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Abstract—The delay-tolerant-network (DTN) model is becoming a viable communication alternative to the traditional infrastructural
model for modern mobile consumer electronics equipped with short-range communication technologies such as Bluetooth, NFC, and
Wi-Fi Direct. Proximity malware is a class of malware that exploits the opportunistic contacts and distributed nature of DTNs for
propagation. Behavioral characterization of malware is an effective alternative to pattern matching in detecting malware, especially
when dealing with polymorphic or obfuscated malware. In this paper, we first propose a general behavioral characterization of
proximity malware which based on naive Bayesian model, which has been successfully applied in non-DTN settings such as filtering
email spams and detecting botnets. We identify two unique challenges for extending Bayesian malware detection to DTNs (“insufficient
evidence versus evidence collection risk” and “filtering false evidence sequentially and distributedly”), and propose a simple yet
effective method, look ahead, to address the challenges. Furthermore, we propose two extensions to look ahead, dogmatic filtering,
and adaptive look ahead, to address the challenge of “malicious nodes sharing false evidence.” Real mobile network traces are used to

verify the effectiveness of the proposed methods.
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1 INTRODUCTION

HE popularity of mobile consumer electronics, like

laptop computers, PDAs, and more recently and
prominently, smartphones, revives the delay-tolerant-
network (DTN) model as an alternative to the traditional
infrastructure model. The widespread adoption of these
devices, coupled with strong economic incentives, induces a
class of malware that specifically targets DTNs. We call this
class of malware proximity malware.

An early example of proximity malware is the Symbian-
based Cabir worm, which propagated as a Symbian
Software Installation Script (.sis) package through the
Bluetooth link between two spatially proximate devices
[1]. A later example is the iOS-based Ikee worm, which
exploited the default SSH password on jailbroken [2]
iPhones to propagate through IP-based Wi-Fi connections
[3]. Previous researches [4] quantify the threat of proximity
malware attack and demonstrate the possibility of launch-
ing such an attack, which is confirmed by recent reports on
hijacking hotel Wi-Fi hotspots for drive-by malware attacks
[5]. With the adoption of new short-range communication

o W. Peng and X. Zou are with the Department of Computer and Information
Science, Indiana University-Purdue University Indianapolis, Indianapolis,
IN 46202. E-mail: pengw@umail.iu.edu, xkzou@cs.iupui.edu.

e F. Liis with the Department of Computer, Information, and Technology,
Indiana University-Purdue University Indianapolis, Indianapolis, IN
46202. E-mail: fengli@iupui.edu.

o |. Wu is with the Department of Computer and Information Sciences,
Temple University, Room 302, 1805 N Broad St., Wachman Hall 302,
Philadelphia, PA 19122. E-mail: jiewu@temple.edu.

Manuscript received 22 Mar. 2012; revised 12 Sept. 2012; accepted 21 Jan.
2013; published online 14 Feb. 2013.

Recommended for acceptance by M. Thai.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-03-0304.
Digital Object Identifier no. 10.1109/TPDS.2013.27.

1045-9219/14/$31.00 © 2014 IEEE

technologies such as NFC [6] and Wi-Fi Direct [7] that
facilitate spontaneous bulk data transfer between spatially
proximate mobile devices, the threat of proximity malware
is becoming more realistic and relevant than ever.

Proximity malware based on the DTN model brings
unique security challenges that are not present in the
infrastructure model. In the infrastructure model, the
cellular carrier centrally monitors networks for abnormal-
ities; moreover, the resource scarcity of individual nodes
limits the rate of malware propagation. For example, the
installation package in Cabir and the SSH session in Ikee,
which were used for malware propagation, cannot be
detected by the cellular carrier. However, such central
monitoring and resource limits are absent in the DTN
model. Proximity malware exploits the opportunistic con-
tacts and distributed nature of DTNs for propagation.

A prerequisite to defending against proximity malware
is to detect it. In this paper, we consider a general
behavioral characterization of proximity malware. Beha-
vioral characterization, in terms of system call and program
flow, has been previously proposed as an effective alter-
native to pattern matching for malware detection [8], [9]. In
our model, malware-infected nodes’ behaviors are observed
by others during their multiple opportunistic encounters:
Individual observations may be imperfect, but abnormal
behaviors of infected nodes are identifiable in the long-run.
For example, a single suspicious Bluetooth connection or
SSH session request during one encounter does not confirm a
Cabir or Ikee infection, but repetitive suspicious requests
spanning multiple encounters is a strong indication for
malware infection. The imperfection of a single, local
observation was previously in the context of distributed
IDS against slowly propagating worms [10].
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Instead of assuming a sophisticated malware contain-
ment capability, such as patching or self-healing [11], [12],
we consider a simple “cut-off” strategy: If a node ¢ suspects
another node j of being infected with the malware, ¢ simply
ceases to connect with j in the future to avoid being infected
by j. Our focus is on how individual nodes shall make such
cut-off decisions against potentially malware-infected
nodes, based on direct and indirect observations.

A comparable example from everyday experience is fire
emergency. An early indication, like dark smoke, prompts
two choices. One is to report fire emergency immediately;
the other is to collect further evidence to make a better
informed decision later. The first choice bears the cost of a
false alarm, while the second choice risks missing the early
window to contain the fire.

