
Int. J. Security and Networks, Vol. x, No. x, 200x 1

Copyright © 200x Inderscience Enterprises Ltd.

A novel Conference Key Management solution
for Secure Dynamic Conferencing

Xukai Zou*
Department of Computer and Information Science,
Indiana University-Purdue University Indianapolis,
IN 46202, USA
E-mail: xkzou@cs.iupui.edu
*Corresponding author

Yogesh Karandikar
2Wire Inc., California 95131, USA
E-mail: ykarandikar@2wire.com

Abstract: Conference Key Management (CKM) is one of the primary issues in Secure Dynamic
Conferencing (SDC). In this paper, we propose a novel CKM scheme for SDC based on the
secret sharing principle and the novel concept/introduction of randomised access polynomial. Our
scheme is simple, efficient, scalable, practical, dynamic and outperforms existing CKM schemes
in overall comparison. Furthermore, if t or less users collude, the new scheme is unconditionally
secure and able to defend against their collusions. The storage (O(1) at user end), computation
and communication efficiency of the new scheme makes it well suited for the networks with low
power devices.

Keywords: network security; secure dynamic conferencing; SDC; conference key management;
CKM; secure group communication; SGC; group key management; GKM; access polynomial.

Reference to this paper should be made as follows: Zou, X. and Karandikar, Y. (xxxx) ‘A novel
Conference Key Management solution for Secure Dynamic Conferencing’, Int. J. Security and
Networks, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Xukai Zou is an Assistant Professor at the Department of Computer and
Information Sciences at Indiana University-Purdue University Indianapolis, USA. He completed
his PhD Degree from University of Nebraska-Lincoln in 2000. His research focus is in applied
cryptography, network security, and communication networks.

Yogesh Karandikar is a Software Engineer with 2Wire Inc. He completed his Master of Science
in Computer Science from Indiana University, Purdue University Indianapolis, USA. His
research interests include network and communication security, application security,
cryptography.

1 Introduction

In real world, an event or a process where a group of people
talk to each other is termed as a conference. Advances in
technology allow a conference between people via
telephone lines or over the internet. In the digital world,
number of software programs or small sensor devices or
grid elements interacting with one another can also be seen
as examples of conferences. Thus we can define the term
conference as an interaction between a group of entities that
are part of the universe. We call the entities involved in a
conference as members of the conference, entities in the
universe but outside a conference as users and those out
side the universe as outsiders throughout the paper.
The universe can have many conferences going on
simultaneously and a user can be a member of none, one or
many conferences (see Figure 1).

In critical applications, a conference may require
confidentiality, i.e., communication is limited to only those
who are in the conference, but anyone else outside the
conference cannot understand the communication even if he
or she can intercept the communication. The same concept
applies to conferences in the digital world. A conference
must be secure such that only the members should be able to
get the information shared. Encryption of data allows it to
be transmitted in such a way that all can see the
transmission but only a few, who have the decryption key,
can understand it.

Also, conferences in the digital world are dynamic.
There are two types of dynamics: join and leave. Users of
the universe join a conference to become members or some
outsiders join the universe as well as a conference. Some
members leave a conference to become users or some
members leave all the conferences as well as the universe to

2 X. Zou and Y. Karandikar

become outsiders. In case of joins, the conference key needs
to be changed in order to prevent the new joining members
from accessing past data (backward secrecy). Similarly,
in case of leaves, the conference key needs to be changed
in order to prevent the leaving members from accessing
future data (forward secrecy). The scenario of conferences
described so far is defined as Secure Dynamic Conferencing
(SDC).

Figure 1 An example of universe of users and conferences

High dynamics in SDC means that conference keys need to
frequently be changed and distributed to the members.
How to distribute keys to the members of conferences in
a dynamic yet efficient manner is the biggest problem
(we call it the problem of Conference Key Management
(CKM)). In this paper we propose a simple, practical,
scalable and efficient CKM scheme, based on polynomials
over finite field. In Section 2 we discuss various schemes
found in literature. Followed is our scheme in Section 3.
We discuss security analysis and efficiency of our scheme
comparing with other schemes in Section 4, followed by
conclusion and future work.

