

Step 2: If sponsor of the leaving member is itself
. generates new secret keys along the path and distributes
them to co-distributors and directly to other members

Step 3: If co-distributor is itself
. broadcasts the key sent by the leaving members sponsor by
encrypting it with the appropriate key

Fig. 8. Leave Protocol.

c©2005 IEEE, $10.00 289

Assume that member ml leaves the group. Every mem-
ber updates the key tree by deleting node ml and updates
the sponsor field along the path if required. Then they
determine the sponsor who generates new keys along the
leaving members path and distributes them. If the leav-
ing member does not have a sibling then the first sponsor
along the leaving members path becomes responsible for
changing the keys along the leaving member’s path (See
Figure 8).

m

Sponsor

Co−Distributor

Co−Distributor

m

Sid = 111

Sid = 011

k
Sid = 100

,

,

,

pkpkpkpkpkpkpk

kk

k

k

k

k

m mm m m m

(KEK)

2−3 (KEK)

(TEK)

0−3

6

0−7

1 2 3 6 7

(KEK)

0

0 7

(KEK)
6−7

4321

(KEK)4−5(KEK)0−1

4−7

5

4

Fig. 9. A member m5 leaves.

As shown in Figure 9, when a member m5 leaves, all the
members will remove the node and determine that m4 is
the sponsor of m5. So m4 initiates the rekeying process as
follows: 1) generates new keys k′

4−5, k′

4−7, and k′

0−7. 2) af-
ter determining the co-distributors m3 and m7, encrypts as
follows and broadcasts: {k′

4−7, k
′

0−7}pk7
, and {k′

0−7}pk3
, 3).

m3 will decrypt k′

0−7 and encrypt it as {k′

0−7}k0−3
and m7

will decrypt k′

4−7 and k′

0−7 and encrypt them as {k′

4−7}k6−7

and {k′

0−7}k4−7
, 4). As a result, all the members will get

the new keys.

When a member leaves only the keys along its path to
the root have to be changed and distributed, which can
be achieved in two rounds with at most log2n keys being
changed.

G. Multiple join protocol

Suppose m new members join, they make a join request
by broadcasting their public keys. The rightmost member
in the key tree authenticates the new members, decides the
locations for all the new members such that minimal num-
ber of keys are changed and broadcasts this information
to other existing group members. The rightmost member
also sends the virtual key tree and existing members public
keys to the joining members. Every member upon receiv-
ing this message updates its key tree by adding m new
nodes in the determined positions. In order to perform
multiple joins in one aggregate operation, it is required to
find the common keys shared by the joining members in an
efficient way. To achieve that we use an already proposed
scheme, an efficient and scalable key tree based dynamic

Step 1: Every member
. updates key tree by adding new member nodes
. updates the sponsor field along all the paths of the
joining members
. computes the keys that need to be changed
. determines the sponsors who are responsible for changing
these keys

Step 2: If sponsor for one of the joining members is itself
. changes the secret keys along the joining members path
and distributes them to co-distributors and directly
to other members
. if same key has to be changed, check if right sponsor is itself
. if rightmost sponsor, change the key and distribute

Step 3: If co-distributor is itself
. broadcasts the key sent by the joining members sponsor by
encrypting it with the appropriate key

Fig. 10. Multiple Join Protocol.

conferencing scheme called KTDC in [52] which uses an ef-
ficient algorithm for computing the shared keys. There will
be multiple sponsors responsible for changing the necessary
keys. But here the shared keys which both sponsors have in
common and which need to be changed will be changed by
the rightmost sponsor among the sponsors (See Figure 10).

m

Sponsor

m

pk

m

,

m

Sponsor

Co−Distributor Co−Distributor

k

m

,

Sid = 001 Sid = 011

pk

k
Sid = 111

,

,

,

Sid = 101

pkpkpkpkpkpk

k k

kkk

mm m

(KEK)

0−3

5

2−3

2 3 6 7

0 2

(KEK)4−7

(TEK)0−7

6 7

(KEK)
6−7

3

(KEK)

4

4

4−5(KEK)0−1 (KEK)

51

10

Fig. 11. New members m0, m1, m4 and m5 join.