In the context of DTNs, we face a similar dilemma when
trying to detect proximity malware: Hypersensitivity leads
to false positives, while hyposensitivity leads to false
negatives. In this paper, we present a simple, yet effective
solution, look ahead, which naturally reflects individual
nodes’ intrinsic risk inclinations against malware infection,
to balance between these two extremes. Essentially, we
extend the naive Bayesian model, which has been applied in
filtering email spams [13], [14], [15], detecting botnets [16],
and designing IDSs [10], [17], and address two DTN-
specific, malware-related, problems:

1. Insufficient evidence versus evidence collection risk. In
DTNs, evidence (such as Bluetooth connection or
SSH session requests) is collected only when nodes
come into contact. But contacting malware-infected
nodes carries the risk of being infected. Thus, nodes
must make decisions (such as whether to cut off
other nodes and, if yes, when) online based on
potentially insufficient evidence.

2. Filtering false evidence sequentially and distributedly.
Sharing evidence among opportunistic acquain-
tances helps alleviating the aforementioned insuffi-
cient evidence problem; however, false evidence
shared by malicious nodes (the liars) may negate the
benefits of sharing. In DTNs, nodes must decide
whether to accept received evidence sequentially
and distributedly.

Our contributions are summarized as follows:

1. We present a general behavioral characterization of
proximity malware, which captures the functional
but imperfect nature in detecting proximity malware
(see Section 2).

2. Under the behavioral malware characterization, and
with a simple cut-off malware containment strat-
egy, we formulate the malware detection process as
a distributed decision problem. We analyze the risk
associated with the decision, and design a simple,
yet effective, strategy, look ahead, which naturally
reflects individual nodes’ intrinsic risk inclinations
against malware infection. Look ahead extends the
naive Bayesian model, and addresses the DTN-
specific, malware-related, “insufficient evidence
versus evidence collection risk” problem (see
Section 3.1).
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3. We consider the benefits of sharing assessments
among nodes, and address challenges derived from
the DTN model: liars (i.e., bad-mouthing and false-
praising malicious nodes) and defectors (i.e., good
nodes that have turned rogue due to malware
infections). We present two alternative techniques,
dogmatic filtering and adaptive look ahead, that natu-
rally extend look ahead to consolidate evidence
provided by others, while containing the negative
effect of false evidence. A nice property of the
proposed evidence consolidation methods is that
the results will not worsen even if liars are the
majority in the neighborhood (see Section 3.2). Real
contact traces are used to verify the effectiveness of
the methods (see Section 4).

2 MoDEL

Consider a DTN consisting of n nodes. The neighbors of a
node are the nodes it has (opportunistic) contact opportu-
nities with.

Proximity malware is a malicious program that disrupts
the host node’s normal function and has a chance of
duplicating itself to other nodes during (opportunistic)
contact opportunities between nodes in the DTN. When a
duplication occurs, the other node is infected with the
malware.

In our model, we assume that each node is capable of
assessing the other party for suspicious actions after each
encounter, resulting in a binary assessment. For example, a
node can assess a Bluetooth connection or an SSH session
for potential Cabir or Ikee infection. The watchdog compo-
nents in previous works on malicious behavior detection in
MANETs [18] and distributed reputation systems [19], [20]
are other examples. A node is either evil or good, based on
if it is or is not infected by the malware. The suspicious-
action assessment is assumed to be an imperfect but
functional indicator of malware infections: It may occasion-
ally assess an evil node’s actions as “nonsuspicious” or a
good node’s actions as “suspicious,” but most suspicious
actions are correctly attributed to evil nodes. A previous
work on distributed IDS presents an example for
such imperfect but functional binary classifier on nodes’
behaviors [10].

The functional assumption characterizes a malware-
infected node by the assessments of its neighbors. If node
i has N (pairwise) encounters with its neighbors and sy of
them are assessed as suspicious by the neighbors, its
suspiciousness S; is defined as

S = lim 2. (1)

By (1), S; € [0,1]. A number L, € (0,1) is chosen as the line
between good and evil. L, depends on the quality of a
particular suspicious-action assessment and, if the assess-
ment is a functional discriminant feature of the malware
and the probabilistic distribution of the suspiciousness of
both good and evil nodes are known, L. can be chosen as
the (Bayesian) decision boundary, which minimizes classi-
fication errors [21]. Node ¢ is good if S; < L., or evil if
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S; > L.: We draw a fine line between good and evil, and
judge a node by its deeds.

Instead of assuming a sophisticated malware coping
mechanism, such as patching or self-healing, we consider a
simple and widely applicable malware containment strat-
egy: Based on past assessments, a node ¢ decides whether to
refuse future connections (“cut off”) with a neighbor j.

3 DESIGN

In the following discussion, we investigate the decision
process of a node i, which has k neighbors {ni,ns,...,n;},
against a neighbor j; with no loss of generality, let j be n;.

3.1 Household Watch

Consider the case in which i bases the cut-off decision
against j only on ¢’s own assessments on j. Since only direct
assessments are involved, we call this model household watch
(the naming will become more evident by the beginning of
Section 3.2).

Let A = (a1, as,...,a4) be the assessment sequence (q; is
either 0 for “nonsuspicious” or 1 for “suspicious”) in
chronological order, i.e., a; is the oldest assessment, and a4
is the newest one.

Bayes’ theorem tells us

P(Sj | A) o< P(A]S)) x P(S)), (2)

where P(S;) encodes our prior belief on j’s suspiciousness
Sj; P(A|S;) is the likelihood of observing the assessment
sequence A given S;; P(S; | A) is the posterior probability,
representing the plausibility of j having a suspiciousness of
S; given the observed assessment sequence .A. Since the
evidence P(A) does not involve S; and serves as a
normalization factor in the computation, we omit it and
write the quantitative relationship in the less cluttered
proportional form.'

