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1 Introduction

Secret sharing is an effective way to distribute a secret
among n parties, where each party holds one piece of the
secret. Blakley (1979) and Shamir (1979) were credited
for two initial designs of SSS in 1979 independently.
Blakley’s method regards a secret as a point in the
k-dimensional hyperplane space. These n shares are
constructed as k affine hyperplanes in this space. The
solution of any k affine hyperplanes is the intersection
point (or the secret). This scheme is not a perfect SSS

because a person with a share knows that the secret
is a point on the hyperplane (the share). In contrast,
Shamir proposed a polynomial interpolation method,
which satisfied two basic conditional information entropy
requirements Karnin et al. (1983) in a perfect SSS.
As a result, other secret sharing techniques were based
on the Shamir SSS, including many techniques (Okada
and Kurosawa, 2000; Beimel and Chor, 1998; Stinson,
1994) to show how the secret shares are authenticated.
To avoid a share dealer distributing invalid secret shares
(Feldman, 1987) and (Pedersen, 1991) proposed two
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different non-interactive Verifiable Secret Sharing (VSS)
schemes respectively. Since shareholders could also be
blamed for wrong shares, they need to authenticate the
shares when they receive the shares from the dealer.
If shareholders cannot validate the secret shares with
the dealer’s multicast messages, they multicast an alert
message that they have the wrong shares. However,
the corrupt shareholders can purposely send out fake
alert messages each time when the dealer distributes
authenticated secret shares. Consequently, the interactive
VSS schemes (Goldreich et al., 1987; Ben-Or et al., 1988)
were proposed to detect who are the honest participants
and who are the adversaries in the system.

Interestingly, a secret sharing system is still quite
vulnerable (Herzberg et al., 1995) when a dynamic
adversary determines to break into the system before
the lifetime of the secret expires. Ben-Or et al. (1988)
discussed a general theory for the distributed fault
tolerance systems and presented some possible
solutions to avoid such attacks. Among many different
classifications of adversary attacks, one of the most
notable ones is to classify the attacks as:

• passive adversary attacks

• active adversary attacks.

Where passive adversary attacks are primarily resulting
in spoofing data without modification or corruption to
the data. In contrast to the passive adversary attacks,
the active adversary attacks are much more malicious
wherein the adversaries can persistently attempt to
infiltrate a system, and/or to damage or destroy data
already stored in the system.

Herzberg et al. (1995) proposed the PSS scheme based
on the Shamir SSS to address this problem. This method
periodically renews the shares (without reconstructing the
secret) so that it prevents an adversary from gaining the
knowledge of the secret before it expires. To counter
active adversary attacks, Herzberg et al. combined
the ideas of the VSS technique to prevent dishonest
participants (or compromised participants by active
adversaries) from refusing to change the shares during
the renew process, or introduce invalid secret shares.
Marsh and Schneider (2004) developed an operational
system – COrnell Data Exchange (CODEX). The system
addressed the issue of dependability and proactive
security of a secret sharing system in a distributed
environment. Noticeably, all these schemes were based on
the Shamir SSS.

This paper presents a PSS method on the SSS on
the matrix projection method (Bai, 2006). The matrix
projection method allows to share multiple secrets
where the Shamir’s technique permits only one secret
to be shared. We have not seen anyone propose a
different PSS method other than Herzberg’s method on
a multiple-secret sharing scheme in literatures. In lieu
of this, our emphasis is on the passive attacks because
we have not developed a suitable and efficient VSS

scheme on the matrix projection secret sharing method
for multiple secrets. This, however, does not mean that
we cannot use Feldman’s VSS to counter active adversary
attacks. In this paper, we focused on developing a
distributed PSS method to counter passive adversary
attacks by using a renew matrix from the Pythagorean
triples. We can still satisfy the properties of the PSS
method:

• to update shares without reconstructing the secret

• to reveal the secret using any k updated shares

• to prevent the secret from being revealed by using
k past and present shares.

To counter active adversary attacks like Herzberg’s
method, we need to implement similar VSS scheme like
Feldman’s method. However, it will be quite expensive
because there are multiple secrets. In our future research,
we will implement an effective VSS scheme before we can
incorporate it with the proposed PSS scheme to counter
active adversary attacks.

