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Abstract—E-voting techniques and systems have not been
widely accepted and deployed by society due to various concerns
and problems. One particular issue associated with many existing
e-voting techniques is the lack of transparency, leading to the
failure to deliver voter assurance. In this work, we propose an
assurable, transparent, and mutual restraining e-voting protocol
that exploits the existing two-party political dynamics in the
US. The proposed e-voting protocol consists of three original
technical contributions – universal verifiable voting vector, for-
ward and backward mutual lock voting, and in-process check
and enforcement – that, in combination, resolves the apparent
conflicts in voting such as anonymity vs. accountability and
privacy vs. verifiability. Especially, the trust is split equally
among tallying authorities who have conflicting interests and will
technically restrain each other. The voting and tallying processes
are transparent to voters and any third party, which allow any
voter to verify that his vote is indeed counted and also allow any
third party to audit the tally.

Index Terms—E-voting, Verifiability, Anonymity, Privacy, As-
surance, Transparency, Mutual restraining voting

I. INTRODUCTION

Voting is the pillar of modern democracies, and a voting

system is the central piece for people to execute their rights.

Traditional voting, however, suffers from both low efficiency

and unintentional errors. The event surrounding the 2000 US

presidential election demonstrated the shortcomings of punch-

cards and other antiquated voting systems. This drives the

government to deploy more advanced voting systems.

Electronic-voting (e-voting) has been an active research

topic with many advantages over traditional voting, but poses

its own unique challenges. For example, if a discrepancy is

found in tally, votes need to be recounted and the source of

the discrepancy needs to be identified. The recounting and in-

vestigation should nevertheless preserve votes’ anonymity and

voters’ privacy. Other voting requirements, such as verifiability

and receipt-freeness, make the problem even more challenging

due to their inherently contradicting nature [16], [26].

Several e-voting solutions [39], [28], [37], [53] have been

proposed. Some suggest keeping non-electronic parallels of

electronic votes, or saving copies of votes in portable storage

devices. These solutions either fail to identify sources of

discrepancy or are susceptible to vote selling/coercion. Most

solutions are based on cryptographic techniques, such as

secret sharing, mix-net, and blind signature. These solutions

are often opaque: Besides casting their votes, voters do not

directly participate in collecting and tallying votes. This raises

concerns over the trustworthiness and transparency of the

voting process. In addition, these solutions sometimes entrust

the fairness of the voting process to the impartiality of author-

ities. Voting under multiple conflicts-of-interest parties is not

addressed by these solutions.

In this work, we propose a robust, assurable, transparent,

and mutual restraining e-voting protocol that exploits conflicts

of interest in multiple tallying authorities, such as the two-

party political system in the US. The new protocol consists of

a few novel techniques – universal verifiable voting vector,

forward and backward mutual lock voting, and proven in-

process check and enforcement – that, in combination, resolves

the apparent conflicts such as anonymity vs. accountability

and privacy vs. verifiability. These new techniques function as

below:

• The tallied voting vector allows both individual and

universal verification without jeopardizing voters’ privacy

and anonymity. A voter is assured that his vote is counted,

thus achieving voter assurance.

• Mutual lock voting ensures that a voter can cast one and

only one vote, thus preventing multiple and fake voting.

• The in-process check and enforcement mechanism veri-

fies any voter’s vote in an anonymous manner, identifies

any invalid vote caused by misconduct, and ensures that

voters follow the voting protocol without deviation. The

trust is split equally among tallying authorities who have

conflicting interests and will check and restrain each

other.

• Both the vote-casting process using simplified (N,N)
secret sharing, and the vote-tallying process based on

incremental aggregation (i.e., simple integer addition), are

transparent (viewable) to voters. This, in turn, will further

win trust and confidence of voters.

To the best of our knowledge, this is the first fully transpar-

ent e-voting protocol and is able to deliver voter assurance. The978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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most groundbreaking feature of our e-voting protocol, different

from all existing ones, is the separation and guarantee of two

distinct voter assurances: 1) vote-casting assurance on secret
ballots – any voter is assured that the vote-casting is indeed

completed (i.e., the secret ballot is confirmatively cast and

viewably aggregated), thanks to the openness of secret ballots

and incremental aggregations, and 2) vote-tallying assurance
– any voter is assured that their vote is viewably counted in

the final tally, thanks to the seamless transition from secret

ballots having no information to public votes having complete

(but anonymous) information offered by the simplified (N,N)
secret sharing scheme.

We understand that our protocol may not scale to very large

number of voters. However, a typical voting system [57] has

a hierarchical tree structure where vote totals from precincts

(say, towns or counties) are sent to an upper level for consoli-

dating. In such a voting structure, each precinct can apply our

protocol on its own efficiently because of the relatively low

population. Consequently, scalability is not a significant issue.

However, we will address this in our future work, so that the

protocol can apply to more general cases.

The rest of the paper is organized as follows. Related

works are reviewed in Section II. Section III introduces

models/assumptions and building blocks. The technical details

of the protocol are presented in Section IV, followed by proof

and analysis of the protocol in Section V. Simulation results

are shown in Section VI. Section VII concludes our paper.

For convenience, notations used in the following sections

are summarized in Table I for reference.