By Sections 1.1 and 1.2 of the supplementary material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2013.27, we have

P(S;j | A) Sff‘(l — Sj)\A\—sA7 3)
and
SA
P(S; A 4
B s i " Ty (4)

in which sy4 is the number of suspicious assessments in A.

Fig. 1 shows the normalized posterior distributions
P(S; | A) for assessment samples with different sizes, given
by (3). In each case, the ratio between suspicious and
nonsuspicious assessments is the same, i.e., 1:3; by (4), S; =
745 = 0.25 is the maximizer of P(S; | .A), which is clearly
shown in Fig. 1. The distribution becomes sharper with a
larger sample, which accords to the intuition of the
increasing certainty on the suspiciousness ;.

The uncertainty over j’s suspiciousness S; (and, hence,

the risk of losing a good neighbor) holds ¢ back from

1. When we use proportional form in this paper, we have implicitly done
the same thing.

— 1,3
! - - 10,30
1" -—- 100, 300

P(S;14)

Fig. 1. The normalized posterior distribution P(S; | A) for assessment
samples with different sizes. The two numbers for each line in the legend
show the number of suspicious and nonsuspicious assessments,
respectively. In each case, the ratio between suspicious and non-
suspicious assessments is 1 : 3. All distributions have a maximal value
at S; = 15 = 0.25. However, the distribution becomes shaper with a
larger sample, which corresponds to a sense of increasing certainty
regarding the suspiciousness S;.

cutting j off immediately, based on insufficient evidence.
In the following discussion, we consider two alternative
approaches, distribution and maximizer, to handle the
insufficient-evidence problem, based on (3) and (4),
respectively.

In the distribution approach, i considers the whole
posterior suspiciousness distribution (see (3)) in making
the cut-off decision against j. From i’s perspective, after
observing an assessment sequence A, the probability P,(.A)
that j is good is

L,
Py(A) = / P(S;] A) dS;, (5)
the probability P.(A) that j is evil is

1
RA=1-RW)= [ PS1Ads  ©
Let C= ([, Si*(1— 5,4 dS;)™" be the (probability)
normalization factor in (3); we have

L.
PA)=C [ S*1-8)Has;, (7)

0

and
1
R =C [ s(1- 5y~ as; ®)
L,

When P,(A) > P,(A), the evidence collected so far (i.e., A)
is favorable to j. However, when P,(A) < P.(A), the
evidence is unfavorable to j and suggests that j might be
an evil node. i needs to decide whether to cut j off.

The structure of the behavioral malware characterization
model (specifically, a single threshold L. is used to
distinguish the nature of a node) gives rise to a subtlety
concerning i’s prejudice against j in the distribution
approach. By Section 1.2 of the online supplemental
material, if ¢ makes no presumption on j’s suspiciousness,
when no assessment has been made yet (ie, A=70),
P(S;| A)=1.If Ly #0.5, by (5) and (6), either P,(A) <
P.(A) (if Lg < 0.5) or Py(A) > FP.(A) (if Lg > 0.5). In other
words, while i makes no presumption on j’s suspiciousness,
1 may nevertheless be prejudiced against j by the distribu-
tion approach’s decision rule.
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This leads to a discussion on whether such prejudices
are warranted. The choice of L, depends on the assessment
mechanism itself and, as mentioned previously, if the
probabilistic distributions of suspiciousness of both good
and evil nodes are known, can be determined by minimiz-
ing Bayesian decision errors. If L. > 0.5, the assessment
mechanism is biased toward false positive (good nodes’
actions being assessed as suspicious); if L. < 0.5, the
assessment mechanism is biased toward false negative
(evil nodes’” actions being assessed as nonsuspicious).
However, before any assessment is made, ¢ has no clue
about the true nature of j. A bias in the assessment
mechanism should not affect the i’s neutrality on j’s nature
before the first assessment is made. Thus, we stipulate that
the comparison between P,(A) and P.(A) should be made
only when A # 0.

Alternatively, in the maximizer approach, i uses the
suspiciousness distribution’s maximizer (see (4)) when
making the cut-off decision against j. The justification for
the maximizer approach is that the suspicious distribu-
tion’s maximizer is the single most probable estimation of j’s
suspicisousness given the evidence. The maximizer ap-
proach precludes the prejudice problem, because the
maximizer is undefined when A={. Similar to the
distribution approach, ¢ compares evidence that is both
favorable and unfavorable to j. Evidence A is favorable to j
if s4/|A| < L. and is unfavorable to j if s4/|A| > L.. The
maximizer approach significantly reduces the computation
cost, in comparison with the distribution approach, while
partially discarding information contained in the suspi-
ciousness distribution derivable from the evidence col-
lected so far.

Whichever approach is taken, the cut-off decision
problem has an asymmetric structure in the sense that
cutting j off will immediately terminate the decision
process (i.e., i will cease connecting with j; no further
evidence will be collected), while the opposite decision will
not. Thus, we only need to consider the decision problem
when i considers cutting j off due to unfavorable evidence
against j.

The cut-off decision is made based on the risk estimation
of such a decision. The key insight is that i shall estimate the
cut-off decision’s risk by looking ahead.