The rest of the paper will be organised as follows.
Section 2 presents the proactive secret sharing model
and some assumptions. Section 3 briefly describes the
Shamir’s SSS, the matrix projection secret sharing
method and Herzberg’s PSS method. Our proposed PSS
method is discussed in Sections 4 and 5 presents the
conclusion.

2 Model and assumptions

According to the model and assumptions described in
Herzberg et al. (1995), we summarised them as follows:

1 The system consists of n servers1 A = {P1, P2,
. . . , Pn} that will (proactively) share a secret s or a
secret matrix S.

2 The system is securely and properly initialised.

3 All servers in A are connected to a common secure
multicast medium C with the property that
messages sent on C instantly reach every party
connected to it and the property that an adversary
cannot understand encrypted multicast messages
even though the adversary can eavesdrop the
multicast messages. It is worthy to mention that
such a multicast channel is not difficult to
implement since many mature secure group
communication mechanisms have been developed
(Zou et al., 2004).

4 The system is synchronised with a common global
clock. The time is divided into time periods which is
determined by the common global clock. At the
beginning of each time period, the servers engage an
update protocol. Once the update is completed, the
servers hold new shares of the secret or secret
matrix.
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5 Each server in A has its own local source of
randomness.

6 Adversary is connected to the channel C, and the
adversary knows the non-secret data and the
algorithm that each server performs. However, the
adversary cannot modify messages sent to C by a
server which the adversary does not have control.

7 Adversary is computationally bounded where it
cannot break the underlying cryptographic
primitives used for secure communication.

8 Once the server is updated, all information is
refreshed. In other words, the adversary cannot
leave a backdoor to get back into the server again.

Here, to simplify our discussion of the proposed PSS
technique, we consider the case of passive adversary
attacks where the adversary cannot inject or modify
messages multicast on the channel C. In other words,
all servers in A are ‘honest’ servers and they can reliably
trigger and participate in an updating process. We will
investigate the counter method for the active adversary
attacks in future research when we find more suitable and
efficient VSS for the matrix project technique.

3 Secret Sharing Schemes and Herzberg’s schemes

In this section, we briefly review two SSS

• Shamir’s method and its PSS scheme developed by
Herzberg et al. (1995)

• matrix projection method.

3.1 Shamir’s Secret Sharing Scheme

Shamir (1979) developed the idea of a (k, n)
threshold-based secret sharing technique (k ≤ n). The
technique is to construct a polynomial function of order
(k − 1) as,

f(x) = d0 + d1x + d2x
2 + · · · + dk−1x

k−1 (mod p),

where the value d0 is the secret and p is a prime number.
The secret shares are the pairs of values (xi, yi) where
yi = f(xi), 1 ≤ i ≤ n and 0 < x1 < x2 · · · < xn ≤ p − 1.

The polynomial function f(x) is destroyed after each
server Pi possesses a pair of values (xi, yi) so that no
single server knows what the secret value d0 is. In fact,
no groups of (k − 1) or fewer secret shares can be used
to discover the secret d0. On the other hand, when k or
more secret shares are available, we can set up at least
k equations yi = f(xi) with k unknown parameters di’s.
The unique solution d0 can be solved. Also, a Lagrange
interpolation formula (Shamir, 1979) is commonly used
to solve the secret value d0 as the following formula

d0 =
k∑

i=0

 k∏
j=1
j �=i

−xj

xi − xj

 yi (mod p)

where (xi, yj) are any k shares for 1 ≤ i ≤ k. Shamir’s
SSS is regarded as a perfect SSS because knowing (k − 1)
linear equations cannot expose any information about the
secret.

3.2 Herzberg’s Proactive Secret Sharing scheme

To periodically update shares is an effective way to
protect a secret from being revealed by adversary attacks.
Herzberg et al. (1995) developed a PSS technique for the
Shamir’s method. After the initialisation of Shamir’s SSS,
at the beginning of every time period, all ‘honest’ servers
can trigger an update phase in which the servers perform
a share renewal protocol. The shares computed in period
t are denoted by using the superscript t, i.e., (xi, f

t(xi)),
t = 0, 1, . . . . We know that the secret d0 at time (t − 1) is

d0 = f (t−1)(0).