TABLE I: Notations

V ;V1, · · · ,VN Voters. 1, · · · ,N are voters’ indices
N Number of voters
M Number of candidates
C;C1,C2 Collectors
ZA,g Finite cyclic group, generator of the group
vi Vi’s voting vector
vi; v′i Vi’s forward and backward voting values
VA; V′

A Aggregated voting vector
Li Vi’s location vector
LA Aggregated location vector

L̂i Vi’s Chosen location in one round
Ł Length of location vector
L Length of each voter’s voting vector
Li Voter Vi’s real location (which is private to Vi)

or to say, voter Vi’s row number

Li
B,L

i
B+1, · · · ,Li

E Vi’s voting positions/bits
or to say, the columns in row Li

Li
c A voting position where Vi sets to 1 (cast vote)

(Li
B ≤ Li

c ≤ Li
E ) also referred to as a voting element or bit

si j(s
′
i j) Vi’s share of vi (v

′
i)

pi; p
′
i Sum of shares held by Vi, Vi’s secret ballot

P;P
′

Sum of pi (1 ≤ i ≤ N)

Si,Cj ;S
′
i,Cj

Sum of shares Cj (j = 1, 2) generates for Vi

S̃i,Cj ; S̃
′
i,Cj

Sum of shares that Cj generates for other voters

and needs to send to Vi for secret sharing
(N,N)-SS (N,N) secret sharing
LAS Location anonymity scheme
STPM Secure two-party multiplication

II. RELATED WORKS

The voting technology has experienced tremendous progress

over the years. Extensive research on voting, particularly

e-voting recently, has been conducted and different voting

techniques and systems have been proposed in [6], [18], [19],

[52], [55], [38], [54], [23], [34], [25], [39], [28], [37], [53],

[30], [5].

Most voting techniques are based on cryptography, such as

mix-nets, blind signature, homomorphic encryption, and secret

sharing. The first voting scheme was proposed by Chaum [10]

utilizing anonymous channels (so-called mix-nets) in 1981.

Since then, more schemes and practical systems based on mix-

nets have been proposed [15], [35], [56], [12], [31].

A blind signature allows an authority to sign an encrypted

message without knowing the message’s context [42], [41],

[33], [11], [9]. However, it is difficult to defend against

misbehavior by the authority. In addition, some participants

(e.g., the authority) know the intermediate results before the

counting stage. This violates fairness of the voting process.

Ring signature is proposed to replace the single signing

authority. The challenge of using the ring signature is in

preventing voters from double voting. Chow et al. propose

using a linkable ring signature, in which messages signed by

the same member can be correlated, but not traced back to

the member [17]. A scheme combining blind signature and

mix-nets is proposed in [41].

E-voting schemes based on homomorphic encryption can

trace back to the seminal works by Benaloh [3], [7] and

later developments in efficiency [49], [20], and receipt-

freeness [27], [36], [1], [45]. Rjaskova’s scheme [27], [36], [1]

achieves receipt-freeness by using deniable encryption, which

allows a voter to produce a fake receipt to confuse the coercer.

Several e-voting schemes exploit homomorphism that is

provided by secret sharing [27], [36], [45], [3], [7], [1]. Some

schemes [20], [49] are based on Shamir’s threshold secret

sharing [51] and focus on providing universal verifiability,

privacy, and robustness for e-voting. Iftene proposes a binary

(yes/no) e-voting scheme based on the Chinese remainder

theorem and oblivious transfer [29]: A voter sends shares

of his vote to a set of subservers; each subserver sends

aggregated shares to a central server for tallying. The scheme

does not provide individual verifiability and accountability: A

misbehaving voter can disrupt the entire process.

Experimental voting systems include Prêt à

Voter [15], Scytl [50], ADDER [32], Helios [2],

Punchscan/Scantegrity [24], [14], [13], ThreeBallot [43],

[44], Bingo Voting [8], VoteBox [48], Prime III [21],

SplitBallot [40], and STAR-Vote [5].

VoteBox [48] utilizes a distributed broadcast network and

replicated log, providing robustness and auditability in case

of failure, misconfiguration, or tampering. Prime III [21] is a

multimodal voting system especially devoted to the disabled.

SplitBallot [40] is a (physical) split ballot voting mecha-

nism by splitting the trust between two conflict-of-interest

parties/tallying authorities. Interestingly, ThreeBallot [44] is
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a multi-ballot protocol that provides some of the benefits of a

cryptographic voting system but without using cryptography.

Scytl [50] uses a verification module (a physical device) on

top of DRE. The trust, previously on the DRE, was transferred

to the verification module. This solution assumes that the

verification module is trusted, which may result in a “single

point of failure”. STAR-Vote [5] is also a DRE-style system.

Prêt à Voter [15] encodes a voter’s vote using a randomized

candidate list. Vote privacy is ensured through randomization.

Unfortunately, due to the strict and conflicting require-

ments in voting, as indicated in [25], there is no current

scheme/system satisfying all voting properties. For example,

Grewal et al. [26] acknowledge that voter-coercion is hard

to address so they redefine its meaning/scope. Helios [2],

using Benaloh vote-casting approach [4] and the Sako-Kilian

mixnet [46], has been proven to suffer from clash attacks [34].

III. ASSUMPTIONS AND BUILDING BLOCKS

Here we present security assumptions and building blocks

of our protocol. Web based bulletin board is also briefly

discussed.

A. Assumptions and Attack Models

Suppose there are N (N > 3) voters, Vi (1 ≤ i ≤ N), and

two tallying parties, or collectors, C1 and C2
1. C1 and C2 have

conflicting interests: Neither will share information with the

other. The assumption of the existence of multiple conflict-

of-interest collectors was previously proposed by Moran and

Naor [40], and applied to real world scenarios like the two-

party political system in the US.

