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1 Introduction 

In real world, an event or a process where a group of people 
talk to each other is termed as a conference. Advances in 
technology allow a conference between people via 
telephone lines or over the internet. In the digital world, 
number of software programs or small sensor devices or 
grid elements interacting with one another can also be seen 
as examples of conferences. Thus we can define the term 
conference as an interaction between a group of entities that 
are part of the universe. We call the entities involved in a 
conference as members of the conference, entities in the 
universe but outside a conference as users and those out  
side the universe as outsiders throughout the paper.  
The universe can have many conferences going on 
simultaneously and a user can be a member of none, one or 
many conferences (see Figure 1). 

In critical applications, a conference may require 
confidentiality, i.e., communication is limited to only those 
who are in the conference, but anyone else outside the 
conference cannot understand the communication even if he 
or she can intercept the communication. The same concept 
applies to conferences in the digital world. A conference 
must be secure such that only the members should be able to 
get the information shared. Encryption of data allows it to 
be transmitted in such a way that all can see the 
transmission but only a few, who have the decryption key, 
can understand it. 

Also, conferences in the digital world are dynamic. 
There are two types of dynamics: join and leave. Users of 
the universe join a conference to become members or some 
outsiders join the universe as well as a conference. Some 
members leave a conference to become users or some 
members leave all the conferences as well as the universe to 
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become outsiders. In case of joins, the conference key needs 
to be changed in order to prevent the new joining members 
from accessing past data (backward secrecy). Similarly,  
in case of leaves, the conference key needs to be changed  
in order to prevent the leaving members from accessing 
future data (forward secrecy). The scenario of conferences 
described so far is defined as Secure Dynamic Conferencing 
(SDC). 

Figure 1 An example of universe of users and conferences 

 

High dynamics in SDC means that conference keys need to 
frequently be changed and distributed to the members.  
How to distribute keys to the members of conferences in  
a dynamic yet efficient manner is the biggest problem  
(we call it the problem of Conference Key Management 
(CKM)). In this paper we propose a simple, practical, 
scalable and efficient CKM scheme, based on polynomials 
over finite field. In Section 2 we discuss various schemes 
found in literature. Followed is our scheme in Section 3.  
We discuss security analysis and efficiency of our scheme 
comparing with other schemes in Section 4, followed by 
conclusion and future work. 

2 State of the art 

To our knowledge, just a few key distribution schemes for 
SDC have been proposed in literature. These schemes can 
be classified as a naive solution (Desmedt and Viswanathan, 
1998), Public Key based SDC (PKSDC) schemes including 
the Chinese Remainder Theorem based SDC (secure lock) 
(SLSDC) scheme (Chiou and Chen, 1989), Symmetric 
Polynomial Based Schemes (SPSDC) (Blundo et al., 1998, 
1993; Zou et al., 2002), the Interval based SDC scheme 
(ISDC) (Gouda et al., 2002), and the Key Tree based SDC 
scheme (KTSDC) (Adusumilli and Zou, 2005; Zou et al., 
2004a, 2004b). Secure Group Communication (SGC) is a 

special case of SDC and it has been studied by many 
researchers (Beimel and Chor, 1994, 1996; Blom, 1985; 
Blundo and Cresti, 1995; Blundo et al., 1993, 1998; 
Burmester and Desmedt, 1995; Noubir, 1999; Noubir et al., 
2002; Stinson, 1997). The book (Zou et al., 2004b) surveys 
many SGC schemes, but all the schemes for SGC can not be 
used for SDC directly. 

The naive scheme proposed in Desmedt and 
Viswanathan (1998) assigns one (independent) key for each 
of 2n – n – 1 possible conferences (here n is the size of the 
universe), and gives each member 2n–1 – 1 keys, one  
for each of the conferences the member can join. Whenever 
a member wants to communicate to the members in  
a conference, the member just picks up the key 
corresponding to the conference and does it. The main 
problems with the naive solution are its exponential number 
of keys to be stored with every user and no support for 
dynamics. 