The algorithm is to construct a new (k − 1) random
polynomial function at each updating phase as,

δ(x) = a1x + a2x
2 + · · · + ak−1x

k−1 (mod p), (1)

where δ(0) = 0 so that f t(0) = f (t−1)(0) + δ(0) =
d0 + 0 = d0.

The Herzberg’s share renew protocol for each server
Pi, i ∈ A, at the beginning of the time period t is as
follows:

1 Pi picks k − 1 random numbers {aim} from Zp for
m = 1, 2, . . . , (k − 1). The numbers define a
polynomail function δi(x) = ai1x + ai2x

2 + · · · +
ai(k−1)x

k−1 (mod p) in Zp.

2 For all other servers Pj , Pi secretly sends
uij = δi(xj) to Pj .

3 After decrypting uji, ∀j ∈ {1, 2, . . . , n} Pi computes
its new share as

f t(xi) =
(
f t−1(xi) + u1i + u2i + · · · + uni

)
(mod p),

4 Pi erases all the variables it used except of its
current secret share yt

i = f t(xi).

Since the δ(x) function does not have a constant term,
consequently, any group of k or more servers can still
compute d0 by contributing their new shares. However,
a combination of k shares using past and present shares
cannot be used to reconstruct the secret. As a result, the
secret is protected from being revealed by the passive
adversaries.

3.3 Secret Sharing Scheme using matrix projection

Bai (2006) developed a SSS using matrix projection
method. Here, we describe briefly about some basic
properties of matrix projection.

Let A be an m × k matrix of rank k (m ≥ k > 0), and

S = A(A′A)−1A′,
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where (•)′ is the transpose of a matrix. The m × m matrix
S is the projection matrix of matrix A.

We can also compute vectors vi using k linearly
independent k × 1 vectors xi,

vi = Axi,

where 1 ≤ i ≤ k. These m × 1 vectors vi can be placed in

B =
[
v1 v2 . . . vk

]
.

The projection of matrix A is the same as the projection
of matrix B. We can show that in the following theorem.

Theorem 3.1 (Invariance Theorem): For an m × k
matrix A of rank k (m ≥ k > 0) and an m × k matrix
B = [v1 v2 . . . vk] where vi = Axi for i = 1, 2, . . . , k
and xis are k linearly independent k × 1 vectors. The
projection of matrix A is the same as that of matrix B,
or S = A(A′A)−1A′ = B(B′B)−1B′.

Proof: Since B = [v1 v2 . . . vk] and vi = Axi,

B = [v1 v2 . . . vk]
= [Ax1 Ax2 . . . Axk]
= A[x1 x2 . . . xk]. (2)

To simplify notations, we write X = [x1 x2 . . . xk]. The
k × k matrix X is a full rank matrix because it has k
linearly independent column vectors xis. The equation (2)
becomes

B = AX. (3)

Substitute equation (3) into the projection of matrix B

B(B′B)−1B′ = AX((AX)′AX)−1(AX)′

= AX(X ′A′AX)−1(AX)′.

Since the matrices X and X ′ are invertible,

B(B′B)−1B′ = AXX−1(A′A)−1(X ′)−1X ′A′

= A(A′A)−1A′.

The result shows that

S = A(A′A)−1A′ = B(B′B)−1B′. (4)
�

Denote projection matrix S = (sij) for 1 ≤ i, j ≤ m, and
it has following properties:

1 S is symmetric

2 SA = A

3 Svi = vi

4 S is idempotent, i.e., S
2 = S

5 tr(S) (mod p) = rank(S) = k where
tr(S) =

∑m
i=1 sii.

The invariance property of matrix projection can be
used in secret sharing system to share multiple secrets.
The detail of the scheme can be found in Bai (2006).
Bai proved that the matrix projection is a strong ramp
SSS with k access levels.