In our model, collectors mutually check and restrain each

other, and thus, are assumed to follow the protocol. However,

unlike many previous works, we do not assume they are fully

trustworthy, but only that they will not collude with each other

due to conflicts of interest. Our protocol ensures that neither of

them can tally the ballots with the information they have before

the final tallying. Some (but not all) voters could be malicious

in our model: They can send inconsistent information to

different parties or deliberately deviate from the protocol. We

will show that the protocol can detect such misbehaviors and

identify the perpetrators without compromising honest voters’

privacy.

Although (N,N) secret sharing theoretically involves mutual

interaction among all voters, only a secure unicast channel

between a voter and each collector is needed. Such a secure

channel can be easily provided by equipping each collector

with a public key cryptosystem.

We consider two types of adversaries: passive and active

adversaries. Passive adversaries honestly follow the protocol

but try to infer more information, while active adversaries

(i.e., misbehaving voters) aim to violate the protocol by

multiple voting, disturbing others’ voting, disturbing the tally

and eventually bringing down the protocol. When we talk

about disturbing others’ voting, we assume that there is no

reason/incentive for a voter to give up his own voting right

1The protocol can be extended to more than 2 with no essential difficulties.

and disturb other unknown voters. However, he may disturb

others and cast his vote simultaneously; this potential threat

will be analyzed.

Based on the unconditional security of (N,N) secret sharing

(see Theorem 1 in [58]), a voter cannot infer any bit of

information about any other voter’s vote from the shares and

information given by other voters. Furthermore, even though

k voters collude, as long as k ≤ N − 2, they together cannot

gain any bit of information about the vote of any of the other

voters either. Due to the in-process check and enforcement

during the vote casting, misbehavior of any voter can be

pinpointed during the vote casting and the dishonest voter can

be identified.

B. Technical Components (TPs)

TP1: Universal verifiable voting vector. For N voters and

M candidates, a voting vector vi for Vi is a binary vector

of L = N ×M bits. The vector can be visualized as a table

with N rows and M columns. Each candidate corresponds to a

column. Via a robust location anonymization scheme described

in Section IV-B, each voter secretly picks a unique row. A

voter Vi will put a 1 in the entry at the row and column

corresponding to a candidate Vi votes for (let the position be

Li
c), and put 0 in all other entries. During tallying, all voting

vectors will be aggregated. From the tallied voting vector

(denoted as VA), the votes for candidates can be incrementally

tallied. Any voter can check his vote and also visually verify

that his vote is indeed counted in the final tally. Furthermore,

anyone can verify the vote totals for each candidate.

TP2: Forward and backward mutual lock voting. From

Vi’s voting vector (with a single entry of 1 and the rest of

0), a forward value vi (=2L−Li
c ) and a backward value v′i

(=2Li
c−1) can be derived. Importantly, vi×v′i = 2L−1, regardless

which candidate Vi votes for. During the vote-casting, Vi uses

simplified (N,N)-SS to cast their vote using both vi and v′i
respectively. vi and v′i jointly ensure the correctness of the

vote-casting process, and enforce Vi to cast one and only one
vote; any deviation, such as multiple voting, will be detected.

Notes: 1) There is no incentive for a voter to give up his

own voting right and disrupt others. However, if a voter indeed

puts the single 1 in another voter’s location, the misbehaving

voter’s voting location in VA and V′
A will be 0. If this happens,

C1 and C2 can jointly find this location and then, along with

the information collected during location anonymity, identify

the perpetrator. 2) To prevent a collector from having all

N −1 shares for a voter, each collector creates half of N −1

shares. 3) Interestingly, the new e-voting model deliberately

distinguishes between a private vote and its secret ballot.
Different from existing voting systems, a voter’s vote is kept

secret to himself. However, its corresponding ballot, even

called secret ballot, is revealed to the public in the vote-

casting.

TP3: In-process check and enforcement. During the voting

processes, collectors will jointly perform two cryptographic

checks on the voting values of each voter. The first check uses

STPM to prevent a voter from wrongly generating his share in
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the vote-casting stage. The second check prevents a voter from

publishing an incorrect secret ballot when collectors collect it

from a voter. The secret ballot is the modular addition of a

voter’s own share and the share summations that the voter

received from collectors.

C. Cryptographic Primitives

1) Simplified (N,N) Secret Sharing ((N,N)-SS): A secret s
is partitioned into N shares si (1 ≤ i ≤ N) such that s = ∑N

i=1 si.

For a group of N members, each receives one of the shares.

All N members need to pool their shares together to recover

s. This secret sharing scheme is additively homomorphic [58]:

The sum of two shares si and s′i (corresponding to secrets s
and s′ respectively) is a share of the sum of the two secrets s
and s′.

2) Secure Two-party Multiplication (STPM): STPM is pro-

posed by Samet and Miri [47]. Initially, each of parties, Mi
(i = 1,2), holds a private input xi. At the end of the protocol,

Mi will have a private output ri, such that x1 × x2 = r1 + r2.

The protocol works as follows: 1) M1 chooses a private key d
and a public key e for an additively homomorphic public-key

encryption scheme, with encryption and decryption functions

being E and D, respectively. 2) M1 sends E(x1,e) to M2. 3)

M2 selects a random number r2, computes E(x1,e)x2E(r2,e)−1,

and sends the result back to M1. 4) M1 decrypts the received

value into D(E(x1,e)x2E(r2,e)−1,d) and takes it as r1.