In PKSDC, whenever a member mi wants to send  
a message M to a conference 

1
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li i iC m m m= ∪…  mi 
selects a random session key k, encrypts the message with k, 
and encrypts k with these members’ public keys 

1
, ,

li iP P…  
respectively, and broadcasts 
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the group. In SLSDC, the multiple encryptions of k,  
i.e., 

1
{ ( ), , ( )}

i ilP PE k E k…  are combined into one value 

(called secure lock) using the Chinese Remainder Theorem. 
The SLSDC scheme has two advantages over PKSDC:  
a receiver can compute the key directly and efficiently from 
the lock value and conference members are hidden so that 
non conference members or outsiders cannot know who are 
in the conference. The main problems with this kind of 
schemes are:  

• public key encryption and decryption are 
computationally expensive 

• the requirement of encrypting a session key with every 
conference member’s public key may cause scalability 
problem 

• it requires the existence of a PKI. 

In SPSDC (Blundo et al., 1993, 1998; Zou et al., 2002), 
each member is initially given certain secret information  
(a share of a symmetric polynomial), from which (along 
with some public information) the member can compute any 
conference key the member can join later. The main 
problem with this scheme is the exponential size of secret 
information. 

The KTSDC schemes (Adusumilli and Zou, 2005;  
Zou et al., 2004a, 2004b) assume presence of a key tree 
(either centralised or distributed Adusumilli and Zou 
(2005)) and then use that key tree to distribute conference 
keys. The problem with these schemes is the overhead 
associated with having the tree. Also synchronisation of the 
key tree at every user upon dynamic operations is a big 
problem, considering unreliable nature of communication 
networks. 
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ISDC (Gouda et al., 2002) is similar to the above 
KTSDC scheme in the sense that it is also based on the key 
tree scheme. The main problem with the ISDC scheme is 
that the Group Controller (GC) relays all the conference 
messages, i.e., decrypting messages, encrypting messages 
(with multiple keys covering the conference members), and 
resending messages. Using the GC to relay messages is very 
naive and certainly inefficient and non-scalable. 

We can enumerate the properties of a good solution to 
the problem of key distribution of SDC as follows:  

• A solution should take care of user dynamics in an 
efficient manner. 

• The scheme should be scalable for a large number  
of users and conferences. 

• The conference keys should be independent in order  
to have an unconditionally secure scheme. 

• Amount of storage required for keys or key materials, 
with every member, should be minimal. 

• In some applications, the membership information  
of any conference should be secret. No one outside the 
conference should know who are in conference. 

When we examine all the schemes proposed so far, each one 
of them lacks some property or other. In this paper we 
propose a polynomial based CKM scheme for SDC which 
satisfies all the above properties. 

3 Proposed scheme 

Finite fields are well studied in mathematics. A finite  
field over a prime q is denoted by Fq (Lausch and Nobaur, 
1973; Lidl and Niederreiter, 1986). A typical univariate 
polynomial of degree t is represented as a0 + a1 × x +  
a2 × x2 + … + at × xt. The coefficients a0, a1, … of a 
polynomial over a finite field Fq satisfy the property of 
ai < q. In this section we describe our novel secret sharing 
idea based on polynomials over finite fields, by which we 
design and present our novel CKM scheme. 

3.1 Secret sharing using polynomials over Fq 

Let us assume that we want to share a secret K to m 
members over the internet in an efficient manner.  
We assume the presence of a GC who generates and 
distributes K. Like all existing centralised schemes, the new 
scheme assumes that there is a secure channel between the 
GC and each member. It should be noted that the secure 
channel is used only for the initial setup process and key 
management operations are performed by broadcasting/ 
multicasting (masked) key materials over an insecure 
channel. 

The GC chooses a large prime q that forms the finite 
field Fq. It is assumed that K ∈ Fq. The GC selects a random 
polynomial H(x) of degree t over Fq. Now, the GC computes 
another polynomial S(x) = K – H(x). We call H(x) and S(x) 
as key polynomials. Let us consider a small example with 

t = 4. Let H(x) = a0 + a1x + a2x2 + a3x3 + a4x4, so the other 
key polynomial turns out to be S(x) = (K – a0) – a1x – a2x2  
– a3x3 – a4x4. So evaluating key polynomials at  
x = r ∈ Fq yields, H(r) = a0 + a1r + a2r2 + a3r3 + a4r4 and 
S(r) = (K – a0) – a1r – a2r2 – a3r3 – a4r4. Note that the 
coefficients of S(x) are positive after modular arithmetic. 
Here they are shown as negative just for simplicity of 
illustration. More importantly, H(r) and S(r) are going to be 
values such that H(r) + S(r) = K, due to the unique 
construction of key polynomials. This is true for any 
x = r ∈ Fq, but it should be noted that H(r1) + S(r2) ≠ K if 
r1 ≠ r2. 

