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Abstract—Grid computing is a recently developed technology. Although the developmental tools and techniques for the grid have

been extensively studied, grid reliability analysis is not easy because of its complexity. This paper is the first one that presents a

hierarchical model for the grid service reliability analysis and evaluation. The hierarchical modeling is mapped to the physical and

logical architecture of the grid service system and makes the evaluation and calculation tractable by identifying the independence

among layers. Various types of failures are interleaved in the grid computing environment, such as blocking failures, time-out failures,

matchmaking failures, network failures, program failures, and resource failures. This paper investigates all of them to achieve a

complete picture about grid service reliability. Markov models, Queuing theory, and Graph theory are mainly used here to model,

evaluate, and analyze the grid service reliability. Numerical examples are illustrated.

Index Terms—Grid reliability, resource management system, Markov model, queuing theory, graph theory.
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1 INTRODUCTION

GRID computing [1] is a newly developed technology for
complex systems with large-scale resource sharing,

wide-area communication, multi-institutional collaboration,
etc. [2], [3] [4], [5], [6].

The real and specific problem that underlies the Grid
concept is coordinated resource sharing and problem
solving in dynamic multi-institutional virtual organizations
[4]. This is required by a range of collaborative problem-
solving and resource-brokering strategies. This sharing is
highly controlled by resource management system (RMS)
[7], with resource providers and consumers defining what
is shared, who is allowed to share, and the conditions under
which the sharing occurs.

Recently, Open Grid Services Architecture [5] has
enabled the integration of services and resources across
distributed heterogeneous dynamic virtual organizations. A
grid service is designed to complete a set of programs under
the grid circumstances. The programs may need distributed
remote resources. However, they initially do not know the
site information of those remote resources in such a large-
scale environment, so RMS plays an important role in
managing the pool of shared resources, in matchmaking the
programs to their requested resources, and in controlling
them to access the resources through a wide-area network.

The structure and functions of the RMS in the grid have
been introduced in detail in [7], [8], [9], [10]. Briefly stated, the
programs in a grid service send their requests for resources to
the RMS. The RMS adds these requests into the request queue

[7]. Then, the requests wait in the queue for the matchmaking
service of the RMS for a period of time (called waiting time)
[11]. In the matchmaking service, the RMS matches the
requests to the shared resources in the grid [12] and then
connects the programs and their required resources. There-
after, the programs can reach the remote resources and
exchange information with them through the connections.
The grid security mechanism then operates to control the
resource access through Certification, Authorization, and
Authentication, which constitute various logical connections
to cause dynamicity in the network topology.

The above process can contain different types of failures
that make a grid service unreliable. They are mainly blocking
failures, time-out failures, matchmaking failures, network
failures, program failures, and resource failures. When the
new requests of the grid service arrive at the RMS, they cannot
enter the request queue if it is full, so the blocking failure
occurs [13]. Usually, the grid service may set a due time for the
matchmaking service of the RMS [11], so the time-out failure
occurs if the waiting time in the queue is longer than the due
time of the program. If the RMS matches requests to the
wrong resources, the matchmaking failure occurs [14].
Network failure may emerge when the programs are
transmitting data through the network with remote resources
[15]. The programs themselves are software that may contain
software faults causing program failures [16]. The resources
are usually heterogeneous [17], for example, they can be
hardware, software, or firmware (such as database, protocol,
processor, digital product, etc.) and, therefore, they may
include either software or hardware faults that can induce the
resource failures.

Although the developmental tools and techniques for the
grid have been widely studied [1], grid reliability analysis
and evaluation are not easy because of their complexity of
combining various failures interacting with one another. As
one of the important measures, the grid service reliability
needs to be quantified, assessed, and predicted using new
models and tools.

Some initial studies have been done in analyzing the grid
computing reliability. Dai et al. [18] studied the service
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reliability for a wide-area distributed system that is one of
the ancestors of the grid system. The function of the control
center in that model is similar to that of RMS for the grid
computing. However, the reliability analysis of the control
center is not exactly suitable for the RMS. Moreover, the
reliability model of the subdistributed systems inherits the
traditional models’ characters [19], [20], [21], [22] and has
certain limitations. Those traditional models have a com-
mon assumption that the operational probabilities of the
nodes and links are constant. However, this assumption is
unrealistic for the grid, so this assumption was relaxed in
[15] by assuming that the failures of nodes and links
followed their respective Poisson processes so that their
operational probabilities decrease with their working time
instead of the constant values. This new model is more
reasonable and practical for the grid, but it only studied the
network hardware failures for the grid reliability without
considering other failures such as blocking failures, time-
out failures, matchmaking failures, program failures, and
resource failures. There are also many other reliability
models for software, hardware, or small-scale distributed
systems, see, e.g., [14], [23], [24], [25], [26], which cannot be
directly implemented for studying grid service reliability.

The services in existing grid systems are often organized in
a hierarchical fashion: They contain different program/
resource/request/network/management layers that are
interconnected through a set of interfaces. The reliability
characteristics of some lower layers are largely independent
of the layers above. From the system’s perspective, the whole
grid is also built from smaller, more manageable subsystems
(such as the component-based approach). This characteristic
of large scale systems fits naturally in the hierarchical
modeling approach that is adopted by this paper.