More specifically, given the current assessment sequence
A = (ay,...,ay), the next assessment a,,; (which has not
been taken yet) might be either 0 (nonsuspicious) or 1
(suspicious). Let A" = (A, as41).

If agy1 =1, by Section 1.3 of the online supplemental
material, either Pj(A') < Py(A) < P.(A) < P.(A) (the
distribution approach) or su/|A|=(1+s4)/(1+]A|) >
sa/|A| > L. (the maximizer approach): The evidence
against j becomes more unfavorable.

However, if as1 = 0, the evidence might become either
favorable or unfavorable to j. If the evidence is still
unfavorable toward j, we say that ¢’s decision of cutting j
off is one-step-ahead robust. If the cut-off decision is one-step-
ahead robust, i is certain that exposing itself to the potential
danger of infection by collecting one further assessment on j
will not change the outlook that j is evil.
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Similarly, ¢ can look multiple steps ahead. In fact, the
number of steps ¢ is willing to look ahead is a parameter of
the decision process rather than a result of it. This parameter
shows i’s willingness to be exposed to a higher infection
risk in exchange for a higher certainty about the nature of j
and a lower risk of cutting off a good neighbor; in other
words, it reflects 4’s intrinsic risk inclination against
malware infection.

Definition 1 (Look-Ahead )). The look-ahead X is the number of
steps i is willing to look ahead before making a cut-off decision.

We can make a similar decision-robustness definition for
look-ahead A.

Definition 2 (\-Robustness). At a particular point in i’s cut-
off decision process against j (with assessment sequence
A= (a1,...,aa)), i’s decision of cutting j off is said to be
A-step-ahead robust, or simply A-robust, if 1) the current
evidence A is unfavorable toward j; and 2) even if the next
assessments (aat1,...,a4+x)) all turn out to be nonsuspi-
cious (i.e., 0), the evidence against j is still unfavorable.

Given the look-ahead A, the proposed malware contain-
ment strategy is to cut j off if the cut-off decision is A-robust,
and not to cut j off otherwise.

In Section 2 of the online supplemental material, we
discuss how to adapt the look-ahead A to individual nodes’
intrinsic risk inclinations against the malware.

3.2 Neighborhood Watch

Besides using i’s own assessments, ¢+ may incorporate other
neighbors’” assessments in the cut-off decision against j.
This extension to the evidence collection process is inspired
by the real-life neighborhood (crime) watch program,
which encourages residents to report suspicious criminal
activities in their neighborhood. Similarly, i shares assess-
ments on j with its neighbors, and receives their assess-
ments on j in return.

In the neighborhood-watch model, the malicious nodes
that are able to transmit malware (we will see next that
there may be malicious nodes whose objective is other than
transmitting malware) are assumed to be consistent over
space and time. These are common assumptions in distrib-
uted trust management systems (summarized in Section 5),
which incorporate neighboring nodes” opinions in estimat-
ing a local trust value.

By being consistent over space, we mean that evil nodes’
suspicious actions are observable to all their neighbors,
rather than only a few. If this is not the case, the evidence
provided by neighbors, even if truthful, will contradict
local evidence and, hence, cause confusions: Nodes shall
discard received evidence and fall back to the household
watch model.

By being consistent over time, we mean that evil nodes
cannot play strategies to fool the assessment mechanism.
This is equivalent to the functional assumption in char-
acterizing the nature of nodes by suspiciousness (see (1)).
The case in which the evil nodes can circumvent the
suspiciousness characterization (such as by first accumulat-
ing good assessments, and then launch an attack through a
short burst of concentrated suspicious actions) calls for
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game-theoretic analysis and design, and is beyond the
scope of this paper. Instead, we propose a behavioral
characterization of proximity malware; further game-
theoretic analysis and design could base on this foundation.

3.2.1 Challenges

Two cases complicate the neighborhood watch model: liars
and defectors.

Liars are those evil nodes who confuse other nodes by
sharing false assessments. A false assessment is either a false
praise or a false accusation. False praises understate evil
nodes’ suspiciousness, while false accusations exaggerate
good nodes’ suspiciousness. Furthermore, a liar can fake
assessments on nodes that it has never met with. To hide
their true nature, liars may do no evil other than lying, and,
therefore, have low suspiciousness.

Defectors are those nodes that change their nature due to
malware infections. They start out as good nodes and
faithfully share assessments with their neighbors; however,
due to malware infections, they become evil. Their behaviors
after the infection are under the control of the malware.

These complications call for evidence consolidation. Two
extremal, but naive, evidence-consolidation strategies are
1) to trust no one and 2) to trust everyone. The former
degenerates to the household-watch model with the twist of
the defectors (defectors change their nature and hence their
behavioral pattern); the latter leads to confusions among
good nodes.

3.2.2 Evidence

For a pair of neighboring nodes i and j, let \/; and V) be the
neighbors of ¢ and j, respectively. At each encounter, i
shares with j its assessments on the neighbor set N; — {;},
and j shares with ¢ its assessments on the neighbor set
N —{i}.

Since the cut-off decision only needs to be made against a
neighbor, i only considers the assessments of its own
neighbors A; N (NV; — {i}) from the evidence provided by j.
Without superimposed trust relationships among the nodes
in the model, ¢ and j only share their own assessments,
instead of forwarding the ones provided by their neighbors.