Here, we present the procedure in two phases
including a numerical example. The procedure is as
follows:

• Construction of shares from a secret matrix S

1 Construct a random m × k matrix A of rank k
where m > 2k − 3

2 Choose n linearly independent k × 1 random
vectors xi

3 Calculate shares vi = (A × xi) (mod p) for
1 ≤ i ≤ n

4 Compute a projection matrix
S = (A(A′A)−1A′) (mod p)

5 Solve a remainder matrix R = (S − S) (mod p)

6 Destroy the matrix A, the vector xis, the
projection matrix S, the secret matrix S

7 Distribute n shares vi to servers in A and make
the remainder matrix R publicly known.

• Secret reconstruction

1 Collect k shares from any k servers in A,
say the shares are v1, v2, . . . , vk and construct
a matrix B = [v1 v2 . . . vk]

2 Calculate the projection matrix
S = (B(B′B)−1B′) (mod p)

3 Verify that the trace of the projection matrix
tr(S) (mod p) = k

4 Compute the secret S = S + R (mod p).

To demonstrate the method, we show a simple (2, 4)
threshold-based example with the prime modulus p = 19
and the secret matrix

S =


10 12 4 7 8
5 10 9 1 3
3 2 1 11 14
4 3 8 5 1
2 4 2 3 10

.

To construct the shares, we choose a 4 × 2 randommatrix
A of rank 2 that

A =


10 1
7 2
8 4
1 1
3 5

.

The values of m = 5 and k = 2 satisfy the condition
of secret sharing where m > 2k − 3. It is a necessary
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condition for strong protection of the secret matrix S.
Choose n = 4 linearly independent vectors as

x1 =
[

1
17

]
, x2 =

[
1
7

]
, x3 =

[
1
1

]
, and x4 =

[
1
9

]
.

Next we compute vi = Axi for i = 1, 2, 3, 4,

v1 =


8
3
0
18
12

, v2 =


17
2
17
8
0

, v3 =


11
9
12
2
8

, and v4 =


0
6
6
10
10

.

The projection matrix S is

S = (A(A′A)−1A′) (mod 19) =


8 8 5 1 14
8 14 11 11 5
5 11 2 13 14
1 11 13 16 1
14 5 14 1 0

,

then the remainder matrix R is equal to

R = (S − S) (mod 19) =


2 4 18 6 13
16 15 17 9 17
17 10 18 17 0
3 11 14 8 0
7 18 7 2 10

.

The matrix R is made publicly known. We can destroy
A, xis, S and S, then we distribute four vi shares to four
different servers in A.

When any two servers’ shares are chosen, they can
form a matrix B. For example, these two shares are v1
and v2 to form the matrix B as

B =
[
v1 v2

]
=


8 17
3 2
0 17
18 8
12 0

.

The projection matrix of B, S is

S = (B(B′B)−1B′) (mod 19) =


8 8 5 1 14
8 14 11 11 5
5 11 2 13 14
1 11 13 16 1
14 5 14 1 0

.

We can validate that tr(S) (mod 19) = 40 (mod 19) =
2 = k. The secret matrix S is obtained by the remainder
matrix R and the projection matrix S as

S = (R + S) (mod 19) =


10 12 4 7 8
5 10 9 1 3
3 2 1 11 14
4 3 8 5 1
2 4 2 3 10

.

The reconstructed matrix is the same as the secret
matrix, and the shares are 1/m of the size of the
secret matrix (for our case, it is 1/5 because m = 5).
This matrix projection method is not a perfect SSS, but
it is a multiple-secret sharing scheme and has a strong
protection on the secrets.

4 Proposed Proactive Secret Sharing scheme

In contrast, the matrix projection method cannot be
updated easily by using the Herzberg’s PSS technique.
For n secret shares vi, we need to determine a different
way to renew these vectors so that we can protect
the secret. In this paper, we developed a different PSS
technique by using the Pythagorean triples.

Here, we review the Pythagorean triples (Weisstein,
2003). The Pythagorean triples are the three integer
values (Z1, Z2, Z3) that satisfy the following equation:

Z2
1 + Z2

2 = Z2
3 .

The general form of a Pythagorean triples is

Z1 = a2 − b2, Z2 = 2ab, Z3 = a2 + b2 (5)

where a and b are positive integers (a > b). If we use
the triples to construct a k × k matrix L = (lij) with two
random index numbers g and h for 1 ≤ i, j, g, h ≤ k and
g �= h, we can have

lij =



Z1

Z3
(mod p) i = j = g,

Z1

Z3
(mod p) i = j = h,

Z2

Z3
(mod p) i = g, j = h,

−Z2

Z3
(mod p) i = h, j = g,

0 otherwise.