This paper presents a new hierarchical model for the grid
service reliability analysis. It also derives formulas and
algorithms to effectively evaluate the grid service reliability.
Section 2 describes the architecture of the grid computing
with different layers and then analyzes different types of
failures that may take place in grid services. Section 3
presents the hierarchical model for the grid service
reliability and develops formulas and algorithms for

evaluation. Numerical examples are illustrated in Section 3.
Section 4 concludes this paper.

2 GRID COMPUTING SYSTEM AND FAILURE

ANALYSIS

The grid computing system has emerged as an important
new field, distinguished from conventional distributed
computing systems by its focus on large-scale resource
sharing, innovative applications, and, in some cases, high-
performance orientation.

2.1 Description of Grid Computing

The global grid system is generally depicted by Fig. 1.
Various organizations [4] integrate or share their resources
on the global grid. Any program running on the grid can
use those resources if it can be successfully connected to
them and is authorized to access them. The sites that
contain the resources or run the programs are linked by the
global network, as shown in the left part of Fig. 1.

The procedures for a program to use the remote
resources are controlled by the RMS, which is the “brain”
of the grid computing; see, for example, [7]. The RMS has
five layers in general, as shown in the right-hand side of the
Fig. 1. They are program layer, request layer, management
layer, network layer, and resource layer, respectively.

1. Program layer. The program layer represents the
programs of the customer’s applications. The pro-
grams describe their required resources and con-
straint requirements. These resource descriptions are
translated to the requests and sent to the next
request layer.

2. Request layer. The request layer provides the abstrac-
tion of “program requirements” as a queue of resource
requests. The primary goals of this layer are to
maintain this queue in a persistent and fault-tolerant
manner and to interact with the next management
layer by injecting resource requests for matchmaking,
claiming matched resources of the requests.

3. Management layer. The management layer may be
thought of as the global resource allocation layer. It
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has the function of automatically detecting new
resources, monitoring the resource pool, removing
failed/departure resources, and, most importantly,
matching the resource requests of a service to the
registered/detected resources. If resource requests
are matched to available resources, the matched tags
are sent to the next network layer.

4. Network layer. The network layer dynamically builds
connections between the programs and resources
when receiving the matched tags and controls them
to exchange information through communication
channels in a secure manner.

5. Resource layer. The resource layer represents the
shared resources from different resource providers
with the usage policies (such as service charge,
reliability, serving time, and so forth).

Due to the hierarchical nature of the grid architecture, we
find that hierarchical reliability modeling should be a good
approach to handle the large-scale grid system. It will make
the modeling and evaluation clear and tractable. Some
layers are largely independent of one another, whereas
some others closely interact. Therefore, failure analysis for
this hierarchical modeling is necessary to identify these
dependent and independent layers.

2.2 Failure Analysis and Grid Service Reliability

A grid service [5] is required to complete some specific
programs in order to provide certain service to the users. At
the “Program layer,” the programs of a grid service/job
initially send their requests for remote resources to the
RMS. The “Request layer” will add these requests in the
request queue. Please note that, in the request queue, the
requests from other grid services may have also waited
there, so the new requests should wait for service until the
prior requests are finished. Then, the “Management layer”
will try to locate the sites of the resources that match the
requests. After all of the requests of those programs in the
grid service are matched, the “Network layer” will build the
connections among those programs and the matched
resources and then control them to communicate.

It is possible to cause various types of failures on the
respective layers as follows:

. Program layer. The programs are actually software
applications that may cause software failures when
running; see, e.g., [16] and [27].

. Request layer. When the programs’ requests reach the
request layer, two types of failures may occur. They
are “blocking failure” and “time-out failure.” Usual-
ly, the request queue [7] may have a limitation of the
maximal number of requests waiting in the queue.
When a new request arrives, if the queue is full, it is
blocked so as to cause the blocking failure. The grid
service usually has its due time set by the service
monitor. If the waiting time for the requests in the
queue is over the due time, the time-out failure
occurs [11].

. Management layer. Here, “matchmaking failure” may
occur, which means that the requests fail to match
with the correct resources [14]. Errors like incorrectly
translating the requests, registering a wrong re-
source, ignoring resource disconnection, and mis-
understanding the users’ requirements can cause
such matchmaking failures.

. Network layer. When the programs are using the
remote resources, the communication channels may
be disconnected either physically or logically, which
causes “network failure,” especially for those trans-
missions of large files which require a long time [15].

. Resource layer. The resource shared on the grid may
be software, hardware, or firmware. Hence, when
using the resource, resource failures can be caused
by software faults, hardware faults, or a combination
of both.

By considering all the failures mentioned above, the grid
service reliability can be defined by:

Grid Service Reliability. The probability that a set of
programs contained by a grid service can be successfully
completed: In particular, the requested resources by the
programs are matched correctly and in time, the programs
succeed in connecting and communicating to those re-
sources, and both programs and resources are reliable when
working.