3.2.3 Evidence Aging

The presence of defectors breaks the assumption when we
characterize a node’s nature by suspiciousness in (1). A
defector starts as a good node but turns evil due to malware
infections; the assessments collected before the defector’s
change of nature, even truthful, are misleading.

To alleviate the problem of outdated assessments, old
assessments are discarded in a process called evidence aging.
Each assessment is associated with a timestamp. Only
assessments with timestamps less than a specific aging
window Tr, from now are included in the cut-off decision.

To see that the aging window T alleviates the defector
problem, consider a node that is infected at time 7". Without
evidence aging, all evidence before 7' mounts to testify that
the node is good; if the amount of this prior evidence is
large, it may take a long time for its neighbors to find out
about the change in its nature. In comparison, with
evidence aging, at time T + T, all prior evidence expires

and only those assessments after the infection are consid-
ered, which collectively testify against the node.

However, in practice, the choice of the aging window Tx
depends on the context. While a small 7 may speed up the
detection of defectors by reducing the impact of stale
information, 7x must be large enough to accommodate
enough assessments to make a sound cut-off decision. If Tg
is too small, a node will not have enough assessments to
make an A-robust cut-off decision.

3.2.4 Evidence Consolidation

We propose two alternative methods, dogmatic filtering and
adaptive look ahead, for consolidating evidence provided by
other nodes, while containing the negative impact of liars.
For exposition, we consider a scenario in which node i
uses the assessments within the evidence aging window
[T — Tg,T) provided by i’s neighbors (other than one of
the neighbors, say, j) in making the cut-off decision
against j.

The following observation inspires our solution: Given
enough assessments, i is more likely to correctly estimate j’s
suspiciousness than otherwise. Consider a simple numer-
ical illustration. If j has in total 4 suspicious actions and 12
nonsuspicious actions assessed by its neighbors, its (true)
suspiciousness is 17 = 0.25. If ¢ has made 4 out of the 4 +
12 = 16 assessments, by the space-consistency assumption, i
is equally likely to obtain any subsequence of the 16
assessment sequence. The total possibilities of ¢ making =
(0 < z < 4) suspicious assessments and 4 — z nonsuspicious
assessments are (1)(,'); a straightforward calculation
shows that the number is maximized when x = 1. In other
words, 7 is more likely to estimate j to be 15 = 0.25, which
agrees with the true suspiciousness, compared to otherwise.

In general, suppose j has been assessed n times by its
neighbors, and s of them are suspicious. Its suspicisousness,
by definition, is 2. If n/(0 < n’ < n) of the assessments are
from i and s’ (s— (n—n') < < min(s,n')) of them are
suspicious (thus, from i’s perspective, j's suspiciousness is
%), s' is more likely to be either |2n'] or [2n/] (ie., i's
estimation of j’s suspiciousness agrees with the true
suspiciousness) than otherwise, since, as in the previous
numerical example, (3)(,"%) is maximized when %’m %
for a given n'.

The implications are as follows:

n—=s

e Given enough assessments, honest nodes are likely
to obtain a close estimation of a node’s suspicious-
ness (suppose they have not cut the node off yet),
even if they only use their own assessments.

e The liars have to share a significant amount of false
evidence to sway the public’s opinion on a node’s
suspiciousness.

e The most susceptible victims of liars are the nodes
that have little evidence.

Dogmatic filtering. Dogmatic filtering is based on the
observation that one’s own assessments are truthful and,
therefore, can be used to bootstrap the evidence consolida-
tion process. A node shall only accept evidence that will not
sway its current opinion too much. We call this observation
the dogmatic principle.
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Our interpretation of the dogmatic principle depends on
the following generalization of Definition 2.

Definition 3 (A\-Robust Judgment). Let A be the suspicious-
action assessments that i has on j. We say that i’s judgment on
Jj's nature is A-robust (or (—\)-robust) based on A, if 1) the
evidence A is favorable (or unfavorable) toward j, 2) the
evidence remains so even if the next A assessments are all
suspicious (or nonsuspicious), and 3) the evidence becomes
unfavorable (or favorable) toward j if the next A+1
assessments are all suspicious (or nonsuspicious).

As a special case, if a judgment is not even 1-robust (or
(—1)-robust), we say that the judgment is 0-robust or not
robust at all.

A-robust judgment reflects i’s certainty of its judgment
on j’s nature (based on the evidence collected so far). The -
robust cut-off decision against j (see Definition 2) is
equivalent to the (—\)-robust judgment on the (evil) nature
of j. The sign of A in Definition 3 represents j’s nature: A
negative number represents evilness, and a positive number
represents goodness.

i’s cut-off decision against j works as follows with
dogmatic filtering.

e i will not consider cutting j off until ¢ has at least one
assessment on j.

e After its first encounter with j and with its own
assessments A with the evidence aging window
[T —Tg,T], @ considers whether or not to take
another neighbor £’s alleged assessments on j within
the same window B when i and k meet.

e Suppose that the judgment on j’s nature is A4-
robust and A 4;p)-robust, based on A and (A + B),
respectively. ¢ will take B only if A4 #0 and
W <6; 6> 0 and is called the dogmatism.

e i makes a A-robust cut-off decision against j,
based on either A or (A + B), depending on whether
B has passed the dogmatism test.

With dogmatic filtering, i is very conservative when its
certainty about j's nature is still low (i.e., A4 is small). At
this early stage, ¢ will accept the evidence provided by j
only if the evidence would not significantly change its
certainty on j’s nature. In particular, if A <1, ¢ will never
accept a piece of evidence that would change its judgment
on j's nature because [A gy — A(445)| > |A4] if A and (A + B)
are of different signs.