As shown in Figure 11, when new members join, m7 will
determine the available positions (i.e., m0, m1, m4, m5)
and place the members there. m7 broadcasts this infor-
mation to other group members. All members also know
that m5 is the sponsor of m4 and m1 is the sponsor of
m0. They also know that m3 and m7 are responsible for
sending the key tree structure and the public key list to
the joining members. m5 initiates the rekeying process as
follows: 1) generates new keys k′

4−5, k′

4−7, and k′

0−7. 2) af-
ter determining the co-distributors m3 and m7, encrypts as
follows and broadcasts: {k′

4−7, k
′

0−7}pk7
, and {k′

0−7}pk3
, 3).

m3 will decrypt k′

0−7 and encrypt it as {k′

0−7}k′

0−3
and m7

will decrypt k′

4−7 and k′

0−7 and encrypt them as {k′

4−7}k6−7

and {k′

0−7}k4−7
, 4). m5 also encrypts and sends the keys to

m4 as {k′

4−5, k
′

4−7, k
′

0−7}pk4
. Similarly m1 regenerates the

c©2005 IEEE, $10.00 290

keys along its path except for the root key which should be
changed by the rightmost sponsor m5. Both m1 and m5 do
these operations in parallel. As a result, all the members
whose keys have been changed will get the new keys.

Since all the operations are done in parallel, rekeying can
be achieved in two rounds by all the sponsors.

When a network event causes all the previously occurred
partitions to reconnect this is called a merge. Merge is
similar to multiple join and this can also be achieved in
two rounds which is better than that in TGDH.

H. Multiple leave protocol

Step 1: Every member
. updates the key tree by removing all leaving member nodes
. updates the sponsor field along all the leaving members
paths if required
. determines the sponsors responsible for changing the keys
along the paths

Step 2: If sponsor for one of the leaving member is itself
. generates new secret keys and distributes them to
co-distributors and other members directly
. if same key has to be changed, check if right sponsor is itself
. if rightmost sponsor, change the key and distribute

Step 3: If co-distributor is itself
. broadcasts the key sent by the leaving members sponsor by
encrypting it with the common key

Fig. 12. Multiple Leave Protocol.

When multiple members leave, every member updates its
key tree by deleting those member nodes and the sponsor
fields along all the paths. Then they determine the keys
that need to be changed and the sponsors responsible for
changing those keys. There will be multiple sponsors and
each sponsor regenerates the keys and distributes them.
If two sponsors are responsible for changing the same key
then the rightmost among the sponsors will change the key
(See Figure 12).

m m
Sponsor

,

m Sponsorm

,

Sid = 111

Sid = 111

k k

,

pkpkpkpk

k

mmm m

kkkk

0−7 (TEK)

4−7 (KEK)

2−3 (KEK)

6

(KEK)
0−3

4

6−70−1

2 3 6 7

32

(KEK)4−5(KEK)

7

51

(KEK)

0

Fig. 13. Members m0, m1, m4 and m5 leave

As shown in Figure 13, when several members m0, m1,
m4 and m5 leave, every member updates its key tree by

deleting those member nodes. Every member also deter-
mines that m3 and m7 are the sponsors. m7 initiates the
rekeying process as follows: 1) generates new keys k′

4−7,
and k′

0−7. 2) encrypts the new keys as follows and broad-
casts: {k′

4−7, k
′

0−7}k6−7
, and {k′

0−7}pk3
, 3) m3 will decrypt

k′

0−7 and encrypt it as {k′

0−7}k′

0−3
and broadcasts it. Simi-

larly m3 generates the keys k′

0−3 and encrypts it with k2−3

and broadcasts it. Both m3 and m7 do these operations
in parallel. As a result, all the members whose keys have
been changed will get the new keys.

In case of a network failure which causes disconnectivity,
the group gets split and this partition can be dealt with as
a multiple leave operation. Thus, even for network parti-
tion the protocol requires only two rounds for regenerating
and distributing the keys. This is a great improvement
compared to TGDH which requires several rounds.

I. Authentication in DGKD

Most CGKA protocols do not contain an authentica-
tion component. Furthermore, the authenticated CGKA
protocols [53], [54], [55], [56], [57] are non-scalable and/or
non-dynamic. In contrast, the new DGKD protocol is not
only scalable and dynamic but also able to provide easy
and strong authentication. Consider two scenarios: (1) the
sponsor m4 transmits a new key k′

0−7 to a co-distributor
m3. (2) m3 transmits the key k′

0−7 to members m0,m1,m2

who are in the responsibility scope of m3. In the first case,
m4 signs the key k′

0−7(using m4’s private key), encrypts
both k′

0−7 and the signed k′

0−7(using m3’s public key pk3),
and sends the result to m3. m3 after receiving the message,
decrypts k′

0−7 and then verifies m4’s signature. In the sec-
ond case, m3 signs k′

0−7(by its private key), encrypts both
k′

0−7 and the signed k′

0−7(using k0−3 which covers m0 to
m3). Then each of the members from m0 to m2 can verify
m3’s signature.