2 State of the art

To our knowledge, just a few key distribution schemes for
SDC have been proposed in literature. These schemes can
be classified as a naive solution (Desmedt and Viswanathan,
1998), Public Key based SDC (PKSDC) schemes including
the Chinese Remainder Theorem based SDC (secure lock)
(SLSDC) scheme (Chiou and Chen, 1989), Symmetric
Polynomial Based Schemes (SPSDC) (Blundo et al., 1998,
1993; Zou et al., 2002), the Interval based SDC scheme
(ISDC) (Gouda et al., 2002), and the Key Tree based SDC
scheme (KTSDC) (Adusumilli and Zou, 2005; Zou et al.,
2004a, 2004b). Secure Group Communication (SGC) is a

special case of SDC and it has been studied by many
researchers (Beimel and Chor, 1994, 1996; Blom, 1985;
Blundo and Cresti, 1995; Blundo et al., 1993, 1998;
Burmester and Desmedt, 1995; Noubir, 1999; Noubir et al.,
2002; Stinson, 1997). The book (Zou et al., 2004b) surveys
many SGC schemes, but all the schemes for SGC can not be
used for SDC directly.

The naive scheme proposed in Desmedt and
Viswanathan (1998) assigns one (independent) key for each
of 2n – n – 1 possible conferences (here n is the size of the
universe), and gives each member 2n–1 – 1 keys, one
for each of the conferences the member can join. Whenever
a member wants to communicate to the members in
a conference, the member just picks up the key
corresponding to the conference and does it. The main
problems with the naive solution are its exponential number
of keys to be stored with every user and no support for
dynamics.

In PKSDC, whenever a member mi wants to send
a message M to a conference

1
{ , } { },

li i iC m m m= ∪… mi
selects a random session key k, encrypts the message with k,
and encrypts k with these members’ public keys

1
, ,

li iP P…
respectively, and broadcasts

1
({ (), , ()}, { })

i ilP P kE k E k M… to

the group. In SLSDC, the multiple encryptions of k,
i.e.,

1
{ (), , ()}

i ilP PE k E k… are combined into one value

(called secure lock) using the Chinese Remainder Theorem.
The SLSDC scheme has two advantages over PKSDC:
a receiver can compute the key directly and efficiently from
the lock value and conference members are hidden so that
non conference members or outsiders cannot know who are
in the conference. The main problems with this kind of
schemes are:

• public key encryption and decryption are
computationally expensive

• the requirement of encrypting a session key with every
conference member’s public key may cause scalability
problem

• it requires the existence of a PKI.

In SPSDC (Blundo et al., 1993, 1998; Zou et al., 2002),
each member is initially given certain secret information
(a share of a symmetric polynomial), from which (along
with some public information) the member can compute any
conference key the member can join later. The main
problem with this scheme is the exponential size of secret
information.

The KTSDC schemes (Adusumilli and Zou, 2005;
Zou et al., 2004a, 2004b) assume presence of a key tree
(either centralised or distributed Adusumilli and Zou
(2005)) and then use that key tree to distribute conference
keys. The problem with these schemes is the overhead
associated with having the tree. Also synchronisation of the
key tree at every user upon dynamic operations is a big
problem, considering unreliable nature of communication
networks.

 A novel Conference Key Management solution for Secure Dynamic Conferencing 3

ISDC (Gouda et al., 2002) is similar to the above
KTSDC scheme in the sense that it is also based on the key
tree scheme. The main problem with the ISDC scheme is
that the Group Controller (GC) relays all the conference
messages, i.e., decrypting messages, encrypting messages
(with multiple keys covering the conference members), and
resending messages. Using the GC to relay messages is very
naive and certainly inefficient and non-scalable.