3 HIERARCHICAL MODELING AND EVALUATION FOR

GRID SERVICE RELIABILITY

From the above failure analysis, we can find that the
program layer, resource layer, and network layer interact
heavily with one another because the programs need to
access resources through the network. Therefore, the three
layers cannot be viewed as independent or separated
during modeling and analysis. The remaining two layers,
the request layer and management layer, are relatively
independent of the above three layers. By using some tricks
in the modeling, the correlation can be negligible. Thus,
there are three layers in this hierarchical model: 1) the
Request Layer, 2) the Management Layer, and 3) the
Network, Program, and Resource Layers, which will be
analyzed, respectively. A numerical example will be
interleaved with the analytical model for illustration.

3.1 Request Layer

This layer contains two types of failures: blocking failure
and time-out failure, caused by the overflow and waiting
time in the request queue. To prevent correlation from other
layers, here the due time, Td does not count all the time of
the other layers but just the deadline for the waiting time of
the submitted job in the request queue. It can be set by
service monitors.

Suppose that the capacity of the request queue is N (the
maximum number of requests). The arrival of submittals of
various grid services/jobs to the RMS follows a Poisson
process with the arrival rate �a. Different grid services/jobs
may contain a batch of requests for using different
resources, so the number of requests of an unknown service
is a discrete random variable denoted by X. Denote the pmf
for X to take the value x by

pðxÞ ¼ PrðX ¼ xÞ ðx ¼ 1; 2; 3; . . .Þ: ð1Þ

Please note here that the submittals for services/jobs and
the requests for different resources are two different
concepts: The submittals come directly from the clients or
users in accordance with the Poisson process and each
submittal may ask for multiple resources, which generates a
batch of resource requests in the request queue for the
matchmaking service.
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Usually, there are multiple RM servers to serve the

requests, as shown by Krauter et al. [9, Fig. 2]. These RM

servers are usually homogeneous, with similar structures,

schemes, and equipment. Here, we assume S homogenous

RM servers are simultaneously running to serve the

requests. The service time to complete one request by each

RM server is assumed governed by an exponential dis-

tribution with the parameter �r. Thus, such a process can be

modeled by a Markov process as depicted in Fig. 2, in

which state n ðn ¼ 0; 1; . . . ; NÞ represents the number of

requests in the queue. Here, the queue length n contains

those requests that are being served by the S RM servers.
In Fig. 2, the transition rate from state n to state nþ x is

pðxÞ�a ðx ¼ 1; 2; . . . ; N � nÞ. If, at state n, the new service’s

requests x > N � n, adding all of the new service’s requests

will make the request queue overflow, so such new services

are blocked and the RMS remains at state n with the rate

ð1�
PN�n

x¼1 pðxÞÞ�a, which is not marked in Fig. 2. The

service rate of a request by an RM server is �r. If n � S, the

n requests can be immediately served by the S RM servers,

so the departure rate of any one request is equal to n � �r. If

n > S, only S requests are being simultaneously served by

the S RM servers, so the departure rate is S � �r.
Denote qn as the steady probability for the system to stay

at state n ðn ¼ 0; 1; . . . ; NÞ. It is easy to derive the qn by

solving the following Chapman-Kolmogorov equations:

XN
x¼1

pðxÞ�a

 !
q0 ¼ �rq1; ð2Þ

n � �r þ
XN�n
x¼1

pðxÞ�a

 !
qn ¼

ðnþ 1Þ � �rqnþ1 þ
Xn�1

y¼0

pðn� yÞ�aqy ðn ¼ 1; . . . ; S � 1Þ;
ð3Þ

S � �r þ
XN�n
x¼1

pðxÞ�a

 !
qn ¼ S � �rqnþ1 þ

Xn�1

y¼0

pðn� yÞ�aqy

ðn ¼ S; . . . ; N � 1Þ;
ð4Þ

S � �r � qN ¼
XN�1

y¼0

pðN � yÞ�a � qy; ð5Þ

XN
n¼0

qn ¼ 1: ð6Þ

Illustrative Example. Suppose that the maximum num-
ber of requests waiting in the request queue allowed is 10,
that is, N ¼ 10, and there are three homogeneous RM
servers serving in parallel, that is, S ¼ 3. The arrival rate of
various unknown grid jobs/services to the RMS is
�a ¼ 1ðsec�1Þ. As in (1), we suppose that the number of
requests in unknown grid services is governed by a uniform
distribution, that is,

pðxÞ ¼ PrðX ¼ xÞ ¼ 1

b
; x 2 f1; 2; 3; . . . ; bg; ð7Þ

where we numerically set b ¼ 10 here. Please note that the
uniform distribution used here is only for illustration and
other distributions can also be implemented in a similar
way based on real conditions. The departure rate to
complete each request by a server is �r ¼ 0:5ðsec�1Þ. To
solve linear equations (2)-(6), we can obtain the qn
ðn ¼ 0; 1; 2 . . . ; 10Þ, as depicted in Fig. 3.

Suppose that the grid service under consideration needs
to use a batch of H different resources in total, so H requests
will be added into the request queue for the matchmaking.
Note that the service under consideration is a known grid
service that is different from the above unknown services/
jobs. If a service is known, the number of requests in the
service H is also determined (not a random variable). If the
request queue is longer than N �H, not all of the H new
requests can be added into the request queue, which causes
the blocking failure. Hence, the probability for the blocking
failure NOT to occur can be derived by

Rblock ¼
XN�H
n¼0

qn; ð8Þ

where qn ðn ¼ 0; 1; . . . ; NÞ is obtained by solving (2)-(6).
The H requests are supposed to be continuously added

into the request queue because they are simultaneously
requested by one grid service. After the H requests are
added into the request queue, there is waiting time for all of
them to be matched by the RM servers. Here, we adopt the
rule of “first come first serve” (FCFS) for the request queue.
If the waiting time is longer than a due time Td that is preset
for the matchmaking service, the time-out failure occurs. To
study the time-out failure, the waiting process should be
divided into three stages.