D. A Web Based Bulletin Board

A web based bulletin board allows anyone to monitor the

dynamic vote casting and tallying in real time. This makes the

voting and tallying process totally visible (i.e., transparent) to

all voters. The bulletin board will dynamically display 1) on-

going vote casting; 2) incremental aggregation of the secret

ballots; and 3) incremental vote counting/tallying.

Note that all the incremental aggregations of secret ballots,

except the final one, reveal no information of any individual

vote or any candidate’s counts. Only at the time when the

final aggregation is completed are all individual votes suddenly

visible in their entirety, but in an anonymous manner. It is this

sudden transition that precludes any preannouncement of par-

tial voting results. Moreover, this transition creates a seamless

connection between vote-casting & ballot confirmation and

vote-tallying & verification so that both voter privacy and voter

assurance can be achieved simultaneously. This is a unique

feature of the new e-voting system, comparing to all existing

ones.

IV. MUTUAL RESTRAINING VOTING PROTOCOL

We first elaborate on each of the stages along with the

applications of the technical components (TPs), and then give

the design of our location anonymity scheme (LAS).

A. Description of Voting Stages with applications of TPs

Stage 1: Initialization. The following computations are

carried out on a cyclic group ZA, on which the Discrete

Logarithmic Problem (DLP) is intractable. A = max{A1,A2},

in which A1 is a prime larger than 21024 and A2 is a prime

larger than 22L −2L+1 +1. Let the number of voters be N and

the number of candidates be M. V1, · · · ,VN are voters.

Each voter generates his voting vector by the following two

steps (TP1): 1) Voter Vi, by collaboratively executing a LAS

(Section IV-B) with other voters, obtains a unique and secret

location Li. 2) Vi arranges a voting vector vi of the length

L = N ×M bits into N rows (corresponding to N voters) and

M columns (corresponding to M candidates); Vi fills a 1 in his

row (i.e., the Lith row) and the column for the candidate he

votes, and 0 in all other entries. This arrangement can support

voting scenarios including “yes-no” voting for one candidate

and 1-out-of-M voting for M candidates with abstaining or

without.

Stage 2: Vote casting. From the voting vector vi (with a

singleton 1 and all other entries 0), Vi derives two decimal

numbers vi and v
′
i from vi: 1) vi is the decimal number

corresponding to the binary string represented by vi; 2) v
′
i is

the decimal number corresponding to vi in reverse.

In other words, if Vi sets the Li
cth bit of vi to 1, we have

vi = 2L−Li
c and v

′
i = 2Li

c−1, thus vi × v
′
i = 2L−1: vi and v

′
i are

said to be mutually restrained. This technique will be used to

develop an effective enforcement mechanism that enforces the

single-voting rule with privacy guarantee: The vote given by a

voter will not be disclosed as long as the voter casts one and

only one vote.

Next, Vi indirectly shares vi and v
′
i with other voters using

(N,N)-SS. Note that the sharing processes of vi and v
′
i are

the same but independent from each other. Our initial design

is to let each voter create N shares and then distribute N −1

shares to the rest voters. However, this requires synchronous

operations among all voters. An alternate design allows asyn-

chronous operations, but still retains all properties of (N,N)-
SS.

In this asynchronous vote-casting, voters do not need to

interact with each other. Instead, two collectors generate

respective shares for all voters. They work with every voter

with steps as below:

• Two collectors generate N − 1 shares for each voter in

advance, half per voter per collector.

• Whenever a voter Vi logs into the system to cast vote,

two collectors will each send their half shares (in fact, the

sum of these shares) to this voter, i.e., Cj( j = 1,2) sends

Si,Cj to Vi. Vi computes his own share sii = vi − Si,C1
−

Si,C2
. Similarly, Vi gets sii

′. Vi then sends his commitments

(i.e., gsii , gs
′
ii , gsiis

′
ii ) to two collectors. Notes: under the

assumption that two collectors have conflicting interests,

neither of them should be able to derive Vi’s vote from

his commitment.

• Two collectors verify Vi’s vote using Sub-protocol 1
(described later) and if passed, send the shares of the

other N − 1 voters (one for each voter) to Vi. Specially,

Cj sends S̃i,Cj (i.e., the sum of the shares Cj generates

for the N/2 voters) to Vi. Vi then publishes the secret

ballot pi = sii+ S̃i,C1
+ S̃i,C2

. Two collectors can verify Vi’s
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published value using Sub-protocol 2 (described later).

The process of p
′
i is the same.

As proven by Theorem 1 in [58], it is clear that neither

of two collectors can obtain any voter’s own share or vote,

unless two collectors collude and exchange the shares they

have generated.

Stage 3: Collection/Tally. Collectors (and voters if they

want) collect secret ballots pi (1 ≤ i ≤ N) from all voters and

obtain P = ∑N
i=1 pi. P is decoded into a tallied binary voting

vector VA of length L. The same is done for p′i (1 ≤ i ≤ N) to

obtain P′, and consequently V′
A. If voters have followed the

protocol, these two vectors will be reverse to each other by

their initialization in Stage 1.

It might be possible that some voters do not cast their votes,

purposely or not, which can prevent VA or V′
A from being

computed. Two possible solutions are: 1) after LAS, let all

voters cast a default vote (e.g., abstain), and 2) subtract Si,C1

and Si,C2
of a voter who didn’t cast from the aggregation of

the secret ballots pi, and S
′
i,C1

and S
′
i,C2

from p′i.
Stage 4: Verification. Anyone can verify whether VA is

a reverse of V′
A and whether each voter has cast one and

only one vote. Vi can verify the entry Li
c (corresponding to

the candidate that Vi votes for) has been correctly set to 1 and

the entries for other candidates are 0. Furthermore, the tallied

votes for all candidates can be computed and verified via VA
and V′

A. In summary, both individual and universal verification

are naturally supported by this protocol.