We can enumerate the properties of a good solution to
the problem of key distribution of SDC as follows:

• A solution should take care of user dynamics in an
efficient manner.

• The scheme should be scalable for a large number
of users and conferences.

• The conference keys should be independent in order
to have an unconditionally secure scheme.

• Amount of storage required for keys or key materials,
with every member, should be minimal.

• In some applications, the membership information
of any conference should be secret. No one outside the
conference should know who are in conference.

When we examine all the schemes proposed so far, each one
of them lacks some property or other. In this paper we
propose a polynomial based CKM scheme for SDC which
satisfies all the above properties.

3 Proposed scheme

Finite fields are well studied in mathematics. A finite
field over a prime q is denoted by Fq (Lausch and Nobaur,
1973; Lidl and Niederreiter, 1986). A typical univariate
polynomial of degree t is represented as a0 + a1 × x +
a2 × x2 + … + at × xt. The coefficients a0, a1, … of a
polynomial over a finite field Fq satisfy the property of
ai < q. In this section we describe our novel secret sharing
idea based on polynomials over finite fields, by which we
design and present our novel CKM scheme.

3.1 Secret sharing using polynomials over Fq

Let us assume that we want to share a secret K to m
members over the internet in an efficient manner.
We assume the presence of a GC who generates and
distributes K. Like all existing centralised schemes, the new
scheme assumes that there is a secure channel between the
GC and each member. It should be noted that the secure
channel is used only for the initial setup process and key
management operations are performed by broadcasting/
multicasting (masked) key materials over an insecure
channel.

The GC chooses a large prime q that forms the finite
field Fq. It is assumed that K ∈ Fq. The GC selects a random
polynomial H(x) of degree t over Fq. Now, the GC computes
another polynomial S(x) = K – H(x). We call H(x) and S(x)
as key polynomials. Let us consider a small example with

t = 4. Let H(x) = a0 + a1x + a2x2 + a3x3 + a4x4, so the other
key polynomial turns out to be S(x) = (K – a0) – a1x – a2x2
– a3x3 – a4x4. So evaluating key polynomials at
x = r ∈ Fq yields, H(r) = a0 + a1r + a2r2 + a3r3 + a4r4 and
S(r) = (K – a0) – a1r – a2r2 – a3r3 – a4r4. Note that the
coefficients of S(x) are positive after modular arithmetic.
Here they are shown as negative just for simplicity of
illustration. More importantly, H(r) and S(r) are going to be
values such that H(r) + S(r) = K, due to the unique
construction of key polynomials. This is true for any
x = r ∈ Fq, but it should be noted that H(r1) + S(r2) ≠ K if
r1 ≠ r2.

S(x) and H(x) need to be kept secret. In order for a valid
user to compute S(x = a) and H(x = a) at some point x = a so
that the user can obtain K, another polynomial h(x), called a
masking polynomial, is introduced. The GC picks up a
random t degree polynomial over Fq as h(x) and keeps h(x)
secret too. The GC chooses a unique IDi ∈ Fq and computes
h(x = IDi) for each valid user Ui. This (IDi, h(IDi)) is given
to user Ui over the secure channel between Ui and the GC
and it is called as Ui’s secret. Basically each valid user gets
a unique ID and a share of the masking polynomial. Let us
continue with the example and assume the masking
polynomial as h(x) = a5 + a6x + a7x2 + a8x3 + a9x4.

Now, the GC computes two public polynomials
W(x) = H(x) + h(x) and P(x) = S(x) + h(x) which are
broadcasted/multicasted over an insecure channel. From
the coefficients of the public polynomials W(x) and P(x),
it is impossible to guess the secret polynomials. Adding
masking polynomials h(x) makes sure that only those who
have a share of h(x) can get a share of the key polynomials
from the public polynomials and no one else. This means
that anyone (including outsiders) can see the public
polynomials, but only valid users can get a share of the key
polynomials. For example, evaluation of W(x) at x = r gives
a value equal to H(r) + h(r). Now to get H(r) from W(r) one
has to know h(r). Also note that a valid user can get only his
or her share of the public polynomials. For example Ui can
get H(IDi) = W(IDi) – h(IDi), however he or she can not get
H(IDj) since h(IDj) is Uj’s secret and no one else knows it.
Similarly, Ui can (and only can) get S(IDi) from P(x).