Dogmatic filtering significantly contains the impact of
liars on ¢ while still allowing a change of certainty (on j’s
nature) comparable to its own. The aforementioned ob-
servation that the liars have to fabricate a significant
amount of false evidence to confuse honest nodes means
that the evidence B provided by a liar & must have a high Az
(albeit of the wrong sign) to be effective in confusing i. The
liar’s strategy will not work because ¢ will refuse to take B
when |\ 4] is small with dogmatic filtering, while A4 and A
should be of different signs when A, is large (because by
then, ¢ should have a close estimation of j’s true suspicious-
ness, and hence, A4 is of the correct sign). The evidence
filtering works even when the liars are the majority among
i’s neighbors.

Adaptive look ahead. Adaptive look ahead takes a
different approach toward evidence consolidation. Instead
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of deciding whether to use the evidence provided by others
directly in the cut-off decision, adaptive lookhead indirectly
uses the evidence by adapting the steps to look ahead to the
diversity of opinion.

Adaptive look-ahead works as follows:

e Suppose that at a particular moment, the distribu-
tion maximizer derived from the assessments (with-
in the evidence aging window) on j (see (4)) made by
i is sg; similarly, the distribution maximizer derived
from the assessments (within the evidence aging
window) on j that i received from its neighbors is
815825+ Sn-

e i computes the following egocentric varianceo; as a
metric on the diversity of opinions (from its own
assessments):

o, = Ei:l (8i — s0) . )

n

e Let the maximal egocentric variance up to (and
including) now be o¢f (thus, we have o; <o7}). 4
makes its cut-off decision against j if the decision is
f(oi,0f, X)-robust, where f(-,-,-) is a three-parameter
integer function ranging from 0 to A, which we call
the adaptive-look-ahead function. A particular instan-
tiation is the linear adaptive look-ahead function:

Ji
fosai ) = A2 (10)
g

The idea of adaptive look ahead is to adapt the risk
inclination, embodied in the A-robust cut-off decision in
Definition 2, to the diversity of public opinions, embodied
in the ego-centric variance in (9). The dogmatism principle
underlies the use of the egocentric variance: The agreement
of the public’s opinions with that of ¢ is an indication that ¢
is approaching the true suspiciousness; thus, to expedite the
detection of evil nodes (and hence reduce the risk of
infection from further contact), ¢ reduces the steps to look
ahead in making the cut-off decision.

Because the value of the adaptive-look-ahead function is
no greater than 1, the worst that liars can do is to degenerate
i’s cut-off decision to a A-robust one. Also, since 7 has a
chance of estimating a close-to-true suspiciousness than
otherwise, liars’ false opinions are likely to be different from
that of 7, and good nodes’” opinions are likely to agree with
that of i. Thus, ¢ will be more proactive if good nodes make
up the majority of its neighborhood and less so if the liars
are the majority.

4 SIMULATION

4.1 Data Sets
We verify our design with two real mobile network traces:
Haggle [22] and MIT reality [23].

The raw data sets are rich in information, some of which
is irrelevant to our study, for example, call logs and cell
tower IDs in MIT reality. Therefore, we remove the
irrelevant fields and retain the node IDs and time-stamps
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TABLE 1
Data Set Statistics
‘ nodes  entries  time span  avg. interval ‘
Haggle 41 112,295 15 days 12 secs
MIT reality 96 114,046 490 days 371 secs

for each pairwise node encounter. Since the Haggle data set
has only 22,459 entries spanning over three days, we repeat
it another four times to make it into a data set with 112,295
entries spanning over 15 days, and thus make it comparable
to the MIT reality data set in quantity. Some statistics of the
processed data sets are summarized in Table 1.

4.2 Setup

Without loss of generality, we choose L. = 0.5 to be the line
between good and evil. For each data set, we randomly pick
10 percent of the nodes to be the evil nodes and assign them
with suspiciousness greater than 0.5; the rest of the nodes are
good nodes and are assigned suspiciousness less than 0.5.

For a particular pairwise encounter, a uniform random
number is generated for each node; a node receives a
“suspicious” assessment (by the other node) if the random
number is greater than its suspiciousness and receives a
“nonsuspicious” assessment otherwise. Thus, each assess-
ment is binary, while the frequency of “suspicious”
assessments for a particular node reflects its suspiciousness
in the long term.

4.3 Performance Metric

The performance comparison is based on two metrics:
detection rate and false positive rate. The categories of the
“neighbor’s nature” and “cut-off decision” combinations
are shown in Table 2. For each combination, we sum up all
the decisions made by good nodes (evil nodes’ cut-off
decisions are irrelevant) and obtain four counts: TP (true
positives), F'N (false negatives), TN (true negatives), and
F'P (false positives). The detection rate DR is defined as

TP
DR = m X 100%,
and the false positive rate F'PR is defined as

FPR x 100%.

“FP+TN

100

59

TABLE 2
Neighbor Nature and Cut-Off Decision Combination

‘ ...gets cut off.

...stays connected. ‘
‘ An evil neighbor...

True positive. False negative.

A good neighbor... | False positive. True negative.

A high detection rate and a low false positive rate are
desirable. When a balance must be stricken between the
two, one might be emphasized over the other, depending
on the context.