IV. Discussions

We discuss the performance and security of our protocol
in this section and analyze the communication and compu-
tation costs for join, leave, multiple join and multiple leave
operations. Tree based Group Diffie-Hellman (TGDH) [19],
[34] is one of the most typical CGKA protocols in terms
of efficiency and scalability, so we focus on the comparison
between DGKD and TGDH.

Key generation is independent, i.e., only the sponsor is
involved, thus there is no need for synchronization with
other members which is required in TGDH. In this sense,
DGKD is more resilient to network congestion, delay and
failure than TGDH. DGKD also has strong yet simple au-
thentication. It is also collusion free because the new keys
are independent of the old keys and no matter how many
members collude they cannot get the keys. Thus, it is
unconditionally secure. Both TGDH and DGKD require

c©2005 IEEE, $10.00 291

two rounds for single join and leave operations. As for
multiple join and leaving operations, DGKD requires two
rounds but TGDH requires log(p) rounds where p is the
number of members involved. DGKD uses public key en-
cryption for sending the keys to co-distributors and secret
key encryption for further distribution of keys (from the co-
distributors to the members). TGDH requires performing
modular exponentiations which is in the same complexity
as the public key encryption. In summary, DGKD is com-
parable and in some cases better than TGDH in terms of
communication and computation costs.

V. Conclusion

We proposed a new class of GKM protocols for SGC with
strong yet simple authentication capability. The proposed
protocol solves some serious problems in the existing pro-
tocols and is simple, robust, efficient, and scalable. The
future work is to implement and test the new protocol.

References

[1] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: a taxonomy and some efficient
constructions,” Proceedings of INFOCOM’99: Conference on
Computer Communications, vol. 2, pp. 708–716, Mar. 1999.

[2] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-
storage tradeoffs for multicast encryption,” Lecture Notes in
Computer Science (Advances in Cryptology-EUROCRYPT’99),
vol. 1592, pp. 459–470, 1999.

[3] G. Caronni, K. Waldvogel, D. Sun, and B. Plattner, “Efficient
security for large and dynamic multicast groups,” Proceedings of
the Seventh IEEE International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WET-
ICE ’98) (Cat. No.98TB100253), pp. 376–383, June 1998.

[4] H. Hamey and C. Muckenhim, “Group Key Management Proto-
col (GKMP) Architecture,” RCF 2094, July 1997.

[5] H. Hamey and C. Muckenhim, “Group Key Management Proto-
col (GKMP) Specification,” RCF 2093, July 1997.

[6] H. Harney and E. Harder, “Logical key hierarchy protocol,”
Internet Draft (work in progress), draft-harney-sparta-lkhp-sec-
00.txt, Internet Engineering Task Force, Mar. 1999.

[7] G. Noubir, “Multicast security,” European Space Agency,
Project: Performance Optimization of Internet Protocol Via
Satellite, Apr. 1998.

[8] D. Wallner, E. Harder, and R. Agee, “Key management for
multicast: Issues and architectures,” Internet Draft (work
in progress), draft-wallner-key-arch-01.txt, Internet Eng. Task
Force, Sept. 1998.

[9] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group commu-
nications using key graphs,” SIGCOMM ’98, Also University of
Texas at Austin, Computer Science Technical report TR 97-23,
pp. 68–79, Dec. 1998.

[10] L. R. Dondeti, S. Mukherjee, and A. Samal, “A dual encryp-
tion protocol for scalable secure multicasting,” In Fourth IEEE
Symposium on Computers and Communications, pp. 2–8, July
1999.

[11] F. Du, L. M. Ni, and A. H. Esfahanian, “Towards solving mul-
ticast key management problem,” ICCCN’99 Eighth Interna-
tional Conference on Computer Communications and Networks,
pp. 232–236, Oct. 1999.

[12] S. Mittra, “Iolus: A framework for scalable secure multicasting,”
Journal of Computer Communication Reviews, vol. 27, no. 4,
pp. 277–288, 1997.

[13] R. Molva and A. Pannetrat, “Scalable multicast security in dy-
namic groups,” 6th ACM Conference on Computer and Commu-
nications Security (ACM CCS 1999), Singapore, pp. 101–112,
Nov. 1999.

[14] M. Burmester and Y. Desmedt, “Efficient and secure conference-
key distribution,” Security Protocols Workshop, pp. 119–129,
1996.