Thus the masking polynomial makes sure that only valid
users can get shares of key polynomials. Also it makes sure
that a valid user gets only his or her share of key
polynomials. Thus only valid users can get the key from the
broadcast/multicast messages. But conference key
management for SDC requires the conference key to be
shared with only members of a conference and not all valid
users. In the next subsection we will propose an efficient
CKM scheme for SDC by introducing a novel concept of
randomised access polynomials.

3.2 Conference Key Management (CKM) for SDC

Similar to the above discussion, it is assumed that q is a
large prime and t is a security parameter which determines
collusion level. The GC selects a random t-degree masking
polynomial h(x) and also a random t-degree key polynomial
H(x). Let us further assume that there are n valid users in the

4 X. Zou and Y. Karandikar

universe and each has received a unique secret (IDi, h(IDi))
from the GC. Suppose there are m valid users who want to
have a conference. It is possible that many conferences are
occurring simultaneously in the universe. The GC takes care
of key management for all of them. For simplicity and to
make the solution generic, we specify a conference by j and
the conference key by Kj.

The GC computes the other key polynomial for
conference j as Sj(x) = Kj – H(x). It should be noted that one
key polynomial (H(x)) remains constant and it is considered
as a system polynomial. The GC distributes the secret
H(x) by broadcasting/multicasting W(x) = H(x) + h(x).
As explained earlier, all valid users can get a share of H(x)
from W(x). Hence the other portion of key Kj needs to be
published in such a way that only m members of the
conference can get it and hence the key Kj. For doing that,
the GC computes a randomised access polynomial for
conference j using IDs of m conference members
along 1() () () 1m

j j i iA x x VID x ID== − ∏ − + with a virtual ID
(a random integer).

Now, the GC publishes Pj(x) = Sj(x) × Aj(x) + h(x).
This construction makes sure that only the members of a
conference can get a share of Sj(x) and hence the key.
Any outsider or any other user outside the conference can
not get the conference key. This is achieved by the
construction of Aj(x) which makes sure that Aj(x = IDr) = 1
if and only if IDr is a secret ID of a conference member or
x = VIDj, otherwise Aj(x = IDr) = a random number. Thus a
user Ur can get share of Sj(x) as Sj(IDr) = Pj(IDr) – h(IDr) if
he or she is the member of the conference (i.e., his or her ID
is contained in the formation of Aj(x)), otherwise this
operation returns just a random number. We will elaborate
the security of the new scheme in Section 4. It is worthy to
note that the virtual term (x – VID) is changing every time
A(x) is computed, thus, Aj(x) will be different even though
the members in two conferences are the same.

3.2.1 Key derivation

Any valid user Ui can get the value H(IDi) = W(IDi)
– h(IDi). To get conference key Kj, Ui needs to get Sj(IDi).
If Ui is a member of conference j, he or she can get
Sj(IDi) = Pj(IDi) – h(IDi) and then get the key as
Kj = H(IDi) + Sj(IDi). The randomised access polynomial
makes sure that no user outside the conference can get share
of Sj(x).

3.2.2 Dynamics

There are two possible cases of dynamics, user joins and
member leaves. The scheme can deal with both of them in
an efficient manner.

• The join operation. There are two scenarios to consider.

First, when a user joins a conference j, the GC changes
the conference key Kj to jK ′ to maintain backward
secrecy. The GC computes the new key polynomial

as () ().j jS x K H x′ ′= − Note that the system key
polynomial H(x) does not change. The GC constructs
a new randomised access polynomial ()jA x′ by
including the joining user’s ID and using a new jVID′
in the computation. Then the GC publishes

() () () ().j j jP x S x A x h x′ ′ ′= × + Note that the new member
to a conference can not get the previous conference
keys since his or her ID was not used to compute
previous randomised access polynomials. He or she
can get current key as he or she was included in the
conference and future keys as long as he or she remains
in the conference.