Stage 5: In-process check and enforcement. A voter may

misbehave in different ways. Examples include: 1) multiple

voting; 2) disturbing others’ voting; and 3) disturbing the

total tally. All examples of misbehavior are equivalent to

an offender inserting multiple 1s in the voting vector. The

following two sub-protocols, which are collectively known as

in-process check and enforcement (TP3), ensure that each voter

will put a single 1 in his voting vector, i.e., vote once and only

once.

Sub-protocol 1: 1) Recall that in Stage 2, Cj( j = 1,2) has

Si,Cj and S′i,Cj
for Vi.

2) Since Vi publishes gsii and gs
′
ii , C1 can compute and pub-

lish (gsii)
S
′
i,C1 and (gs

′
ii)Si,C1 . In addition, C1 publishes gSi,C1

S
′
i,C1 .

Similarly, C2 publishes (gsii)
S
′
i,C2 , (gs

′
ii)Si,C2 , and gSi,C2

S
′
i,C2 .

3) C1 and C2 cooperatively compute gSi,C1
S
′
i,C2 × gS

′
i,C1

Si,C2 .

A straightforward application of Diffie-Hellman key agree-

ment [22] to obtain gSi,C1
S
′
i,C2 and gS

′
i,C1

Si,C2 will not work2.

Therefore, STPM is used to compute gSi,C1
S
′
i,C2 × gS

′
i,C1

Si,C2

without disclosing gSi,C1 ,gS
′
i,C1 ,gSi,C2 and gS

′
i,C2 as follows:

2If C1 exchanges his gSi,C1 and gS
′
i,C1 with C2’s gSi,C2 and gS

′
i,C2 , since gsii

and gs
′
ii are published by Vi, C1 and C2 each can obtain gsii+Si,C1

+Si,C2 and

gs
′
ii+S

′
i,C1

+S
′
i,C2 which correspond to gvi and gv

′
i . Because there are only L

possibilities of each voter’s vote, C1 and C2 each can simply try L values to

find the vote, vi and v
′
i . This violates both vote anonymity (vote is known)

and voter privacy (location is known).

• Executing STPM, C1 and C2 obtain r1 and r′2 respectively

such that r1 + r′2 = Si,C1
S
′
i,C2

;

• Executing STPM, C1 and C2 obtain r′1 and r2 respectively

such that r′1 + r2 = S
′
i,C1

Si,C2
;

• C1 computes gr1+r′1 , C2 computes gr2+r′2 and then they

exchange the results;

• Both collectors obtain gr1+r′2+r′1+r2 = gSi,C1
S
′
i,C2 ×gS

′
i,C1

Si,C2 .

4) Each collector uses Vi’s commitment and the above

computation results to obtain gsiis
′
ii × (gsii)

S
′
i,C1 × (gs

′
ii)Si,C1 ×

gSi,C1
S
′
i,C1 × (gsii)

S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S
′
i,C2 × gSi,C1

S
′
i,C2 ×

gS
′
i,C1

Si,C2 . The collectors can verify that the product equals

g2L−1
. If not, Vi must have shared vi or v

′
i incorrectly.

Sub-protocol 2: While Sub-protocol 1 ensures that Vi
generates sii properly, Sub-protocol 2 enforces that Vi will

faithfully publish the secret ballots, pi and p
′
i.

1) Recall that Cj( j = 1,2) has S̃i,Cj and S̃′i,Cj
for Vi, so Cj

publishes gS̃i,Cj and g
S̃′i,Cj .

2) From the published pi and p
′
i, the collectors compute

gpi and gp
′
i . Since gsii and gs

′
ii are published and verified in

Sub-protocol 1, collectors will verify that gsii gS̃i,C1 gS̃i,C2 = gpi

and gs
′
ii gS̃

′
i,C1 gS̃

′
i,C2 = gp

′
i . If either of these fails, Vi must have

published the wrong secret ballots pi and/or p
′
i.

B. Design of a Robust and Efficient LAS

Inspired by the work in [58], we propose a new location

anonymity scheme (LAS) that is robust and efficient. Our

new scheme solves the following problem with the previous

schemes: If a member misbehaves in next rounds by selecting

multiple locations or a location that is already occupied by

another member, the location selection in [58] may never

finish. Our new LAS is based on the mutual lock voting

mechanism and works as follows:

1) Each voter Vi initializes a location vector Li (of length

Ł) with 0s. Vi randomly selects a location L̂i (1≤ L̂i ≤ Ł)

and sets the L̂ith element/bit of Li to 1.

2) From Li, Vi obtains two values li and l
′
i by: 1) encoding

Li into a decimal number li3; and 2) reversing Li to

be L′
i and encoding it into a decimal number l

′
i . For

example, if Li = [000010], we obtain li = 10 and l
′
i =

10000. Evidently, li × l
′
i = 10Ł−1.

3) Vi shares li and l
′
i using (N,N)-SS as in Stage 2. All

voters can obtain the aggregated location vector LA and

L′
A. If Vi has followed the protocol, LA and L′

A are the

reverse of the other.