During the first stage, n requests are queuing in front of
the considered H requests. If n > S and H � N � n, the
later H requests will be waiting for service (that is, not
being served). Since the time to complete each request by an
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RM server follows exponential distribution with the
parameter �r, the time to complete any one request of the
S RM servers follows exponential distribution with the
parameter S � �r. Then, the time for n� S requests to be
completed is a random variable, denoted by Tn�S , in
accordance with the Erlang distribution, with the prob-
ability density function defined as

fn�SðtÞ ¼ S � �re�S��rt
ðS � �rtÞn�S�1

ðn� S � 1Þ! ; t � 0 and n > S: ð9Þ

After the n� S requests are completed, the H requests of
concern start entering the S RM servers one by one, which is
viewed as the second stage. In this stage, a discrete time
Markov chain (DTMC) is constructed, as shown in Fig. 4.

As Fig. 4 shows, the state number represents the number
of considered requests that are being served in the S RM
servers. The process starts from state 0 when the
H considered requests immediately follow the S served
requests. Then, if any request is completed, one of the
H requests begins to be served, represented by state 1. The
process continues till the last request of the H considered
requests begins to be served, denoted as the final state k.
When all of the H considered requests begin to be served, a
total of nþH � S requests have been completed by the
parallel S RM servers. Thus, similarly to (9), the probability
density function of the random variable TnþH�S is

fnþH�SðtÞ ¼ S � �re�S��rt
ðS � �rtÞnþH�S�1

ðnþH � S � 1Þ! ;

t � 0 and ðnþHÞ > S:

ð10Þ

Illustrative Example. Suppose that the number of
requests in the job is three, that is, H ¼ 3, and the due time
for the three requests being matched is Td ¼ 10 seconds.
Continuing the above numerical example as in Fig. 3, the
probability without blocking failures can be obtained as
Rblock ¼ 0:6893 by (8). Substituting parameters in (10), the
probability density functions of different n are depicted in
Fig. 5.

Nevertheless, the values of k (the final state) can be from
1 to minðH;SÞ. The value of k will determine the later stage
for the time-out failure analysis, so the probability for the
process ending at state k, denoted by PrðkÞ, is required to be
computed first.

From the DTMC of Fig. 4, it is easy to compute the PrðkÞ.
Suppose that the number of transitions from state i to state i

ði ¼ 1; 2; . . . ; kÞ is ni ðni � 0Þ and then the probability for

such a condition is obtained by the following function:

pðn1; n2; . . . ; nkÞ ¼
Yk
i¼1

i

S

� �ni
�
Yk�1

i¼1

1� i

S

� �
: ð11Þ

The DTMC must end at state k, ½1;minðH;SÞ�, if the

following condition is satisfied:

n1 þ n2 þ . . .þ nk ¼ H � k: ð12Þ

Thus, the probability for the process ending at state k can be

computed by the summation of all the probabilities that

satisfy the condition (12) as

PrðkÞ ¼
X

n1þ...þnk¼H�k
pðn1; n2; . . . ; nkÞ: ð13Þ

Then, the process enters the third stage, during which the

remaining k requests are being served in parallel. Hence,

the process is modeled by the Markov process of Fig. 6,

starting from state k.
Thus, the time for the process to reach the final state 0 is

a hypoexponential random variable whose probability

density function can be obtained by

gkðtÞ ¼
Xk
i¼1

ð�1Þi�1 k!

i! � ðk� iÞ! � i � �r � e
�i��r�t: ð14Þ

Then, the waiting time for all the H considered requests,

before which there have been n requests, to be completed is

a random variable denoted by TH;n whose density function

can be obtained by substituting (10), (13), and (14) into

fH;nðtÞ ¼
XminðH;SÞ

k¼1

PrðkÞ � fnþH�SðtÞ � gkðtÞ; ð15Þ

where “�” represents the convolution operator of two

functions.

DAI ET AL.: A HIERARCHICAL MODELING AND ANALYSIS FOR GRID SERVICE RELIABILITY 5

Fig. 3. Expected probability for the queue length to be n.

Fig. 4. DTMC for the second stage.

Fig. 5. The probability density functions fnþH�SðtÞ.



Therefore, the probability for the waiting time in
completing the H requests to be less than the due time,
Td, can be computed by the following formula:

PrðTH;n < TdÞ ¼
Z Td

0

fH;nðtÞdt: ð16Þ

Then, the expected probability for the time-out failure and
blocking failure NOT to occur can be derived from

Ptime�block ¼
XN�H
n¼0

qn

Z Td

0

fH;nðtÞdt; ð17Þ

where qn is obtained by solving (2)-(6) and fH;nðtÞ by (15).
The summation in (17) between ½0; N �H� contains a
condition that the blocking failure not to occur as analyzed
by (8). Thus, in (17), Rtime�block represents the probability
without time-out failures or blocking failures.