Second, when an outsider joins universe and also
a conference j, the GC finds a random unique IDnew and
calculates h(IDnew). The new user gets his or her secret
as (IDnew, h(IDnew)) from the GC. Once he or she
becomes a valid user in universe, he or she can join
a conference in the same way as the operation discussed
above.

• The leave operation. We consider two scenarios here
too.

First, when a member leaves a conference j, the GC
changes key Kj to jK ′ to maintain forward secrecy.
The GC computes the new key polynomial as

() ().j jS x K H x′ ′= = Also the GC computes the new
randomised access polynomial ()jA x′ by excluding
the ID of the leaving member and replacing VIDj with a
new jVID′ and broadcasts () () () ().j j jP x S x A x h x′ ′ ′= × +
Thus the leaving member can not get the conference
data anymore.

Second, when a member leaves the entire universe and
becomes an outsider, the GC takes the member out of
the conference (if the member is in) same as the above
leave operation and removes his or her name from the
universe list.

It is possible that multiple users join and/or multiple
members leave simultaneously. This can be efficiently
conducted as for the single join and/or leave: just including
the new joining members’ IDs in and excluding the leaving
members’ IDs out of the formation of the new randomised
access polynomial (again, a new VID′ is used).

Thus our scheme handles user dynamics in an elegant
and efficient manner.

4 Discussion

In this section we provide security proofs of our scheme.
We also discuss the efficiency of our scheme in terms of
storage, computation, and communication complexities.
The comparison of our scheme with existing schemes is also
presented based on the desirable properties of a good
solution for SDC CKM and efficiency.

 A novel Conference Key Management solution for Secure Dynamic Conferencing 5

4.1 Security analysis

Like all other secret sharing-based schemes, the new
scheme also assumes that t is the maximum number of
possible users who attempt to collude. Let us assume that
the GC has setup the system by choosing a secret masking
polynomial h(x) and a secret key polynomial H(x) and
publishes W(x) = H(x) + h(x) (they are all of degree t).
The GC chooses a unique IDi and computes h(IDi) for each
user Ui, in the universe. Every Ui gets (IDi, h(IDi)) as his or
her secret. It is assumed that h(x) (similarly, H(x)) is only
known to the GC. From Shamir’s (1979) secret sharing
principle, t or less users collude with their (IDi, h(IDi)) but
they cannot gain any bit of information about h(x). That is to
say, h(x) is unconditionally secure if t or less users collude,
so does the new scheme. On the other hand, t + 1 or more
users collude and they can recover entire h(x) by using
polynomial interpolation over t + 1 points {(IDi, h(IDi))}.
In summary, we could feasibly assume:

• t is selected according to application properties and
security requirement such that the maximum number
of colluding users will not exceed t

• due to the efficiency of the new scheme, t can be
selected to be large to prevent colluding attacks
without affecting efficiency

• in case more than t users are found to attempt
colluding, the GC can discard the current h(x) and
generate a new h(x) and distribute the new shares to
legitimate users.

Furthermore, periodically refreshing h(x) can be embedded
in the new scheme to prevent collusion attempts.