3A decimal encoding, instead of a binary one, is used to encode Li. The
motivation is illustrated below. Assume that the binary encoding is adopted.
Let the location vectors of voters Vi, Vj and Vk be Li = 000010, L j = 000010,
and Lk = 000100, respectively. Therefore, LA = 001000: Voters cannot tell if
they have obtained unique locations. This will not be the case if Li uses a
larger base; however, encoding Li in a larger base consumes more resources.
Decimal is a trade-off we adopted to strike a balance between fault tolerance
and performance. The probability of having more than 10 voters collide at
the same location is considerably lower than that of 2.
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4) Vi checks if the L̂ith element/bit of LA is 1. If so, Vi has

successfully selected a location without colliding with

others. Vi also checks if everyone has picked a location

without colliding with others by examining whether

max(LA) = 1. If there is at least one collision, steps 1

through 3 will restart. In a new round, voters who have

successfully picked a location without collision in the

previous round select the same location, while others

randomly select from locations not been chosen.

5) The in-process check and enforcement mechanism

(Stage 5) is concurrently executed by collectors to

enforce that a voter will select one and only one location

in each round. Furthermore, the mechanism (proved

in Section V-B) ensures that any attempt of inducing

collision by deliberately selecting an occupied position

will be detected and, hence, such misbehavior will be

precluded.

6) Once all location collisions are resolved in a round, each

voter removes non-occupied locations ahead of his own

and obtains his real location Li = ∑L̂i
j=1(LA) j. After the

adjustment, the occupied locations become contiguous.

The length of the adjusted Li, denoted as L̃, equals to

the number of voters, N.

We will complement the above discussion with analysis

(Section V-B) and simulation results (Section VI).

Notes: 1) Location anonymity, a special component in

our protocol, seems to be an additional effort for voters.

However, it is beneficial since voters not only select their

secret locations, but also learn/practice vote-casting ahead of

the real election. The experiments show that 2 to 3 rounds

are generally enough. 2) Location anonymity can be executed

asynchronously. 3) A malicious participant deliberately induc-

ing a collision by choosing an already occupied location will

be identified.

Under the assumption that C1 and C2 have conflicting

interests and thus will check each other but not collude,

more deterministic and efficient LAS can be designed. One

algorithm can be: two collectors perform double encryption

(of 1 to N) and double shuffle before sending results to voters

in a way such that neither can determine which voter gets

which number, even though a collector may collude with some

voter(s).

V. PROPERTY PROOF AND ANALYSIS

A. Proof of Robustness of Voting

The protocol is robust in the sense that a misbehaving voter

will be identified. A misbehaving voter Vi may:

• submit an invalid voting vector vi (v′
i) with more than

one (or no) 1s;

• generate wrong sii (s
′
ii), thus wrong commitment gsii (gs

′
ii );

• publish an incorrect secret ballot pi (p
′
i) such that pi �=

sii + S̃i,C1
+ S̃i,C2

(p
′
i �= s

′
ii + S̃

′
i,C1

+ S̃
′
i,C2

).

First, we show that a voter submitting an invalid voting

vector vi (v′
i) with more than one 1s will be detected. Without

loss of generality, we assume two positions, Li
c and Li

c
′
, are set

to 1. (A voter can also misbehave by putting 1s at inappropriate

positions, i.e., positions assigned to other voters; we will

analyze this later.) Thus the voter Vi obtains vi (v
′
i), such that

vi = 2(L−Li
c) +2(L−Li

c
′
),v

′
i = 2(L

i
c−1) +2(L

i
c
′
−1),

vi × v
′
i = 2L−1 +2L−1 +2L−Li

c+Li
c
′
−1 +2L−Li

c
′
+Li

c−1.

All the computations are moduli operations. If we use

ZA, which has at least 22L −2L+1 +1 elements/bits, we have

vi × v
′
i �= 2L−1 and gvi×v

′
i �= g2L−1

. Assuming Vi generates an

invalid voting vector without being detected, this will lead to

the following contradiction by Sub-protocol 1:

g2L−1
= gsiis

′
ii × (gsii)

S
′
i,C1 × (gs

′
ii)Si,C1 ×gSi,C1

S
′
i,C1 × (gsii)

S
′
i,C2

×(gs
′
ii)Si,C2 ×gSi,C2

S
′
i,C2 ×gSi,C1

S
′
i,C2 ×gS

′
i,C1

Si,C2

= g(sii+Si,C1
+Si,C2

)(s
′
ii+S

′
i,C1

+S
′
i,C2

)
= gviv

′
i .

Similar proof applies to an invalid voting vector without 1s.

Next, we show that Vi cannot generate wrong sii or s
′
ii

such that sii + Si,C1
+ Si,C2

�= vi or s
′
ii + S

′
i,C1

+ S
′
i,C2

�= v
′
i.

If Sub-protocol 1 fails to detect this discrepancy, there is:

g(sii+Si,C1
+Si,C2

)(s
′
ii+S

′
i,C1

+S
′
i,C2

)
= g2L−1

. Since the computation is

on ZA, we have: (sii +Si,C1
+Si,C2

)(s
′
ii +S

′
i,C1

+S
′
i,C2

) = 2L−1.
Given that:

sii +Si,C1
+Si,C2

�= vi, s
′
ii +S

′
i,C1

+S
′
i,C2

�= v
′
i,

(sii +Si,C1
+Si,C2

)(s
′
ii +S

′
i,C1

+S
′
i,C2

) = 2L−1,

there must exist one and only one position Li
c
′

which is set to

1 and Li
c
′ �= Li

c. This indicates that Vi gives up his own voting

positions, but votes at a position assigned to another voter. In

this case, Vi’s voting positions in VA and V′
A will be 04. If

this happens, C1 and C2 can collaboratively find Vi’s row that

has all 0s in the voting vector (arranged in a N ×M array).