Illustrative Example. Continue the above example. From
(11)-(13), we can obtain

Prð1Þ ¼
X
n1¼2

pðn1Þ ¼ pð2Þ ¼
1

9
; ð18Þ

Prð2Þ ¼
X

n1þn2¼1

pðn1; n2Þ ¼ pð0; 1Þ þ pð1; 0Þ ¼
4

9
þ 2

9
¼ 2

3
;

ð19Þ

Prð3Þ ¼
X

n1þn2þn3¼0

pðn1; n2; n3Þ ¼ pð0; 0; 0Þ ¼
2

9
: ð20Þ

From (14), the PDF of hypoexponential functions gkðtÞ ðk ¼
1; 2; 3Þ is depicted in Fig. 7.

Then, substitute the values and functions of Figs. 5 and 7
and (18)-(20) into (12)-(16) to obtain the probability for the
waiting time in completing the three requests before
10 seconds, that is, PrðT3;n < 10Þ, ðn ¼ 1; 2; . . . ; 7Þ as
depicted in Fig. 8.

Then, through (17), we get the reliability without time-
out failures or blocking failures:

Rtime�block ¼ 0:19414: ð21Þ

However, this reliability is too low, mainly due to the short
queue capacity, N ¼ 10, which is not realistic. Note that the
abovementioned example with the short queue was just
used for the purpose of illustration to make the analytical
models more easily and more clearly understood.

Another more realistic example is given here with the
following parameters: Queue Capacity: N ¼ 100, Server
Number: S ¼ 10, Arrival rate: �a ¼ 1:4ðsec�1Þ, Departure
rate �r ¼ 0:8ðsec�1Þ, Due time: Td ¼ 20 seconds, and Uni-
form distribution: b ¼ 10.

Suppose a grid service under consideration needs to
complete three programs, say P1, P2, and P3. The three
programs request different resources in the grid, as given

by Table 1, as well as the amount of transmitted data
between the programs and the resources. Thus, there are a
total six resources (R1, R2,. . . R6) that will be used by the
grid service under consideration.

Then, the grid service will send six requests to the RMS
in order to identify and locate those resources on the grid,
H ¼ 6. Substituting those parameters into the formulas ((2)-
(17)), they can be numerically solved by Maple to get the
reliability without time-out or blocking failures:

Rtime�block ¼ 0:9809: ð22Þ

3.2 Management Layer

During the matchmaking process of an RM server, various
protocols are implemented to translate and match the
requests to their represented resources, such as dissemi-
nated and discovery protocols [9], resource trading proto-
cols [11], etc. No matter what protocols the RM server uses,
it is possible that certain requests are mismatched to the
wrong resources, which causes matchmaking failure. For
instance, a program is intended to use resource R1 but, due
to certain ambiguous descriptions, the RM server translates
the resource description into resource R2, which results in a
matchmaking failure. There is another special type of
mismatching failure, that is, No Match, which means the
RMS cannot find any resource to match the requests. Such a
case of no match can be viewed as that the requested
resource is mismatched to a Null resource, which will make
the service unable to continue (that is, failure) due to the
resource which is lacking.

The assumptions for matchmaking failures are listed
below:
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1. The occurrence of matchmaking failures has failure
rate �ðkÞ, which is a function to k (the number of
faults in the grid).

2. If any matchmaking failure occurs, the program will
send a feedback to RM servers and then the grid will
automatically try to remove the fault that causes this
failure where p ð0 < p � 1Þ is the probablity of
successfully removing the fault and q ¼ 1� p is the
probability of failing to remove the fault.

3. New faults may be generated during the process and
the occurrence of generating a new fault follows a
Poisson distribution with a constant rate v.

According to these assumptions, we build a continuous

time Markov chain (CTMC) to model this process. This

Markov model, depicted in Fig. 9, is a birth-death Markov

process with an infinite number of states, where state k

represents k faults contained in the system.
Usually, �ðkÞ is an increasing function to the number of

faults k. It is designed for an RMS to be in service for a long

time, especially for the Open Grid Service Architecture [5],

so the above birth-death process of failures can be viewed

as a long-run Markov process [26]. After running for a long

time, the expected death rate, p � �ðkÞ, will approach v given

p 6¼ 0. The �ðkÞ can be approximately viewed as a constant

during a small enough time:

�ðkÞ � v=p:

Usually, the time for matchmaking some requests in a

service can be viewed as small enough compared to the

whole life of an open grid system. Thus, the occurrence of

the matchmaking failures can be approximately modeled

with a constant failure rate. Note that the failure rate can be

easily estimated and dynamically adjusted if some data are

recorded by the RMS, such as the number of mismatched

requests, ðnfÞ, the total number of requests, ðntÞ, and the

expected time for completing each request, �� (this one is not

important). Then, the new value of the failure rate can be

automatically updated by

� ¼ nf
nt��

and, thus, the probability that all the given H requests are

correctly matched to their required resources can be easily

obtained by

Rmatch ¼ expð�� �H � ��Þ ¼ exp �nf
nt
H

� �
¼ expð��mHÞ;

ð23Þ

where �m ¼ nf
nt

. Equation (23) is not related to the parameter
�� , which is hard to exactly estimate, but nf and nt are much
easier to count.