[15] L. R. Dondeti, “Efficient private group communication over pub-
lic networks,” Phd. Dissertation, CSE UNL, 1999.

[16] I. Ingemarsson, D. Tang, and C. Wong, “A conference key dis-
tribution system,” IEEE Transactions on Information Theory,
vol. 28, pp. 714–720, Sept. 1982.

[17] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A se-
cure audio teleconference system,” Advances in Cryptology-
CRYPTO’88, LNCS, Springer-Verlag, vol. 403, pp. 520–528,
Aug. 1990.

[18] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key dis-
tribution extended to group communication,” ACM Conference
on Computer and Communications Security (ACM CCS 1996),
pp. 31–37, Mar. 1996.

[19] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” In Proceedings of
the 7th ACM Conference on Computer and Communications
Security (ACM CCS 2000), pp. 235–244, Nov. 2000.

[20] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient
group key agreement,” In Information System Security, Pro-
ceedings of the 17th International Information Security Confer-
ence IFIP SEC’01, pp. 229–244, June 2001.

[21] A. Bakkardie, “Scalable multicast key distribution,” RFC 1949,
1996.

[22] A. Beimel and B. Chor, “Interaction in key distribution
schemes,” Advances in Cryptology - CRYPTO’93, LNCS,
Springer, Berlin, vol. 773, pp. 444–457, 1994.

[23] A. Beimel and B. Chor, “Communications in key distribution
schemes,” IEEE Transactions on Information Theory, vol. 42,
pp. 19–28, 1996.

[24] R. Blom, “An optimal class of symmetric key generation sys-
tems,” Advances in Cryptology - EUROCRYPT’84, LNCS,
Springer, Berlin, vol. 209, pp. 335–338, 1985.

[25] C. Blundo and A. Cresti, “Space requirements for broadcast en-
cryption,” Advances in Cryptology - EUROCRYPT’94, LNCS,
Springer, Berlin, vol. 950, pp. 287–298, 1995.

[26] C. Blundo, L. A. F. Mattos, and D. R. Stinson, “General-
ized Beimel-Chor scheme for broadcast encryption and interac-
tive key distribution,” Theoretical Computer Science, vol. 200,
pp. 313–334, June 1998.

[27] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vac-
caro, and M. Yung, “Perfect secure key distribution for dynamic
conferences,” Advances in Cryptology - CRYPTO’92, LNCS,
Springer, Berlin, vol. 740, pp. 471–486, Aug. 1993.

[28] M. Burmester and Y. Desmedt, “A secure and efficient confer-
ence key distribution system,” Advances in Cryptology - EU-
ROCRYPT’94, LNCS, Springer, Berlin, vol. 950, pp. 275–286,
May 1995.

[29] I. F. Bob Briscoe, “Nark: receiver-based multicast non-
repudiation and key management,” Proceedings of the 1st ACM
conference on Electronic commerce, pp. 22–30, Nov. 1999.

[30] Y. Challal, H. Bettahar, and A. Bouabdallah, “Sakm: a scalable
and adaptive key management approach for multicast communi-
cations,” ACM SIGCOMM Computer Communication Review,
vol. 34, pp. 55–70, Apr. 2004.

[31] W. Chen and L. R. Dondeti, “Recommendations in using group
key management algorithms,” DARPA Information Survivabil-
ity Conference and Exposition, vol. 2, pp. 222–227, Apr. 2003.

[32] A. Fiat and M. Naor, “Broadcast encryption,” Advances in
Cryptology - CRYPTO’93, LNCS, Springer, Berlin, vol. 773,
pp. 480–491, 1994.

[33] S. M. Ghanem and H. Abdel-Wahab, “A secure group key man-
agement framework: Design and rekey issues,” Eighth IEEE
International Symposium on Computers and Communications,
pp. 797–802, June 2003.

[34] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agree-
ment,” ACM Transactions on Information Systems Security,
vol. 7, pp. 60–96, Feb. 2004.

[35] F.-Y. Lee and S. Shieh, “Scalable and lightweight key distribu-
tion for secure group communications,” International Journal of
Network Management, vol. 14, pp. 167–176, May 2004.

c©2005 IEEE, $10.00 292

[36] J.-C. Lin, C.-Y. Chou, F. Lai, and K.-P. Wu, “A distributed key
management protocol for dynamic groups,” 27th Annual IEEE
Conference on Local Computer Networks (LCN’02), pp. 0113–
0122, Nov. 2002.