4.4 Results

4.4.1 Look Ahead: Distribution versus Maximizer

We compare the two alternative approaches, distribution
and maximizer, to the look-ahead strategy (see Section 3.1).
The results are shown in Fig. 2.

The look-ahead parameter A reflects a node’s intrinsic
(infection) risk inclination. In both Haggle (see Figs. 2a and
2b) and MIT reality (see Figs. 2c and 2d), the A-robust cut-
off strategy with a larger A corresponds to a higher
detection rate (in the early stage for Haggle and throughout
for MIT reality) and a significantly lower false positive rate
(for both data sets). In Haggle, the eventual detection rates
for all three look-ahead parameters are close to 100 percent.
The difference in the eventual detection rate between
Haggle and MIT reality is attributed to the different contact
patterns in these data sets: The contact pattern in Haggle is
more homogeneous than that in MIT reality, in the sense
that the variation of the interval between encounters is
significantly higher and a few nodes contribute most of the
assessments in MIT reality. Thus, the detection rate is more
sensitive to the change of A in MIT reality than in Haggle.

In both data sets, the detection-rate and false-positive
rate are comparable for the distribution and maximizer
approach, with the distribution approach having a slightly
higher detection rate and false-positive rate. The small
difference in performance, coupled with the significant
reduction in computation overhead (integration for the
distribution approach versus arithmetic operations for the
maximizer approach), make the maximizer approach with a
moderate A as the preferred look-ahead strategy. In the
following sections, we show results for the maximizer
approach with A = 3.
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Fig. 3. Performance comparison between the vanilla Bayesian (degenerated 0-robust) cut-off strategy and the 3-robust look-ahead cut-off strategy.

4.4.2 Look Ahead

We compare Bayesian-based strategies with, and without,
the look-ahead extension (i.e., A-robust cut-off decision)
under the household-watch model (i.e., no evidence
exchange). The vanilla Bayesian strategy does not look
ahead and proceeds with cutting-off once the evidence
becomes unfavorable to the neighbor. It can be seen as a
degenerated A-robust cut-off strategy with A =0. The
results are shown in Fig. 3.

In Fig. 3, the vanilla Bayesian strategy has the highest
detection and false-positive rate. Both rates drop with
an increasing look-ahead parameter. However, the false-
detection rate drops much faster than the detection rate.
Indeed, for Haggle, the 1-robust and the vanilla Bayesian
strategies have almost the same detection rate after 30,000
encounters, but there is a 30 percent difference in the false-
positive rate. The difference in detection rate is more
pronounced for MIT reality, but the reduction in false-
positive rate far outweighs that of detection rate. For the
risk-taking nodes, sacrificing a little detection rate for a
large reduction in false-positive rate is desirable: the look-
ahead parameter A provides an effective mechanism to tune
for a desirable balance.

The results confirm the intuition that leads to the look-
ahead extension to the vanilla Bayesian strategy: Being
conservative in making cut-off decisions (by looking
ahead) pays off by retaining utility without sacrificing
much security.

4.4.3 Evidence Consolidation

We also evaluate the benefits of sharing assessments
among nodes, and the effect of the proposed evidence
consolidation strategies in minimizing the negative impact
of liars on the shared evidence’s quality. We compare the
dogmatic filtering (with dogmatism of 0.0001, 0.01, and 1,
respectively) and adaptive look-ahead evidence consolida-
tion methods with two other (naive) evidence consolidation
methods: 1) taking no indirect evidence, i.e., look ahead
with no evidence consolidation, and 2) taking all indirect
evidence without filtering.

In our study, 10 percent of the evil nodes play the dual
roles of evil-doers and liars. There are many possible liar
strategies. Based on our observations in Section 3.2.4, we
adopt an exaggerated false praise/accusation liar strategy. More
specifically, a liar (falsely) accuses good nodes of suspicious
actions and (falsely) praises other evil nodes for nonsuspi-
cious actions. Besides, to exert a significant influence on
the public opinion, they exaggerate the false praises/
accusations by 10 times (since they are only 10 percent of
the whole population). The results on the performance of
various evidence consolidation strategies under this setting
are shown in Fig. 4.

Fig. 4 clearly shows the negative impact of liars on
malware detection if evidence is not filtered: Under the
influence of liars, the naive “all” strategy has a low-
detection rate and a high false-positive rate. This calls for
a nontrivial evidence consolidation strategy to deal with
the liars.

100

30

100

10

26404 4e+04 6e+04 8e+04 1e+05
Encounter sequence

(a) Haggle.

T T T T
2e+04 4e+04 6e+04 8e+04 1e+05
Encounter sequence

(b) Haggle.

T T T T
26404 4e+04 6e+04 8e+04 1e+05
Encounter sequence

(c) MIT reality.

s —— 3-robust .
4 all '
i’ & - -~ dogmatic 1 !
° ; & R o 9 o
@ K I T ® —— dogmatic 0.01 )
; Q) S
I fl < - < -=-- dogmatic 0.0001 ”’.‘"’,r—‘ <
< ) _ b o 8 < -- - adaptive s P o
° o i 3-robust =1 - SR - S o =4
= --- all = = ° -
= -~ dogmatic 1 2, =z 3 2 a
S 1 —— dogmatic 0.01 b - S -~
S e == dogmatic 0.0001 3 S e S «
@ . i @
3 adaptive o 2 — 3-robust 3 - @ 3-robust
a) 5 - al a] 5 - all
o w --- dogmatic 1 o o dogmatic 1
L | L r ——  dogmatic 0.01 o dogmatic 0.01
-—-- dogmatic 0.0001 -~ dogmatic 0.0001
-+ adaptive ---- adaptive
© © © ° T T T T

2e+04 4e+04 6e+04 8e+04 1e+05
Encounter sequence

(d) MIT reality.