As for attacks, the possible information which can be
exploited is W(x) and P(x). As for W(x) (= H(x) + h(x))
which is unchanged once published, attackers cannot get
H(x) or h(x) without knowing the other. The possible values
the users can get are nothing but the shares H(IDi) from
h(IDi). Thus, W(x) does not help for attacking. As for P(x),
none of A(x) and S(x) can be obtained from ONE P(x)
because h(x) is contained in P(x). Suppose two or more P(x)
such as Pj(x) and Pj+1(x) are observed. h(x) can be cancelled
out by differentiating Pj+1(x) and Pj(x) as Pj+1(x)
– Pj(x) = Sj+1(x)Aj+1(x) – Sj(x)Aj(x). However, Sj+1(x) and
Sj(x) are random polynomials, thus, being independent and
Aj+1(x) and Aj(x) are not equal (Note: Aj+1(x) contains a
virtual term (x – VIDj+1) and Aj(x) contains a virtual term
(x – VIDj), so they will still be different even when they
contains same user IDs). Thus, a malicious user cannot
figure out any of Aj(x), Sj(x), Aj+1(x), and Sj+1(x).
Furthermore, even though multiple (less than or equal to t)
users collude, their collusion will not generate any further
information. This is because all polynomials Aj(x), Sj(x),
Aj+1(x), and Sj+1(x) will generate useful information only
when x in all of them is bound to a same value, but the IDs
of colluding users are different. As a result, P(x)s do not
help for attacks either. As for both W(x) and P(x), due to the
same reason of same x-value binding, their combination
will not help for attack. In summary, the new scheme is

secure against the attacks from malicious users (except the
collusion of more than t users). It is obvious that all attacks
from outsiders, regardless of a single attacker or multiple
attackers, will not success either.

Next we discuss the correctness and security of our
scheme via an example shown in Figure 1. It shows some
users in the Universe, some outsiders (triangles in the
Figure), and two conferences. Conference 1 consists of four
members U1, U2, U3 and U7 and conference 2 consists of
members U6, U7, U8, U9 and U10. Let K1 be the key of
conference 1. The GC computes key polynomial
S1(x) = K1 – H(x). The GC computes the randomised access
polynomial A1(x) using IDs of members in conference 1
plus a random virtual ID, i.e., ID1, ID2, ID3, ID7 plus VID1
and publishes P1(x) = S1(x)A1(x) + h(x).

Let us see what happens if a user U4 who is not in
conference 1 tries to get K1. U4 can get H(ID4) = W(ID4)
– h(ID4) using public information and his or her
secrets. Now he or she needs S1(ID4) to get key K1.
If U4 evaluates P1(x) at x = ID4, he or she gets P1(ID4)
= S1(ID4) × A1(ID4) + h(ID4). From this he or she can get
value of S1(ID4) × A1(ID4) by subtracting his or her
secret h(ID4) from P1(ID4). Still he or she can not get the
value of S1(ID4) because the randomised access function is
secret. Also the list of members in the conference is secret
so no one can construct the randomised access polynomial
either. For any member of the conference, the randomised
access function evaluates to 1 and they get the share of S1(x)
easily. If an outsider tries to get the key, the masking
polynomial prevents him/her from getting any key share.
Thus our scheme is secure against attacks from outsiders as
well as users in universe that are not members of a
conference.

Let us see what happens if someone such as U4 tries
to guess different values of x to get the key. Attacker
U4 can guess x = r for which randomised access
polynomial A1(x = r) = 1. But then he or she gets
P1(r) = S1(r) + h(r). From this he or she can not get S1(r)
without knowing h(r). The masking polynomial h(x) is
secret with the GC and any user knows only his or her share
of it, thus it is impossible for the attacker to get share of
S1(x). Similarly, for an outside attacker, the guess attack
yields nothing. Thus our scheme is secure against guess
attacks as well.

4.2 Performance analysis

Our scheme is efficient in terms of storage, computation and
communication efficiency. Each user Ui’s secret consists of
(IDi, h(IDi)), which is quite small and requires O(1) space.
The GC has to store all users IDs, secret masking
polynomial and the key polynomial as well as information
about conferences. Generally the GC is assumed to have a
lot of computing power hence this storage is not much for
the GC.

The conference key computation for a member of a
conference requires two polynomial evaluations at x = IDi,
two subtractions, and one addition. Since P(x) to be

6 X. Zou and Y. Karandikar

evaluated is of degree t + m + 1 (note: 1 here is the
contribution of the virtual term (x – VID)), the key
computation complexity is O(t + m).