S(x) and H(x) need to be kept secret. In order for a valid 
user to compute S(x = a) and H(x = a) at some point x = a so 
that the user can obtain K, another polynomial h(x), called a 
masking polynomial, is introduced. The GC picks up a 
random t degree polynomial over Fq as h(x) and keeps h(x) 
secret too. The GC chooses a unique IDi ∈ Fq and computes 
h(x = IDi) for each valid user Ui. This (IDi, h(IDi)) is given 
to user Ui over the secure channel between Ui and the GC 
and it is called as Ui’s secret. Basically each valid user gets 
a unique ID and a share of the masking polynomial. Let us 
continue with the example and assume the masking 
polynomial as h(x) = a5 + a6x + a7x2 + a8x3 + a9x4. 

Now, the GC computes two public polynomials 
W(x) = H(x) + h(x) and P(x) = S(x) + h(x) which are 
broadcasted/multicasted over an insecure channel. From  
the coefficients of the public polynomials W(x) and P(x),  
it is impossible to guess the secret polynomials. Adding 
masking polynomials h(x) makes sure that only those who 
have a share of h(x) can get a share of the key polynomials 
from the public polynomials and no one else. This means 
that anyone (including outsiders) can see the public 
polynomials, but only valid users can get a share of the key 
polynomials. For example, evaluation of W(x) at x = r gives 
a value equal to H(r) + h(r). Now to get H(r) from W(r) one 
has to know h(r). Also note that a valid user can get only his 
or her share of the public polynomials. For example Ui can 
get H(IDi) = W(IDi) – h(IDi), however he or she can not get 
H(IDj) since h(IDj) is Uj’s secret and no one else knows it. 
Similarly, Ui can (and only can) get S(IDi) from P(x). 

Thus the masking polynomial makes sure that only valid 
users can get shares of key polynomials. Also it makes sure 
that a valid user gets only his or her share of key 
polynomials. Thus only valid users can get the key from the 
broadcast/multicast messages. But conference key 
management for SDC requires the conference key to be 
shared with only members of a conference and not all valid 
users. In the next subsection we will propose an efficient 
CKM scheme for SDC by introducing a novel concept of 
randomised access polynomials. 

3.2 Conference Key Management (CKM) for SDC 

Similar to the above discussion, it is assumed that q is a 
large prime and t is a security parameter which determines 
collusion level. The GC selects a random t-degree masking 
polynomial h(x) and also a random t-degree key polynomial 
H(x). Let us further assume that there are n valid users in the 
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universe and each has received a unique secret (IDi, h(IDi)) 
from the GC. Suppose there are m valid users who want to 
have a conference. It is possible that many conferences are 
occurring simultaneously in the universe. The GC takes care 
of key management for all of them. For simplicity and to 
make the solution generic, we specify a conference by j and 
the conference key by Kj. 

The GC computes the other key polynomial for 
conference j as Sj(x) = Kj – H(x). It should be noted that one 
key polynomial (H(x)) remains constant and it is considered 
as a system polynomial. The GC distributes the secret  
H(x) by broadcasting/multicasting W(x) = H(x) + h(x).  
As explained earlier, all valid users can get a share of H(x) 
from W(x). Hence the other portion of key Kj needs to be 
published in such a way that only m members of the 
conference can get it and hence the key Kj. For doing that, 
the GC computes a randomised access polynomial for 
conference j using IDs of m conference members  
along 1( ) ( ) ( ) 1m

j j i iA x x VID x ID== − ∏ − +  with a virtual ID 
(a random integer). 

Now, the GC publishes Pj(x) = Sj(x) × Aj(x) + h(x).  
This construction makes sure that only the members of a 
conference can get a share of Sj(x) and hence the key.  
Any outsider or any other user outside the conference can 
not get the conference key. This is achieved by the 
construction of Aj(x) which makes sure that Aj(x = IDr) = 1 
if and only if IDr is a secret ID of a conference member or 
x = VIDj, otherwise Aj(x = IDr) = a random number. Thus a 
user Ur can get share of Sj(x) as Sj(IDr) = Pj(IDr) – h(IDr) if 
he or she is the member of the conference (i.e., his or her ID 
is contained in the formation of Aj(x)), otherwise this 
operation returns just a random number. We will elaborate 
the security of the new scheme in Section 4. It is worthy to 
note that the virtual term (x – VID) is changing every time 
A(x) is computed, thus, Aj(x) will be different even though 
the members in two conferences are the same. 