(6)

the matrix L is an orthonormal matrix because L−1 = L′.
For example, if k = 2, Z1 = 3, Z2 = 4, Z3 = 5 and

p = 19, we can express the matrix L as

L =


3
5

4
5

−4
5

3
5

 (mod 19) =
[
12 16
3 12

]

because (5−1 (mod 19)) = 4, and its inverse matrix

L−1 = L′ =
[
12 3
16 12

]
.



206 L. Bai and X. Zou

We can also verify that

L×L′ (mod 19) =
[
12 16
3 12

]
×

[
12 3
16 12

]
(mod 19)

=
[
400 228
228 153

]
(mod 19) =

[
1 0
0 1

]
.

It suggests that the matrix L is an orthonormal matrix.
For another example, if k = 3, g = 1, h = 3, Z1 = 3,

Z2 = 4, Z3 = 5 and p = 19, we can express the matrix
L as

L =


3
5

0
4
5

0 1 0

−4
5

0
3
5

 (mod 19) =

12 0 16
0 1 0
3 0 12

.

This matrix L is also an orthonormal matrix along two
other forms as

L =

1 0 0
0 12 16
0 3 12

, or L =

12 16 0
3 12 0
0 0 1

.

After we get the matrix L, we can construct another
m × m orthonormal matrix T as,

T =


Im−k

... 0(m−k)×k

· · · · · · ... · · · · · ·
0k×(m−k)

... L

,

where Im−k is an identity matrix with the dimension
of (m − k) × (m − k). Similarly, T−1 = T ′. For example,
a 5 × 5 matrix T can be constructed by using the matrix L
matrix as,

T =



1 0 0
... 0 0

0 1 0
... 0 0

0 0 1
... 0 0

· · · · · · · · · ... · · · · · ·
0 0 0

... 12 16

0 0 0
... 3 12


, (7)

for k = 2. Clearly, TT ′ = I . If we denote vt
i as a

renewed secret share at time t from an old share vi for
i = 1, 2, . . . , n,

vt
i = T × vi,

the renewed shares can produce the same projection
matrix S. We present a theorem as follows.

Theorem 4.1: For any m × m orthonormal matrix T ,
if vt

i = Tvi where vt
is and vi are the past and

present shares respectively for i = 1, 2, . . . , n. Suppose
the matrix S

t is the projection matrix of any k renewed
secret shares {vt

i}, and the matrix S is the projection
matrix of any k past secret shares {vi}, we have S

t =
TST ′.

Proof: Suppose we choose any k present shares and past
shares. Say that they are vt

i and vi respectively, and

vt
i = T × vi,

where i = 1, 2, . . . , k.
The renewed k shares vt

is can be used to construct
a matrix Bt as,

Bt = [vt
1 vt

2 . . . vt
k]

= [Tv1 Tv2 . . . T vk] = T [v1 v2 . . . vk]
= TV.

Since the matrix S is the projection matrix of V , we have

S = V (V ′V )−1V ′.

To determine the renewed projection matrix S
t, we have

S
t = Bt((Bt)′Bt)−1(Bt)′

= TV (V ′T ′TV )−1V ′T ′

= TV (V ′V )−1V ′T ′

= TST ′. �

Apparently, a renewed projection matrix S
t is related

with the original projection matrix S. If we partition both
matrices, we have

S =


S11

... S12

· · · ... · · ·
S21

... S22

 and S
t =


S

t
11

... S
t
12

· · · ... · · ·
S

t
21

... S
t
22

,

where matrices S11 and S
t
11 are (m − k) × (m − k)

matrices, S12 and S
t
12 are (m − k) × k matrices, S21 and

S
t
21 are k × (m − k) matrices, and S22 and S

t
22 are k × k

matrices. Accordingly, we have the following theorem.

Theorem 4.2: Consider the partitioned matrices S
t

and S, the following relationships hold as

S
t
11 = S11 S

t
12 = S12L

′

S
t
21 = LS21 S

t
22 = LS22L

′.