Illustrative Example. Suppose that the RMS records the
number of mismatched requests nf ¼ 100 out of the total
number of requests that have been completed ðnt ¼ 10; 000Þ.
Thus, �m ¼ nf

nt
¼ 0:01 and then we get the probability for the

matchmaking failure not occurring for the six requests
by (23):

Rmatch ¼ expð�0:01	 6Þ ¼ 0:9418: ð24Þ

3.3 Network, Program, and Resource Layers

In the hierarchical modeling, this level is the most
complicated one across the three different layers of Net-
work Layer, Program Layer, and Resource Layer. The
failures are classified as Network Failure in hardware
(nodes and links) and Program and Resource Failures.

3.3.1 Network Failure

If the RMS has correctly matched the programs to their
required resources, the programs are able to connect to and
use those resources through the network. However, net-
work failures may occur during this period.

Distributed network reliability for small-scale systems
has been extensively studied, for example, [19], [20], [21],
[22], [14, pp. 145-177]. However, those conventional models
have some common assumptions: 1) The network topology
is made up of physical links and nodes that are static
without considering dynamic changes of components and
logic structures; 2) the operational probabilities of nodes or
links are constant without considering bandwidth and
contention; and 3) the models only consider the hardware
failures of links and processors without taking into account
the software and resource failures. These assumptions need
to be relaxed for grid.

In a grid network, communication between two remote
sites can be logically broken even though a physical link
exists between them; the authority to use some remote
resources might be malformed for instance. To solve such
problems, the new model proposes using a virtual structure
instead of a physical structure. After matchmaking, a grid
service needs to execute a set of programs and to use a set of
resources. Hence, we can extract those nodes that contain
these programs or resources as Virtual Nodes (VN). Then, a
direct communication channel between two VNs is defined
as a Virtual Link (VL) that represents not only a physical
connection, but also a logical link. Also, due to the grid
security mechanism, valid certificates of machines and
users are necessary to access some resources so that the job
submittals from different sites or users will cause different
network topology. Thus, the VL is again better than the
physical links by considering the security scenario. Another
advantage of virtualization is to simplify the graph model
for the grid covering a wide area with potentially many
thousands of physical processors and cables.

Operational probabilities of VNs and VLs cannot just be
set at a constant value such as 0.9, as the previous
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TABLE 1
Resources Used by Programs and Size

of Exchanged Information

Fig. 9. CTMC for RMS reliability model.



conventional models did. Rather, the operational probabil-
ities are affected by various conditions such as failure rate,
transmitted data, available bandwidth, and operation time.
Thus, our model will consider the following information
which is normal in dynamic grid network: 1) For VLs, the
model considers the available bandwidth, the exchanged
data from different sources that contend for the bandwidth
of the VLs, and the failure rate of the VLs. 2) For VNs,
besides the above information for communication, the time
for the VNs to execute programs/resources should also be
involved. A combination of all of these conditions is much
closer to the reality of a grid network and can handle the
variability of a wide-area network.

In detail, different programs can exchange information of

different sizes with the same resources. Denote by Dmh the

size of information exchanged between program Pm ðm ¼
1; 2; . . . ;MÞ and resource Rh ðh ¼ 1; 2; . . . ; HÞ. Suppose

Sði; jÞ is the available bandwidth of the channel V Lði; jÞ
between two nodes VNi and VNj. The different programs

may contend with common VLs’ bandwidth when they are

running in parallel. Denote by Dði; jÞ the total information

(bits) contending for the available bandwidth of the channel

V Lði; jÞ. Then, the conditions of bandwidth and contention

can be transformed into total communication time by

Tcði; jÞ ¼
Dði; jÞ
Sði:jÞ : ð25Þ

Denote the failure rate of the VNn by �n and of the

V Lði; jÞ by �i;j. The reliability of the link for exchanging the

information can be expressed by

RLði; jÞ ¼ expf��i;jTcði; jÞg: ð26Þ

The total communication time of the node VNj can be

calculated by

T ðjÞ ¼
X
i2Qj

Tcði; jÞ; ð27Þ

where Qj represents the set of nodes that communicate with

the node VNj.
The reliability function of the node VNj for communica-

tion is

RcðjÞ ¼ expf��jT ðjÞg: ð28Þ

In order to evaluate the network reliability for the given
programs and resources, the graph theory is implemented
here. The set of VNs and VLs involved in running the given
programs and exchanging information with the resources
form a resource spanning tree (RST). The smallest dominat-
ing RST is called the Minimal Resource Spanning Tree
(MRST ). The detailed study of MRST was given in [15].

The term “element” is defined here to represent both the
nodes and links of the MRST . Assume that there are a total
of K elements in an MRST so that elementi ði ¼ 1; 2; . . . ; KÞ
denotes the ith element in the MRST . Accordingly, the
communication time of the ith element is denoted by
TwðelementiÞ and �ðelementiÞ represents its failure rate. The
reliability of the MRST combining (26) and (28) can be
simply expressed as

RMRST ¼
YK
i¼1

expf��ðelementiÞ � TwðelementiÞg: ð29Þ

With this equation, the reliability of an MRST can be
computed if the communication time of all the elements is
obtained. Hence, finding all the MRSTs and determining
the communication time of their elements are the first step
in deriving the grid network reliability. An algorithm is
presented in [15] to search the MRSTs for a given program
executed by one given VN. Repeatedly using this algorithm,
all the MRSTs to connect all the programs to their required
resources can be found, respectively. Algorithm 1 is briefly
described as follows:

Step 1. Given a program, say Pm, start from a node that
contains this program, search the required resources
along the possible links, and record elements that
compose the searching trace and their communication
times.