3.2.1 Key derivation 

Any valid user Ui can get the value H(IDi) = W(IDi)  
– h(IDi). To get conference key Kj, Ui needs to get Sj(IDi).  
If Ui is a member of conference j, he or she can get 
Sj(IDi) = Pj(IDi) – h(IDi) and then get the key as 
Kj = H(IDi) + Sj(IDi). The randomised access polynomial 
makes sure that no user outside the conference can get share 
of Sj(x). 

3.2.2 Dynamics 

There are two possible cases of dynamics, user joins and 
member leaves. The scheme can deal with both of them in 
an efficient manner. 

• The join operation. There are two scenarios to consider. 

First, when a user joins a conference j, the GC changes 
the conference key Kj to jK ′  to maintain backward 
secrecy. The GC computes the new key polynomial  
 

as ( ) ( ).j jS x K H x′ ′= −  Note that the system key 
polynomial H(x) does not change. The GC constructs  
a new randomised access polynomial ( )jA x′  by 
including the joining user’s ID and using a new jVID′   
in the computation. Then the GC publishes 

( ) ( ) ( ) ( ).j j jP x S x A x h x′ ′ ′= × +  Note that the new member 
to a conference can not get the previous conference 
keys since his or her ID was not used to compute 
previous randomised access polynomials. He or she  
can get current key as he or she was included in the 
conference and future keys as long as he or she remains 
in the conference. 

Second, when an outsider joins universe and also  
a conference j, the GC finds a random unique IDnew and 
calculates h(IDnew). The new user gets his or her secret 
as (IDnew, h(IDnew)) from the GC. Once he or she 
becomes a valid user in universe, he or she can join  
a conference in the same way as the operation discussed 
above. 

• The leave operation. We consider two scenarios here 
too. 

First, when a member leaves a conference j, the GC 
changes key Kj to jK ′  to maintain forward secrecy.  
The GC computes the new key polynomial as 

( ) ( ).j jS x K H x′ ′= =  Also the GC computes the new 
randomised access polynomial ( )jA x′  by excluding  
the ID of the leaving member and replacing VIDj with a 
new jVID′  and broadcasts ( ) ( ) ( ) ( ).j j jP x S x A x h x′ ′ ′= × +  
Thus the leaving member can not get the conference 
data anymore. 

Second, when a member leaves the entire universe and 
becomes an outsider, the GC takes the member out of 
the conference (if the member is in) same as the above 
leave operation and removes his or her name from the 
universe list.  

It is possible that multiple users join and/or multiple 
members leave simultaneously. This can be efficiently 
conducted as for the single join and/or leave: just including 
the new joining members’ IDs in and excluding the leaving 
members’ IDs out of the formation of the new randomised 
access polynomial (again, a new VID′  is used). 

Thus our scheme handles user dynamics in an elegant 
and efficient manner. 

4 Discussion 

In this section we provide security proofs of our scheme. 
We also discuss the efficiency of our scheme in terms of 
storage, computation, and communication complexities.  
The comparison of our scheme with existing schemes is also 
presented based on the desirable properties of a good 
solution for SDC CKM and efficiency. 
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4.1 Security analysis 

Like all other secret sharing-based schemes, the new 
scheme also assumes that t is the maximum number of 
possible users who attempt to collude. Let us assume that 
the GC has setup the system by choosing a secret masking 
polynomial h(x) and a secret key polynomial H(x) and 
publishes W(x) = H(x) + h(x) (they are all of degree t).  
The GC chooses a unique IDi and computes h(IDi) for each 
user Ui, in the universe. Every Ui gets (IDi, h(IDi)) as his or 
her secret. It is assumed that h(x) (similarly, H(x)) is only 
known to the GC. From Shamir’s (1979) secret sharing 
principle, t or less users collude with their (IDi, h(IDi)) but 
they cannot gain any bit of information about h(x). That is to 
say, h(x) is unconditionally secure if t or less users collude, 
so does the new scheme. On the other hand, t + 1 or more 
users collude and they can recover entire h(x) by using 
polynomial interpolation over t + 1 points {(IDi, h(IDi))}.  
In summary, we could feasibly assume:  

• t is selected according to application properties and 
security requirement such that the maximum number  
of colluding users will not exceed t 

• due to the efficiency of the new scheme, t can be 
selected to be large to prevent colluding attacks  
without affecting efficiency 

• in case more than t users are found to attempt  
colluding, the GC can discard the current h(x) and 
generate a new h(x) and distribute the new shares to 
legitimate users.  