The GC broadcasts the key materials in terms of two
polynomials: one of t + m + 1 degree and other of degree t.
To broadcast a polynomial, it is required to broadcast its
coefficients. Thus the communication complexity is
O(t + m) which is small as well.

Thus it can be seen that our scheme is very efficient.
Efficiency of our scheme makes it suitable for using even in
wireless or sensor networks which involve devices with
moderate computing resources.

4.3 Comparison

Here we compare our proposed scheme with other
key management schemes for SDC. Table 1 shows
this comparison in terms of properties of a good
solution discussed in Section 2. It is important for a good
scheme to have all the properties, but all existing
schemes lack one property or the other. Our proposed
scheme is the only scheme which meets all the properties
and hence is qualitatively better than any other existing
scheme.

Table 1 Comparison of typical SDC schemes

Scheme Dynamic Scalable CCK* Secrecy**

Naive No No No YES
PKSDC Yes No Yes No
SLSDC Yes No Yes Yes
SPSDC Yes No No YES
ISDC Yes No Yes NO
KTSDC Yes Yes Yes No
KTDCKM-SDC Yes Yes Yes No
Our Scheme Yes Yes Yes Yes

*Changeable conference keys.
**Secrecy about conferences and members
of conferences.

Our scheme is better than existing schemes in a
quantitative comparison as well. Table 2 shows the
comparison of storage (at user end), key computation
(at user end) and communication (between the GC or
conference initiator and members) complexities. Storage
complexity is calculated in terms of storage required at user
end. Similarly computation complexity is calculated in
terms of computations required by users for getting key.
Communication complexity is based on size of broadcast
messages. It can be easily seen from the complexity
comparison table that our scheme is independent from the
size n of the universe and lot more efficient than any other
existing schemes. The efficiency of our scheme makes it
portable to wireless ad-hoc or sensor networks, which is the
future direction of research.

Table 2 Complexity comparison

Scheme Storage Computation Communication

Naive O(2n–1 – 1) O(1) O(2n–1 – 1)
PKSDC O(n) O(mP)* O(n)
SLSDC O(n) O(mP)* O(m)*
SPSDC O(nm) O(t2) O(nm)
ISDC O(log(n)) O(Dlog(n))+ O(log(n))
KTSDC O(log(n)) O(Dlog(n))+ O(log(n))
KTDCKM-SDC O(n) O(Dlog(n))+ O(log(n))
Our Scheme O(1) O(t + m) O(t + m)

nTotal number of users in Universe.
mNumber of members in a typical conference.
tDegree of polynomials used.
*P is the complexity of public key encryption/decryption.
+D is the complexity of secret key encryption/decryption.

5 Conclusion

We proposed a novel conference key management scheme
for secure dynamic conferencing, based on polynomials
over finite field. Our scheme is simple, practical, scalable,
and efficient in terms of storage, computation and
communication. Our scheme takes care of user dynamics in
an elegant and efficient way and is able to hide conference
membership. Thus our scheme solves all the problems that
existing SDC CKM schemes have. Efficiency of our scheme
in terms of storage and key computations at user end makes
it suitable to use in networks with low power devices.
Future work includes performance evaluation and
experimentation to judge applicability of the scheme in
wireless and sensor networks.

Acknowledgement

The authors sincerely appreciate the constructive
comments from journal editors and anonymous reviewers.
This work was partially supported by the US NSF grant
CCR-0311577.

References
Adusumilli, P. and Zou, X. (2005) ‘KTDCKM-SDC: a distributed

conference key management scheme for secure dynamic
conferencing’, Proceedings of the Tenth IEEE Symposium ON
Computers and Communications (ISCC), Cartagena, Spain,
pp.476–481.

Beimel, A. and Chor, B. (1994) ‘Interaction in key distribution
schemes’, Advances in Cryptology – CRYPTO’93, LNCS,
Springer, Berlin, Vol. 773, pp.444–457.