Step 2. When all of the required resources are reached, an
MRST is found; record this MRST .

Step 3. Then, other routes are tried to search other MRSTs
until all of the MRSTs are searched.

Step 4. Change to another node that also contains the
program Pm. Repeat the abovementioned three steps
until all of the nodes have Pm are developed. Save all the
found MRSTs associated with Pm into the vector.

Step 5. Change to another program and repeat the above four
steps until all of the programs are explored. Then, all the
vectors of MRST ðPmÞ ðm ¼ 1; 2; . . .MÞ are generated.

Thus, at least one MRST of each MRST ðPmÞ ðm ¼
1; 2; . . .MÞ is reliable and then the program MRST ðPmÞ
ðm ¼ 1; 2; . . .MÞ can be connected to those remote resources
and exchange information with them successfully through
the network. If any set of the M programs is successful, then
the network is reliable for the grid service to execute the
required set of programs, so the grid network reliability can
be written as the probability of the intersection of the set of
MRSTs of each program, which is

Rnet ¼ Pr
\M
m¼1

MRST ðPmÞ
 !

: ð30Þ

The above equation is computationally tractable (see the
detailed algorithms in [15]).

3.3.2 Program and Resource Failure

In the operational phase, the program failures can be
assumed to follow the exponential distributions [28]. Since
the same program running on different processors may
have different failure rates, the failure rate of Pi running on
processing node Gj is denoted by �sði; jÞ. Also, the
processing time of Pi on Gj is denoted by tði; jÞ. Thus, the
reliability of the software program Pi running on Gj can be
simply computed by

Rprogði; jÞ ¼ expf��sði; jÞ � tði; jÞg: ð31Þ

Suppose the time for resource h to work is determined by
the requested program Pi and the processing node Gj,
denoted by tðh; i; jÞ. Also, we denote the failure rate of the
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resource h on the node Gj by �rðh; jÞ, which follows the
exponential distribution. Thus, the reliability of resource h
used by Pi and integrated on Gj can be simply expressed by

Rresðh; i; jÞ ¼ expf��rðh; jÞ � tðh; i; jÞg: ð32Þ

So far, the above network model only considers the
hardware failures of VNs and VLs. To further increase its
fidelity, program and resource failures should also be
included. Thus, the programs and resources should not be
drawn inside a node of the graph, as depicted by the
conventional models [15], [19], [21], [22], even though its
physical structure may be so. The reason is because it is
hard to handle programs/resources/processors separately
within one node. In order to overcome this problem, a new
graph model is presented which depicts the programs and
resources as subnodes of the main VN, as shown in Fig. 10.
Then, the programs and resources can be logically
separated with their respective failure rates and processing
times, which will combine both hardware failures and
software failures.

Comparing (31) and (32) to (26) and (28), we can find that
they are of the same format. Therefore, it is easy to directly
use the above models and algorithms for deriving the
network reliability. Thus, all of the programs, resources,
VNs, and VLs with their respective failure rates and
processing/communication time can be integrated together
as general elements of the MRST analysis given by (29).
Then, the reliability of combining programs, resources, and
network can be derived from (30) and the algorithms of [15]
for calculating (30) can be directly implemented to obtain
the overall reliability, denoted by Rnet�p�r.

Here, we assume that the reliability of different
individual elements (program, resource, node, link), e.g.,
(26), (28), (29), (31), and (32), satisfy their respective
exponential distributions. This assumption has been well
verified on single component without repair or debug; see,
e.g., [16], [26], [27]. In the grid, most components are in the
operational phase without repair or debug during the
service time. Though they may be repaired or debugged,
usually the repair, debug, or reboot process should be
performed offline, that is, not during the service time. After
the repair, when the components return to the operational
phase, the exponential distribution is valid again. It has
been explicitly proven in [28] that a single component in the
operational phase will follow the exponential distribution no
matter what distribution it has in the test phase.

In addition, the time to execute a grid service is sufficiently
short compared with the components’ lives or degradation
period. Therefore, the reliability with exponential assump-
tion on a single component is also justified at this point. The
individual component can be monitored in real time and

updates the parameters dynamically for the exponential
distribution. The monitored information is simple: just the
number of failures over the total running time of this
component which has actually been recorded by log files in
today’s grids. Such a dynamic updating scheme can further
validate the exponential assumption, though we may relax
the above assumption somewhat to allow reasonable or
gradual change in the failure rate (such as wear out) because,
during a short enough period of service time, the parameter
cannot change too much and using the latest value should be a
good approximation. However, the random and significant
jump of parameters is not considered here, which is an open
problem and needs further research.