Furthermore, periodically refreshing h(x) can be embedded 
in the new scheme to prevent collusion attempts.  

As for attacks, the possible information which can be 
exploited is W(x) and P(x). As for W(x) (= H(x) + h(x)) 
which is unchanged once published, attackers cannot get 
H(x) or h(x) without knowing the other. The possible values 
the users can get are nothing but the shares H(IDi) from 
h(IDi). Thus, W(x) does not help for attacking. As for P(x), 
none of A(x) and S(x) can be obtained from ONE P(x) 
because h(x) is contained in P(x). Suppose two or more P(x) 
such as Pj(x) and Pj+1(x) are observed. h(x) can be cancelled 
out by differentiating Pj+1(x) and Pj(x) as Pj+1(x)  
– Pj(x) = Sj+1(x)Aj+1(x) – Sj(x)Aj(x). However, Sj+1(x) and 
Sj(x) are random polynomials, thus, being independent and 
Aj+1(x) and Aj(x) are not equal (Note: Aj+1(x) contains a 
virtual term (x – VIDj+1) and Aj(x) contains a virtual term 
(x – VIDj), so they will still be different even when they 
contains same user IDs). Thus, a malicious user cannot 
figure out any of Aj(x), Sj(x), Aj+1(x), and Sj+1(x). 
Furthermore, even though multiple (less than or equal to t) 
users collude, their collusion will not generate any further 
information. This is because all polynomials Aj(x), Sj(x), 
Aj+1(x), and Sj+1(x) will generate useful information only 
when x in all of them is bound to a same value, but the IDs 
of colluding users are different. As a result, P(x)s do not 
help for attacks either. As for both W(x) and P(x), due to the 
same reason of same x-value binding, their combination  
will not help for attack. In summary, the new scheme is 

secure against the attacks from malicious users (except the 
collusion of more than t users). It is obvious that all attacks 
from outsiders, regardless of a single attacker or multiple 
attackers, will not success either. 

Next we discuss the correctness and security of our 
scheme via an example shown in Figure 1. It shows some 
users in the Universe, some outsiders (triangles in the 
Figure), and two conferences. Conference 1 consists of four 
members U1, U2, U3 and U7 and conference 2 consists of 
members U6, U7, U8, U9 and U10. Let K1 be the key of 
conference 1. The GC computes key polynomial 
S1(x) = K1 – H(x). The GC computes the randomised access 
polynomial A1(x) using IDs of members in conference 1 
plus a random virtual ID, i.e., ID1, ID2, ID3, ID7 plus VID1 
and publishes P1(x) = S1(x)A1(x) + h(x). 

Let us see what happens if a user U4 who is not in 
conference 1 tries to get K1. U4 can get H(ID4) = W(ID4)  
– h(ID4) using public information and his or her  
secrets. Now he or she needs S1(ID4) to get key K1.  
If U4 evaluates P1(x) at x = ID4, he or she gets P1(ID4)  
= S1(ID4) × A1(ID4) + h(ID4). From this he or she can get 
value of S1(ID4) × A1(ID4) by subtracting his or her  
secret h(ID4) from P1(ID4). Still he or she can not get the 
value of S1(ID4) because the randomised access function is 
secret. Also the list of members in the conference is secret 
so no one can construct the randomised access polynomial 
either. For any member of the conference, the randomised 
access function evaluates to 1 and they get the share of S1(x) 
easily. If an outsider tries to get the key, the masking 
polynomial prevents him/her from getting any key share. 
Thus our scheme is secure against attacks from outsiders as 
well as users in universe that are not members of a 
conference. 

Let us see what happens if someone such as U4 tries  
to guess different values of x to get the key. Attacker  
U4 can guess x = r for which randomised access  
polynomial A1(x = r) = 1. But then he or she gets 
P1(r) = S1(r) + h(r). From this he or she can not get S1(r) 
without knowing h(r). The masking polynomial h(x) is 
secret with the GC and any user knows only his or her share 
of it, thus it is impossible for the attacker to get share of 
S1(x). Similarly, for an outside attacker, the guess attack 
yields nothing. Thus our scheme is secure against guess 
attacks as well. 