[37] D. Liu, P. Ning, and K. Sun, “Cryptographic protocols/ network
security: Efficient self-healing group key distribution with revo-
cation capability,” Proceedings of the 10th ACM conference on
Computer and communication security, pp. 231–240, Oct. 2003.

[38] C. Meadows and P. Syverson, “Group key management and sig-
natures: Formalizing gdoi group key management requirements
in npatrl,” Proceedings of the 8th ACM conference on Computer
and Communications Security, pp. 235–244, Nov. 2001.

[39] C.-S. Park and D.-H. Lee, “Secure and efficient key manage-
ment for dynamic multicast groups,” ACM SIGOPS Operating
Systems Review, vol. 35, pp. 32–38, Oct. 2001.

[40] S. Rafaeli and D. Hutchison, “Hydra: A decentralised group
key management,” Eleventh IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE’02), pp. 62–67, June 2002.

[41] A. T. Sherman and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE transac-
tions on Software Engineering, vol. 29, pp. 444–458, May 2003.

[42] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in
dynamic peer groups,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 11, pp. 769–780, Aug. 2000.

[43] D. R. Stinson, “On some methods for unconditionally secure
key distribution and broadcast encryption,” Design, Codes and
Cryptography, vol. 12, pp. 215–243, June 1997.

[44] Y.-M. Tseng, “A scalable key-management scheme with mini-
mizing key storage for secure group communications,” Interna-
tional Journal of Network Management, vol. 13, pp. 419–425,
Nov. 2003.

[45] S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for
group key management schemes,” 23rd International Conference
on Distributed Computing Systems, pp. 163–171, May 2003.

[46] G. H. Chiou and W.T.Chen, “Secure broadcasting using the
Secure Lock,” IEEE Transactions on Software Engineering,
vol. 15, pp. 929–934, Aug. 1989.

[47] D. R. Stinson, ed., Cryptography: Theory and Practice. Boca
Raton, Florida, USA: CRC Press, Inc., 1995.

[48] X. Zou, B. Ramamurthy, and S. S. Magliveras, eds., Secure
Group Communications over Data Networks. New York, NY,
USA, ISBN: 0-387-22970-1 (The ebook ISBN: 0-387-22971-X):
Springer, Oct. 2004.

[49] L. R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: a dis-
tributed framework for scalable secure many-to-many communi-
cation,” In Proceedings of Fifth IEEE Symposium on Computers
and Communications (ISCC 2000), pp. 693–698, July 2000.

[50] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang, “Proto-
col design for scalable and reliable group rekeying,” Proceedings
SPIE Conference on Scalability and Traffic Control in IP Net-
works, pp. 87–108, Aug. 2001.

[51] X. Zou and B. Ramamurthy, “A block-free tree-based group
Diffie-Hellman key agreement for secure group communications,”
Proceedings of International Conference on Parallel and Dis-
tributed Computing and Networks, Innsbruck, Austria, pp. 288–
293, Feb. 2004.

[52] X. Zou, S. Magliveras, and B. Ramamurthy, “Key tree based
scalable secure dynamic conferencing schemes,” Proceedings of
International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS 2004), MIT Cambridge, MA, USA,
November 9-11, pp. 61–66, Nov. 2004.

[53] G. Ateniese, M. Steiner, and G. Tsudik, “Authenticated group
key agreement and friends,” Proceedings of the 5th ACM con-
ference on Computer and communications security, CA, USA,
pp. 17–26, 2008.

[54] E. Bresson, O. Chevassut, and D. Pointcheval, “Dynamic group
Diffie-Hellman key exchange under standard assumptions,” Ad-
vances in Cryptology - EUROCRYPT’2002, LNCS, Springer,
Berlin, vol. 2332, pp. 321–336, 2002.

[55] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater,
“Provably authenticated group Diffie-Hellman key exchange,”

Proc. 8th Annual ACM Conference on Computer and Commu-
nications Security (CCS’01), pp. 255–264, 2001.

[56] J. Katz and M. Yung, “Scalable protocols for authenticated
group key exchange,” The 23rd Annual International Cryptology
Conference, CRYPTO 2003, CA, USA, Aug. 2003.

[57] H.-J. Kim, S.-M. Lee, and D. H. Lee, “Constant-round authenti-
cated group key exchange for dynamic groups,” Asiacrypto’04,
http://www.iris.re.kr/ac04/data/Asiacrypt2004
/06%20Key%20Management/02 Hyun-Jeong%20Kim.pdf,
2004.

c©2005 IEEE, $10.00 293