Proof: From Theorem 4.1, we know that S
t = TST ′,

and the matrix T as

T =


Im−k

... 0(m−k)×k

· · · · · · ... · · · · · ·
0k×(m−k)

... L

.
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Therefore,
S

t
11

... S
t
12

· · · ... · · ·
S

t
21

... S
t
22

 =


Im−k

... 0(m−k)×k

· · · ... · · ·
0k×(m−k)

... L



×


S11

... S12

· · · ... · · ·
S21

... S22




Im−k

... 0(m−k)×k

· · · ... · · ·
0k×(m−k)

... L′



=


S11

... S12L
′

· · · ... · · ·
LS21

... LS22L
′

.

Hence,

S
t
11 = S11 St

12 = S12L
′

S
t
21 = LS21 S

t
22 = LS22L

′. �

To proactively share the projection matrix (or secret),
we can see that we cannot share the whole projection
matrix. Rather, we can only share the partitioned
(m − k) × (m − k) matrix S11. Similar, we cannot share
the original matrix S, but its partitioned matrix S11
respectively.

4.1 An example for proactive matrix projection
sharing

Consider the previous example shown in Section 3.3,
we can only proactively share the secret matrix

S11 =

10 12 4
5 10 9
3 2 1


where the updating matrix T is shown in equation (7).
The servers in A can compute the following new shares
at time t,

vt
1 = T ×


8
3
0
18
12

 =


8
3
0
9
8

, vt
2 = T ×


17
2
17
8
0

 =


17
2
17
1
5

,

vt
3 = T ×


11
9
12
2
8

=


11
9
12
0
7

, and vt
4 = T ×


0
6
6
10
10

=


0
6
6
14
17

. (8)

If two shares (say 1 and 3) are combined to reconstruct
the secret S11, we can form a matrix Bt using shares vt

1

and vt
3 as

Bt = [vt
1 vt

3] =


8 11
3 9
0 12
9 0
8 7

,

the projection matrix S
t is computed as

S
t = Bt((Bt)′Bt)−1(Bt)′ (mod 19)

=


8 8 5 8 0
8 14 11 3 17
5 11 2 0 17
8 3 0 9 8
0 17 17 8 7

.

Clearly, even S
t �= S, but we have

S
t
11 = S11 =

8 8 5
8 14 11
5 11 2

.

We can use the remainder matrix R to calculate

S11 = S
t
11 + R11 (mod 19) =

10 12 4
5 10 9
3 2 1

.

As a result, we renew the shares without reconstructing
the secret (or the projection matrix), and we can still
obtain the same secret matrix S11. When m is a larger
number, the process becomes more efficient because the
matrix S11 has more elements to be shared.

However, if a passive adversary has

• an older share v1

• a renewed share vt
3,

then the adversary thinks that he/she obtained enough
number of shares. A matrix B̂ is constructed by using
these two vectors as

B̂ =


8 11
3 9
0 12
18 0
12 7

.

The adversary computes the projection matrix of B̂, the
result is

Ŝ = B̂(B̂′B̂)−1B̂′ (mod 19) =


16 12 6 7 5
12 7 12 7 18
6 12 5 2 9
7 7 2 14 1
5 18 9 1 17



=⇒ Ŝ11 =

16 12 6
12 7 12
6 12 5

 �= S11 =

8 8 5
8 14 11
5 11 2

.
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Consequently, the secret cannot be determined by simply
obtaining a combination of k past shares and present
shares. The secret matrix S11 is protected after the shares
are renewed. This process will ensure the adversaries
cannot learn the projection matrix S when the shares are
periodically renewed.

4.2 Periodic share renewal scheme using matrix
projection technique

In the initialisation of SSS of an m × m secret matrix S
(or essentially share the (m − k) × (m − k) secret matrix
S11), a centralised dealer can generate a projection matrix
S to produce n pieces of shares vi ∈ Zm×1 store in n
servers in A where we leave the remainder matrix R11 to
be publicly known (cannot be modified by anyone).

After the initialisation, at the beginning of every time
period, all honest servers trigger an update phase in which
the servers perform a share renewal protocol. The shares
computed in period t are denoted as vt

i , t = 0, 1, . . .
The share renew protocol for each server Pi, i ∈ A,

at the beginning of the time period t is as follows:

1 Pi picks four nonzero random numbers: gi & hi

from Zk and ai & bi from Zp.