Third, we show that a voter cannot publish an incorrect pi
(p

′
i) to disturb the tally. Given that a misbehaving Vi publishes

pi (p
′
i) such that sii + S̃i,C1

+ S̃i,C2
�= pi (s

′
ii + S̃

′
i,C1

+ S̃
′
i,C2

�= p
′
i),

we obtain gsii+S̃i,C1
+S̃i,C2 �= gpi (gs

′
ii+S̃

′
i,C1

+S̃
′
i,C2 �= gp

′
i ) which will

fail in Sub-protocol 2. Note that gsii and gs
′
ii have passed the

verification of Sub-protocol 1, and S̃i,C1
and S̃i,C2

(also, S̃
′
i,C1

and S̃
′
i,C2

) are computed by two collectors with conflicts of

interest. Thus, there is no way for the voter to publish an

incorrect pi (p
′
i) without being detected.

B. Proof of Robustness of Location Anonymity

The analysis in Section V-A shows that no voter can choose

more than one positions during the location anonymization

process. However, this does not address the problem that a

malicious participant deliberately induces collisions by choos-

ing a location that is already occupied by another voter. We

will demonstrate that our proposed LAS is robust against this.

4Unless, of course, another voter puts a 1 in Vi’s position. We can either
trace this back to a voter that has its positions all 0s, or there is a loop in this
misbehaving chain, which causes no harm to non-misbehaving voters.
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Let the collision happen at L̂i, i.e., L̂i is chosen by Vi in

the previous round, and both Vi and Vj claim L̂i in the current

round. In this case, Vj is the voter who deliberately induces

collision. To identify a voter who chooses L̂i in a given round,

C1 and C2 do the following collaboratively. For each voter,

using the STPM, C1 and C2 compute Q = gg
Si,C1

+Si,C2 (Q
′
=

gg
S
′
i,C1

+S
′
i,C2 ) and check whether gg10

˜̂L−L̂i /gsii = Q (gg10L̂i−1
/gs

′
ii =

Q
′
). By doing this, the collectors identify the voter who selects

L̂i without divulging other voters’ locations. Although the

honest voter Vi who chooses L̂i is exposed along with the

malicious Vj, Vi can restore location anonymity by selecting

another position in the next round and Vj should be punished.

C. Analysis of Main Properties

Correctness. If all voters are honest and correctly follow the

protocol, VA (V′
A) is the aggregation of all votes. Assume that

N voters vote at positions L1
c ,L

2
c , · · · ,LN

c (L1
c �= L2

c �= · · · �= LN
c )

respectively. Each Vi computes vi as vi = 2(L−Li
c) (i= 1, · · · ,N).

Due to the homomorphism of (N,N)-SS, we have:

P = v1 + v2 + · · ·+ vN

= 2(L−L1
c) +2(L−L2

c) + · · ·+2(L−LN
c ),

VA = v1 +v2 + · · ·+vN .

Since each voter votes at one of his own voting positions (i.e.,

Li
c �= L j

c where i �= j), there is no carry in the additions. Thus,

each Vi can check the Li
cth bit of VA to see if his vote has

been correctly counted. Similar arguments apply to V′
A.

Anonymity. The protocol preserves anonymity if no more

than N−2 voters collude. The claim follows the proof in [58].

Furthermore, the protocol splits trust, traditionally vested in a

central authority, now between two non-colluding collectors

with conflicts of interest.

Verifiability. Both individual and universal verifiability are

achieved since anyone can verify if his vote and vote totals.

Eligibility. Voters have to be authenticated for their identi-

ties before obtaining voting positions. Traditional authentica-

tion mechanisms can be integrated into the protocol.

Prevention of multiple voting. The forward and backward

mutual lock voting allows a voter to set one and only one of

his voting positions to 1 (enforced by Sub-protocol 1).

Fairness. Fairness is ensured due to the following unique

property of (N,N)-SS: no one can obtain any information

before the final tally, and only when all N secret ballots are

aggregated is the sum of all secret votes obtained in its entirety

and in an anonymous manner. It is this sudden transition that

precludes any preannouncement of partial voting results.

Transparency and voter assurance. The protocol is trans-

parent in that voters participate in the whole voting process,

rather than entrusting the process to a central authority like in

many previous e-voting solutions.

D. Analysis of Protocol Performance and Complexity

In this section, we analyze the computational complexity

of forward and backward mutual lock voting and in-process

enforcement. Suppose that each message takes T bits. Since

the protocol works on a cyclic group ZA (A = max{A1,A2},

in which A1 is a prime greater than 21024 and A2 is a prime

greater than 22L −2L+1 +1), we see that T = O(L).
The forward and backward mutual lock voting involves two

independent sharing processes of vi and v
′
i. A voter’s commu-

nication cost includes publishing his commitments and secret

ballot pi, so the total is O(T ). His computational cost includes

computing vi, sii, pi, and the commitments (e.g., gsii ), each

costing O(T ), O(T ), O(T ) and O(T 3) respectively. The same

cost applies to the sharing of v
′
i. Notes: The commitments

can be typically computed by a calculator efficiently, thus, the

complexity of O(T 3) will not become a performance issue.