Beimel, A. and Chor, B. (1996) ‘Communications in key
distribution schemes’, IEEE Transactions on Information
Theory, Vol. 42, pp.19–28.

 A novel Conference Key Management solution for Secure Dynamic Conferencing 7

Blom, R. (1985) ‘An optimal class of symmetric key generation
systems’, Advances in Cryptology – EUROCRYPT’84, LNCS,
Springer, Berlin, Vol. 209, pp.335–338.

Blundo, C. and Cresti, A. (1995) ‘Space requirements
for broadcast encryption’, Advances in Cryptology
– EUROCRYPT’94, LNCS, Springer, Berlin, Vol. 950,
pp.287–298.

Blundo, C., Santis, A.D., Herzberg, A., Kutten, S., Vaccaro, U. and
Yung, M. (1993) ‘Perfect secure key distribution for dynamic
conferences’, Advances in Cryptology – CRYPTO’92, LNCS,
Springer, Berlin, Vol. 740, pp.471–486.

Blundo, C., Mattos, L.A.F. and Stinson, D.R. (1998) ‘Generalized
Beimel-Chor scheme for broadcast encryption and interactive
key distribution’, Theoretical Computer Science, Vol. 200,
Nos. 1–2, pp.313–334.

Burmester, M. and Desmedt, Y. (1995) ‘A secure and efficient
conference key distribution system’, Advances in Cryptology
– EUROCRYPT’94, LNCS, Springer, Berlin, Vol. 950,
pp.275–286.

Chiou, G.H. and Chen, W.T. (1989) ‘Secure broadcasting using the
secure lock’, IEEE Transactions on Software Engineering,
Vol. 15, No. 8, pp.929–934.

Desmedt, Y. and Viswanathan, V. (1998) ‘Unconditionally secure
dynamic conference key distribution’, Proceedings of the
IEEE International Symposium on Information Theory,
Cambridge, MA, USA, pp.383–383.

Gouda, M.G., Huang, C-T. and Elnozahy, E.N. (2002) ‘Key trees
and the security of interval multicast’, Proceedings 22nd
International Conference on Distributed Computing Systems,
pp.467, 468.

Lausch, H. and Nobaur, W. (1973) Algebra of Polynomials, North
Holland Publishing Company, North Holland, Amsterdam.

Lidl, R. and Niederreiter, H. (1986) Introduction to Finite Fields
and their Applications, Cambridge University Press,
New York, NY, USA.

Noubir, G. (1999) ‘A scalable key distribution scheme for
dynamic multicast groups’, The Third European Research
Seminar on Advances in Distributed Systems, Available at
http://www.ccs.neu.edu/home/noubir/publications/N99.pdf.

Noubir, G., Zhu, F. and Chan, A.H. (2002) ‘Key management for
simultaneous join/leave in secure multicast’, IEEE
International Symposium on Information Theory (ISIT),
pp.325–330.

Shamir, A. (1979) ‘How to share a secret’, Communication of
ACM, Vol. 22, pp.612–613.

Stinson, D.R. (1997) ‘On some methods for unconditionally secure
key distribution and broadcast encryption’, Design, Codes
and Cryptography, Vol. 12, pp.215–243.

Zou, X., Magliveras, S. and Ramamurthy, B. (2002) ‘A dynamic
conference scheme extension with efficient burst operation’,
Congressus Numerantium, Vol. 158, pp.83–92.

Zou, X., Magliveras, S. and Ramamurthy, B. (2004a) ‘Key tree
based scalable secure dynamic conferencing schemes’,
Proceedings of International Conference on Parallel and
Distributed Computing and Systems (PDCS 2004), MIT
Cambridge, MA, USA, 9–11 November, pp.61–66.

Zou, X., Ramamurthy, B. and Magliveras, S.S. (Eds.) (2004b)
Secure Group Communications over Data Networks,
Springer, ISBN: 0-387-22970-1 (The ebook ISBN:
0-387-22971-X).