2 Pi multicasts gi, hi, ai and bi on the secure channel
C so that all other Pj can get these values.

3 After decrypting gj , hj , aj and bj , ∀j ∈ {1, 2, . . . , n}
Pi uses these values to generate a set of
Pythagorean triples to produce an orthonormal
matrix Lj as shown in equations (5) and (6). Then,
Pi derives its new share as

vt
i =

 (vt−1
i )1:m−k(∏n

j=1 Lj

)
(vt−1

i )m−k+1:m

,

where (vt−1
i )1:m−k is the vector contains the first

(m − k) elements in vector vt−1
i and (vt−1

i )m−k+1:m
is the vector contains the last k elements in
vector vt−1

i .

4 Pi erases all the variables it used except of its
current secret share vt

i .

4.2.1 Correctness of the PSS scheme using matrix
projection

It is easy to prove that our PSS scheme is correct. Because
each server can obtain the same L =

(∏n
j=1 Lj

)
matrix

where Lis are orthonormal matrices for i = 1, 2, . . . , n,
we can show that L is also an orthonormal matrix
because

LL′ =
( n∏

j=1

Lj

)( n∏
j=1

Lj

)′
= L1L2 . . . LnL′

n . . . L′
2L

′
1 = I.

Consequently, we can see that the server Pi’s new shares

vt
i =

[
(vt−1

i )1:m−k

L(vt−1
i )m−k+1:m

]

=


Im−k

... 0(m−k)×k

· · · · · · ... · · · · · ·
0k×(m−k)

... L

 vt−1
i

= Tvt−1
i .

for i = 1, 2, . . . , n. According to Theorems 4.1 and 4.1,
the matrix S11 remains the same after the updating
process.

4.2.2 Secrecy of the PSS scheme using matrix
projection

Using the similar argument as in Herzberg et al. (1995),
we can prove the security of the proposed scheme as
follows. Let A be an adversary. Let K1 be the set of
k1 servers whose shares in period (t − 1) (but not in
period t) are compromised by A; let K2 be the set
of k2 servers whose shares in both period (t − 1) and
period t are compromised by A; let K3 be the set of
k3 servers whose shares in period t (but not in period
(t − 1)) are compromised by A. Since k is the threshold,
we can assume k1 + k2 < k and k2 + k3 < k. Moreover,
we will assume a clear worst case where k1 = k3 = k −
1 − k2. We also denote V1 = {vt−1

i }k1 and V2 = {vt−1
i }k2

as sets of the shares in period (t − 1) corresponding
to the servers in K1 and K2, respectively; and V̂2 =
{vt

i}k2 and V3 = {vt
i}k3 as sets of the shares in period t

corresponding to the servers in K2 and K3, respectively.
We know that the shares in servers K2 are related by an
updating orthonormal matrix L as

(V̂2)m−k2:m︸ ︷︷ ︸
k×(k2)

= L︸︷︷︸
k×k

(V2)m−k2:m︸ ︷︷ ︸
k×(k2)

.

The matrix L cannot be determined uniquely because
(V̂2)m−k2:m and (V2)m−k2:m are k × (k2) matrices and
even in the worst case k2 = k − 2 (and k1 = k3 = 1), they
are not full rank matrices. A passive adversary A needs to
recover the updating matrix T in order to reconstruct the
correct projection matrix. Since the updating matrix T
cannot be determined without the corrected L matrix,
the adversary cannot get a renewed share of a server in
K1 or an old share of a server in K3. Consequently, the
secret matrix will be protected from the passive attack.
Also, the secret projection matrix S11 is independent from
how the matrix L is chosen. In other words, the above
argument holds for any projection matrix S11, or no
information of S11 will be revealed to the adversary A.

4.3 Computation complexity of the PSS schemes

Also, we can compare the computation complexities
of both PSS schemes. Herzberg’s method requires to
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compute equation (1) n times for n different shareholders.
There are

(
n (k−1)k

2

)
multiplications. Consequently, the

computation complexity of Herzberg’s method is O(nk2).
In contrast, it appears that our method requires

to multiple matrix T with n different vis. However,
a simple updating method is to compute the k × k
matrix L with the last k elements in vis. As a result,
the number of multiplication is nk2 for protecting
(m − 2)2 secrets. Per each secret, the computation
complexity is O

(
nk2

(m−2)2
)
. Clearly, our method has much

less computation complexity compared to Herzberg’s
method.