The collector Cj’s communication cost involves: 1) sending

sums of shares to each voter; 2) publishing gsiiSi,Cj ,g
siiS

′
i,Cj ,

and g
Si,Cj S

′
i,Cj for each voter; 3) publishing gSi,C1

S
′
i,C2 ×gS

′
i,C1

Si,C2

for each voter; and 4) publishing gS̃i,Cj or g
S̃
′
i,Cj for each voter.

Assume that the STPM messages are encoded into T̃ -bits when

computing gSi,C1
S
′
i,C2 ×gS

′
i,C1

Si,C2 . The communication costs are

O(T ), O(T ), O(T̃ ), and O(T ), respectively. For N voters,

the total cost for each collector is (O(T ) +O(T ) +O(T̃ ) +
O(T ))N.

The computation by Cj includes: 1) generating half of N−1

shares for each voter, which costs O(N2T ) totally; 2) deriving

Si,Cj , S
′
i,Cj

, S̃i,Cj , and S̃
′
i,Cj

during the vote-casting process

which costs O(N2T ); 3) summing up the pi during voting

collection/tally which costs O(NT ); 4) the computational costs

of Sub-protocol 1 and Sub-protocol 2. In Sub-protocol 1, both

collectors: 1) compute g
siiS

′
i,C j ,gs

′
iiSi,Cj and g

Si,C j S
′
i,Cj ( j = 1,2);

2) compute gSi,C1
S
′
i,C2 × gS

′
i,C1

Si,C2 , which involve STPM; and

3) multiply the commitments. Computing g
siiS

′
i,C j ,gs

′
iiSi,Cj , and

g
Si,Cj S

′
i,C j costs O(T 3). Multiplying the commitments costs

O(T 2). Computing gSi,C1
S
′
i,C2 ×gS

′
i,C1

Si,C2 consists of obtaining r1

(r
′
1) and r2 (r

′
2) with STPM, computing gr1+r

′
1 and gr2+r

′
2 , and

multiplying gr1+r
′
1 and gr2+r

′
2 . Let the complexity for STPM

be O(T PMC). The cost of computing gSi,C1
S
′
i,C2 × gS

′
i,C1

Si,C2

is O(T PMC)+O(T 3)+O(T 2). The total computational cost

of Sub-protocol 1 is O(T 3) + O(T 2) + O(T PMC) for each

voter. In Sub-protocol 2, the collectors: 1) compute S̃i,Cj

and S̃
′
i,Cj

; 2) compute gS̃i,Cj and g
S̃
′
i,Cj ; 3) multiply gsii , gS̃i,C1

and gS̃i,C2 , and also gs
′
ii , gS̃

′
i,C1 and gS̃

′
i,C2 ; and 4) compute

gpi and gp
′
i . These computations cost O(NT ), O(T 3), O(T 2)

and O(T 3), respectively. The total cost of Sub-protocol 2 is

O(NT )+O(T 3)+O(T 2)+O(T 3) for each voter.

VI. SIMULATION RESULTS

We implemented our protocol simulation in Java, and

present results here. The experiments were carried out on a

computer with a 1.87GHz CPU and 32G of memory. For each

experiment, we took the average of 10 rounds of simulations.
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1-out-of-2 voting process is simulated. Thus, the length of the

voting vector is L = 2N where N is the number of voters.
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Fig. 1: Collectors run Sub-protocol 1 in TP3 against one voter
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Fig. 2: Collectors run Sub-protocol 2 in TP3 against one voter

The computation time for a voter Vi is negligible since only

two subtractions are needed for sii and two additions for pi,

and the commitments can be obtained by using a calculator

sufficiently. Collectors however require heavy load of calcula-

tion, so our simulation focuses on collectors’ operations.

Figure 1 and 2 show the computation time of in Sub-

protocol 1 and Sub-protocol 2 respectively. Sub-protocol 1

was dominated by STPM, due to the computationally intensive

Paillier Cryptosystem used in our implementation. However,

this should not be an issue in real life since the collectors

usually possess greater computing power.

Figure 3 shows the time for one collector to collect and

tally votes. The execution time depends on the number of

voters N and the length of pi = L. As L increases, the voting

collection/tally time increases by NL = O(L2).

The simulation results confirm the performance analysis in

Section V-D. Most operations are quite efficient. For example,

when L = 4000 (and N = 2000), collecting and tallying votes

took only 0.005 seconds. For the in-process enforcement pro-

tocol however, it took the collectors 332 seconds to complete

Sub-protocol 1 and 0.515 seconds to complete Sub-protocol

2. To amortize the relatively high cost, the collectors may

randomly sample voters for misbehavior checking and only
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Fig. 3: One collector collects/tallies votes

resort to full checking when a discrepancy in the tally is

detected.

VII. CONCLUSION

We proposed a robust, assurable, transparent, and mutual

restraining e-voting protocol that is designed to exploit the

conflicts of interest in multiple tallying authorities, such as

in the two-party political system in the United States. Our

protocol is built upon three novel technical contributions—

verifiable voting vector, forward and backward mutual lock

voting, and proven in-process enforcement. These three tech-

nical contributions, along with transparent vote-casting and

tallying processes, incremental aggregation of secret ballots,

and incremental vote tallying for candidates, deliver voter

assurance. Each voter can be assured that his vote is counted

both technologically and visibly. Through the analysis and

simulation, we demonstrated the robustness, effectiveness, and

feasibility of our protocol.

We plan to further improve our protocol in the future,

particularly, in two aspects. One is the scalability, and the

other is vote selling and voter coercion.
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