Illustrative Example. Continuing the example depicted
in Table 1, after knowing the sites of the resources, the
programs attempt to connect to them and use them.
Suppose there are six VNs that execute the three programs
or contain the required resources in a redundant manner.
The topology of the connections among the VNs and
programs/resources is depicted in Fig. 11 using subnodes
representing programs and resources. The failure rates of
the nodes/links/programs/resources are marked in Fig. 11
and the available bandwidth (Kbit per second) is also
marked beside the VLs.

The processing time of different programs executed by
different nodes is given in Table 2 and that of resources on
different nodes used by different programs is given in
Table 3.

With these numerical parameters, the algorithms pre-
sented in Section 3.3 are implemented to obtain the
reliability combining the network, programs, and resources:

Rnet�p�r ¼ 0:9444: ð33Þ

3.4 Grid Service Reliability

The failure of a grid service is actually a combination of the
blocking failure, time-out failure, matchmaking failure,
network failure, and program and resource failure. Those
failures can be divided into three independent groups as
related to three different levels of the hierarchical modeling
as above: The blocking failures and time-out failures are
related to the Request Layer with the request queue, the
matchmaking failures are related to the management layer
with RM servers, and the network, program, and resource
failures are related to a lower level for execution other than
the previous two levels for management.

The independence between RM Servers and the Net-
work/Resource/Program Layers can be justified as follows:
When a job is submitted to the RM servers, the RM servers
automatically detect the available resources that are
matched to the requests. Note that the availability here
means the initially good and accessible resources. If some
resources are unable to be connected due to the network
problems or are detected at an unavailable state due to
software/hardware failures, those resources are not fed to
the next layers for calculating the Rnet�p�r. Following that,
the RM servers do not participate in the calculation of
Rnet�p�r because the RM servers have told the programs the
sites of available resources and the programs can directly
access to them. Thus, the two parts can be viewed as
statistically independent, considering separate failures and
time difference in the model, that is, the calculation on
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network reliability is not started until the end of matchmak-
ing by RM servers.

Under the condition of independence among the three
levels of the hierarchical modeling, the grid service
reliability can be calculated straightforwardly by

Rservice ¼ Rtime�block �Rmatch �Rnet�p�r: ð34Þ

For example, substituting (22), (24), and (33) into (34), the
grid service reliability is

Rservice ¼ 0:9809	 0:9418	 0:9444 ¼ 0:8724:

Thus, the probability for this grid service to be successfully
completed is 0.8724.

In summary, the overall outline for the grid service
reliability based on the hierarchical modeling is concluded
using the following steps:

Step 1. Solve (2)-(6) to obtain the qn ðn ¼ 0; 1; . . . ; NÞ;
substitute parameters into (10) to obtain fnþH�SðtÞ
ðn ¼ 0; 1; . . . ; NÞ; substitute (11) into (13) to obtain
PrðkÞ k 2 ½1;minðH;SÞ�; and derive gkt from (14).

Step 2. Substitute PrðkÞ, gkðtÞ, and fnþH�SðtÞ into (15) to
obtain fH;nðtÞ ðn ¼ 0; 1; . . . ; NÞ and then substitute qn and
fH;nðtÞ into (17) to get Rtime�block.

Step 3. Derive �m from the historical data of nf and nt, and
substitute into (23) to get Rmatch.

Step 4. Draw the virtual network architecture by the given
programs and resources, as in Fig. 10. Use Algorithm 1 to
find all MRSTs. Then, use the algorithms presented in
[15] to solve (30), but note that, here, (31) and (32) are

merged into the process through Fig. 10, so the result
from (30) is Rnet�p�r.

Step 5. Finally, substitute the outcomes from Steps 2 to 4
into (34) to obtain the Rservice.

4 CONCLUSION AND DISCUSSION

This paper is original in that it comprehensively and
systematically studies the grid reliability, considering
blocking failures, time-out failures, matchmaking failures,
network failures, program failures, and resource failures in
a hierarchical manner. The hierarchical modeling maps the
physical and logical architecture of the grid service system
and makes the evaluation and analysis clear and simple by
identifying the independence among layers. Markov mod-
els, queuing theory, graph theory, and Bayesian analysis
were mainly used to derive the grid service reliability. A
numerical example has also been illustrated to show the
procedures and effectiveness for modeling and evaluating
the grid service reliability.

In our grid model, the RMS serving for the requests of
grid services used one common request queue scheduled
for multiple RM servers. It is also possible that each
RM server has its own request queue. Actually, this
condition has been covered by the general structure of our
RMS model. If the request queue of an RM server does not
interact with other RM servers’ request queues, when the
grid service requests reach this RM server’s queue, it can be
analyzed by our model, assuming S ¼ 1 (that is, one
RM server), which is a reduced case of our general RMS
model. Furthermore, it is better that the interaction among
different request queues is permitted, for example, if some
requests of a grid service are blocked by one queue, those
blocked requests can be transferred to another RM server’s
queue that is not full. Actually, our model has this
advantage because it uses one common queue whose
capacity can be set as the summation of separate queues’
capacity of all RM servers. In addition, our model has
another advantage: Using one common queue can balance
the load to different RM servers well, that is, the unbalanced
case that one RM server is idle, whereas the other has a lot
of requests waiting for service will not take place.
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TABLE 2
Running Time (in Seconds) of Programs

Fig. 11. Topology of the network, programs, and resources.

TABLE 3
Running Time (in Seconds) of Resources
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