5 Conclusion

In this paper, we introduced a new, secure and distributed
PSS scheme for the matrix projection secret sharing
method. We demonstrate a different PSS scheme other
than Herzberg’s method. The procedure is archived by
constructing a renewal matrix L from the Pythagorean
triples. After the shares are updated, any k shares of past
and present shares cannot be used to reveal the secret
matrix. Our method is emphasised on protection against
the passive attacks. In future research, we are interested
in developing methods to countermeasure active attacks
by implementing an effective VSS before we incorporate
it with our PSS scheme.

Acknowledgement

The authors would like to thank the paper reviewers and
the editor for their constructive comments which have
lead to significant improvements in the paper.

References

Bai, L. (2006) ‘A strong ramp secret sharing scheme using
matrix projection’, Second International Workshop on
Trust, Security and Privacy for Ubiquitous Computing,
Niagara-Falls, Buffalo, NY, pp.652–656.

Beimel, A. and Chor, B. (1998) ‘Secret sharing with public
reconstruction’, IEEE Trans. Inform. Theory, Vol. 44,
pp.1887–1896.

Ben-Or, M., Goldwasser, S. and Wigderson, A. (1988)
‘Completeness theorems for non-cryptographic fault-
tolerant distributed computation’, Proceedings of the
Twentieth Annual ACM Symposium on Theory of
Computing, 2–4 May, Chicago, Illinois, pp.1–10.

Blakley, G. (1979) ‘Safeguarding cryptographic keys’,
Proceedings of the AFIPS 1979 National Computer
Conference, June, Arlington, VA, Vol. 48, pp.313–317.

Feldman, P. (1987) ‘A practical scheme for non-interactive
verifiable secret sharing’, Proceedings of the 28th
IEEE Symposium on Foundations of Computer Science
(FOCS’ 87), 12–14 October, IEEE Computer Society,
Los Angeles, California, pp.427–437.

Goldreich, O., Micali, S. and Wigderson, A. (1987) ‘How to
play any mental game or a completeness theorem
for protocols with honest majority’, Proceedings of
the Nineteen Annual ACM Symposium on Theory
of Computing, New York City, NY, pp.218–219.

Herzberg, A., Jarecki, S., Krawczyk, H. and Yung, M.
(1995) ‘Proactive secret sharing or: how to cope with
perpetual leakage’, in Don Coppersmith (Ed.): Advances
in Cryptology – Crypto ’95, August, Santa Barbara, CA,
pp.339–352.

Karnin, E.D., Greene, J.W. and Hellman, M.E. (1983)
‘On secret sharing systems’, IEEE Trans. Inform. Theory,
Vol. IT-29, pp.35–41.

Marsh, M.A. and Schneider, F.B. (2004) ‘CODEX: a robust
and secure secret distribution system’, IEEE Transactions
on Dependable and Secure Computing, Vol. 1, pp.34–47.

Okada, K. and Kurosawa, K. (2000) ‘MDS secret-sharing
scheme secure against cheaters’, IEEE Trans. Inform.
Theory, Vol. 46, pp.1078–1081.

Pedersen, T.P. (1991) ‘Non-interactive and information-
theoretic secure verifiable secret sharing’, in
Feigenbaum, J. (Ed.): Advances in Cryptology – Crypto’91,
IACR, Springer-Verlag, University of California in Santa
Barbara, 11–15 August, pp.129–140.

Shamir, A. (1979) ‘How to share a secret’, Communications of
the ACM, Vol. 22, pp.612–613.

Stinson, D.R. (1994) ‘Decomposition constructions for
secret-sharing schemes’, IEEE Trans. Inform. Theory,
Vol. 40, pp.118–125.

Weisstein, E.W. (2003) Pythagorean Triple – From Mathworld,
May, Website at http://mathworld.wolfram.com/
PythagoreanTriple.html

Zou, X.K., Ramamurthy, B. and Magliveras, S. (2004) Secure
Group Communication over Data Networks, Springer,
October, ISBN: 0387229701.

Note

1Servers and shareholders are used interchangeably in this
paper.