4.2 Performance analysis 

Our scheme is efficient in terms of storage, computation and 
communication efficiency. Each user Ui’s secret consists of 
(IDi, h(IDi)), which is quite small and requires O(1) space. 
The GC has to store all users IDs, secret masking 
polynomial and the key polynomial as well as information 
about conferences. Generally the GC is assumed to have a 
lot of computing power hence this storage is not much for 
the GC. 

The conference key computation for a member of a 
conference requires two polynomial evaluations at x = IDi, 
two subtractions, and one addition. Since P(x) to be 
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evaluated is of degree t + m + 1 (note: 1 here is the 
contribution of the virtual term (x – VID)), the key 
computation complexity is O(t + m). 

The GC broadcasts the key materials in terms of two 
polynomials: one of t + m + 1 degree and other of degree t. 
To broadcast a polynomial, it is required to broadcast its 
coefficients. Thus the communication complexity is 
O(t + m) which is small as well. 

Thus it can be seen that our scheme is very efficient. 
Efficiency of our scheme makes it suitable for using even in 
wireless or sensor networks which involve devices with 
moderate computing resources.  

4.3 Comparison 

Here we compare our proposed scheme with other  
key management schemes for SDC. Table 1 shows  
this comparison in terms of properties of a good  
solution discussed in Section 2. It is important for a good 
scheme to have all the properties, but all existing  
schemes lack one property or the other. Our proposed 
scheme is the only scheme which meets all the properties 
and hence is qualitatively better than any other existing 
scheme. 

Table 1 Comparison of typical SDC schemes 

Scheme Dynamic Scalable CCK* Secrecy** 

Naive No No No YES 
PKSDC Yes No Yes No 
SLSDC Yes No Yes Yes 
SPSDC Yes No No YES 
ISDC Yes No Yes NO 
KTSDC Yes Yes Yes No 
KTDCKM-SDC Yes Yes Yes No 
Our Scheme Yes Yes Yes Yes 

*Changeable conference keys. 
**Secrecy about conferences and members  
of conferences. 

Our scheme is better than existing schemes in a  
quantitative comparison as well. Table 2 shows the 
comparison of storage (at user end), key computation  
(at user end) and communication (between the GC or 
conference initiator and members) complexities. Storage 
complexity is calculated in terms of storage required at user 
end. Similarly computation complexity is calculated in 
terms of computations required by users for getting key. 
Communication complexity is based on size of broadcast 
messages. It can be easily seen from the complexity 
comparison table that our scheme is independent from the 
size n of the universe and lot more efficient than any other 
existing schemes. The efficiency of our scheme makes it 
portable to wireless ad-hoc or sensor networks, which is the 
future direction of research. 
 
 

Table 2 Complexity comparison 

Scheme Storage Computation Communication

Naive O(2n–1 – 1) O(1) O(2n–1 – 1) 
PKSDC O(n) O(mP)* O(n) 
SLSDC O(n) O(mP)* O(m)* 
SPSDC O(nm) O(t2) O(nm) 
ISDC O(log(n)) O(Dlog(n))+ O(log(n)) 
KTSDC O(log(n)) O(Dlog(n))+ O(log(n)) 
KTDCKM-SDC O(n) O(Dlog(n))+ O(log(n)) 
Our Scheme O(1) O(t + m) O(t + m) 

nTotal number of users in Universe. 
mNumber of members in a typical conference. 
tDegree of polynomials used. 
*P is the complexity of public key encryption/decryption. 
+D is the complexity of secret key encryption/decryption. 

5 Conclusion 

We proposed a novel conference key management scheme 
for secure dynamic conferencing, based on polynomials 
over finite field. Our scheme is simple, practical, scalable, 
and efficient in terms of storage, computation and 
communication. Our scheme takes care of user dynamics in 
an elegant and efficient way and is able to hide conference 
membership. Thus our scheme solves all the problems that 
existing SDC CKM schemes have. Efficiency of our scheme 
in terms of storage and key computations at user end makes 
it suitable to use in networks with low power devices. 
Future work includes performance evaluation and 
experimentation to judge applicability of the scheme in 
wireless and sensor networks. 
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