Fig. 4. Performance impact of various evidence consolidation methods on the look-ahead cut-off strategy. all: naive strategy without filtering (see
Section 3.2); dogmatic 6: dogmatic filtering with dogmatism 6 (see Section 3.2.4); adaptive: adaptive look ahead (see Section 3.2.4).
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Both dogmatic filtering and adaptive look ahead show
significant increases in detection rate and modest increases
in false positive rate over the baseline 3-robust look-ahead
strategy with no evidence filtering. Together with Fig. 3, the
results indicate that the 3-robust look ahead, with either
dogmatic filtering or adaptive look ahead, is comparable in
detection rate and, even in the presence of liars, shows a
significantly lower false positive rate in comparison with
both the Bayesian and 1-robust strategies.

In Fig. 4, the eventual detection rates converge to almost
100 percent for Haggle but diverge for MIT reality. The
convergence in detection rate is expected for a homoge-
neous data set like Haggle, in which most nodes are well
connected and are able to collect enough evidence to
eventually make a sound cut-off decision. In this case,
evidence consolidation helps to expedite the decision-
making process without driving the false-positive rate up
too much. A closer look at MIT reality indicates that this
data set is highly heterogeneous: A few well-connected
nodes contribute most of the assessments, and leave the
other less well-connected nodes with insufficient evidence
to make a A-robust judgment alone. In this case, evidence
consolidation helps the latter nodes in collecting enough
evidence to make a A-robust decision.

Two of the dogmatic filtering strategies (with a dogma-
tism of 0.01 and 0.0001) show almost the same performance,
with the other dogmatic filtering strategy (with a dogma-
tism of 1) show a slight difference in comparison with other
strategies. In both data sets, the adaptive look-ahead
strategy shows an inferior performance in comparison to
the three variations of the dogmatic filtering strategy.
However, it automatically (i.e., with no parameter to tune)
achieves superior detection rate over both Bayesian and 3-
robust strategies in the presence of liars.

5 RELATED WORK

Proximity malware and mitigation schemes. Su et al. [24]
collected Bluetooth traces and demonstrated that malware
could effectively propagate via Bluetooth with simulations.
Yan et al. [25] developed a Bluetooth malware model. Bose
and Shin [26] showed that Bluetooth can enhance malware
propagation rate over SMS/MMS. Cheng et al. [27]
analyzed malware propagation through proximity channels
in social networks. Akritidis et al. [4] quantified the threat of
proximity malware in wide-area wireless networks. Li et al.
[28] discussed optimal malware signature distribution in
heterogeneous, resource-constrained mobile networks. In
traditional, non-DTN, networks, Kolbitsch et al. [8] and
Bayer et al. [9] proposed to detect malware with learned
behavioral model, in terms of system call and program
flow. We extend the Naive Bayesian model, which has been
applied in filtering email spams [13], [14], [15], detecting
botnets [16], and designing IDSs [10], [17], and address
DTN-specific, malware-related, problems. In the context of
detecting slowly propagating Internet worm, Dash et al.
presented a distributed IDS architecture of local/global
detector that resembles the neighborhood-watch model,
with the assumption of attested/honest evidence, i.e.,
without liars [10].

Mobile network models and traces. In mobile networks, one
cost-effective way to route packets is via the short-range
channels of intermittently connected smartphones [29], [30],
[31]. While early work in mobile networks used a variety of
simplistic random i.i.d. models, such as random waypoint,
recent findings [32] show that these models may not be
realistic. Moreover, many recent studies [33], based on real
mobile traces, revealed that a node’s mobility shows certain
social network properties. Two real mobile network traces
were used in our study.

Reputation and trust in networking systems. In the
neighborhood watch model, suspiciousness, defined in (1),
can be seen as nodes’ reputation; to cut a node off is to
decide that the node is not trustworthy. Thus, our work can
be viewed from the perspective of reputation/trust systems.
Three schools of thoughts emerge from previous studies.
The first one uses a central authority, which by convention
is called the trusted third party. In the second school, one
global trust value is drawn and published for each node,
based on other nodes” opinions of it; eigenTrust [34] is an
example. The last school of thoughts includes the trust
management systems that allow each node to have its own
view of other nodes [35], [36]. Our work differs from
previous trust management work in addressing two DTN-
specific, malware-related, trust management problems:
1) insufficient evidence versus evidence collection risk and
2) sequential and distributed online evidence filtering.

6 CONCLUDING REMARKS

Behavioral characterization of malware is an effective
alternative to pattern matching in detecting malware,
especially when dealing with polymorphic or obfuscated
malware. Naive Bayesian model has been successfully
applied in non-DTN settings, such as filtering email spams
and detecting botnets. We propose a general behavioral
characterization of DTN-based proximity malware. We
present look ahead, along with dogmatic filtering and adaptive
look ahead, to address two unique challenging in extending
Bayesian filtering to DTNs: “insufficient evidence versus
evidence collection risk” and “filtering false evidence
sequentially and distributedly.” In prospect, extension of
the behavioral characterization of proximity malware to
account for strategic malware detection evasion with game
theory is a challenging yet interesting future work.
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