
A Practical and Flexible Key Management
Mechanism For Trusted Collaborative Computing

Xukai Zou
Department of Computer Science

Indiana University Purdue
University Indianapolis

Indianapolis, IN 46202, USA
xkzou@cs.iupui.edu

Yuan-Shun Dai

Department of Electrical
Engineering & Computer Science

University of Tennessee, Knoxville
Knoxville, TN, 37996-0700, USA

YDai1@eecs.utk.edu

Elisa Bertino

Department of Computer Science
Purdue University and CERIAS
West Lafayette, IN 47907, USA

bertino@cs.purdue.edu

1Abstract—Trusted Collaborative Computing (TCC) is a new
research and application paradigm. Two important challenges
in such a context are represented by secure information
transmission among the collaborating parties and selective
differentiated access to data among members of collaborating
groups. Addressing such challenges requires, among other
things, developing techniques for Secure Group
Communication (SGC), Secure Dynamic Conferencing (SDC),
Differential Access Control (DIF-AC), and Hierarchical Access
Control (HAC). Cryptography and key management have been
intensively investigated and widely applied in order to secure
information. However, there is a lack of key management
mechanisms which are general and flexible enough to address
all requirements arising from information transmission and
data access. This paper proposes the first holistic group key
management scheme which can directly support all these
functions yet retain efficiency. The proposed scheme is based
on the innovative concept of Access Control Polynomial (ACP)
that can efficiently and effectively support full dynamics,
flexible access control with fine-tuned granularity, and
anonymity. The new scheme is immune from various attacks
from both external and internal malicious parties.

Keywords-Information security, Trusted Collaborative
Computing (TCC), Key management, Cryptography, Secure
Group Communication, Access control.

I. INTRODUCTION
Information and communication technologies along with

society's drive for collaboration in the modern world make
“collaborative computing” (CC) and its applications possible
and necessary. Typical CC applications include, but not
limited to, multi-party military actions, tele-conferencing,
tele-medicine, interactive and collaborative decision making,
grid-computing, information distribution, and pay per view
services. Trust in such environment can eventually determine
its success and popularity due to people’s desire for
confidentiality, privacy and integrity of their personal and/or
corporate information. The current Internet by design does
not provide high assurance security for data transmission [1,
2]. Compared to the two-party interaction model (such as the
client-server service model), CC environments are group-

1 This research was supported in part by NSF CRI grant

0551410, NSF CT grant 0311577 and IUPUI RSFG grant.

oriented, involve a large number of entities and shared
resources, are complex, dynamic, distributed, and
heterogeneous and may possibly include hostile elements.
Systems experience failures due to intrusions and attacks
from hostile entities [3, 4]. In addition, there is the problem
of insider threats, by which attacks are from malicious
parties inside the organizations or members of CC groups.
Consequently, building a trusted collaborative computing
(TCC) environment is very difficult and requires a long term
persevering endeavor.

TCC environments are characterized by collaborative
tasks which require multiple entities to work together and
share their resources. The first key issue in this environment
is that multiple participating entities must communicate
securely among one another via secure communication
channels. IP multicast provides efficient transmission of
messages to a group of users; however, the open nature of IP
multicast makes it unable to provide strong confidentiality.
Thus, secure group-oriented communication is the first
fundamental function for TCC. Another key requirement is
related to resource sharing and data exchange. Access to
shared resources/data must be finely controlled; otherwise
attackers and malicious users can access resources to which
they are not entitled to access, abuse, tamper, and even
damage the resources. Thus selective data sharing, at
different granularity levels, along with access control
becomes another fundamental function. These two classes of
fundamental functions should be sufficiently flexible in
supporting various possible forms of interactive access
relations between the parties and the resources in the system.
We can thus identify four security requirements that are
relevant for TCC: hierarchical access control (HAC), secure
group communication (SGC), secure dynamic conferencing
(SDC), and differential access control (DIF-AC).
Cryptography is a powerful tool to support all these four
functions. As well known, key management is the most
important yet difficult issue in such context. How to
generate, distribute, update, and revoke keys in large and
dynamic environments is an important challenge.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

U.S. Government Work Not Protected by U.S. Copyright 1211

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

Group key management (GKM) has been investigated in
the specific context of all these function classes. In the SGC
field, different group key management protocols have been
proposed including centralized group key distribution [5, 6,
7, 8, 9, 10, 11], decentralized group key management with
relaying [12], (distributed) contributory group key agreement
[13, 14, 15, 16, 17, 18, 19], and distributed group key
distribution [20]. With respect to conference key
management (CKM) for SDC, there are the naive solution
[21], the secure lock SDC scheme [22], the Key Tree &
interval based SDC scheme [23], and the polynomial based
scheme [2, 24]. The cryptographic solution for DIF-AC is
also called broadcast encryption and the key management
schemes for DIF-AC include the ones in [25, 26, 27]. With
respect to hierarchical key management for HAC, the first
scheme was proposed by Akl and Taylor in 1983 [28, 29],
followed by many others [30, 31, 32].

The existing GKM schemes are good at supporting
individual functions. However, there is a lack of a group key
management scheme which is general and flexible enough to
address various security requirements by TCC applications
with a single and holistic manner. An existing GKM scheme
for one class of functions cannot be directly and easily used
for another. On the other hand, all these functions usually co-
exist in TCC applications, are somehow related, and need to
be efficiently supported. Combining multiple different GKM
protocols from different classes to support all functions is
possible but inefficient because it would require multiple sets
of modules, storage systems, configurations, coordination,
coherence, and conversion among these protocols. In this
paper, we propose a generic GKM scheme for TCC as the
first holistic GKM scheme that can uniformly support all the
above functions, and moreover possesses good performance
and flexibility. The proposed scheme is based on the
innovative concept, or to say, construction, of an Access
Control Polynomial (ACP) over the finite field. Such
construction is very efficient in supporting highly dynamic
environments (e.g., users join/leave, addition/deletion of
resources/data/messages, addition and removal of
user/resource relations), random user/data structures/formats
according to fine-tuned granularity (e.g., in the levels of
users, user groups, data sets, data records, record fields), and
anonymity (i.e. group membership and size can be hidden
from outsiders and insiders). Due to its uniform support for
different security functions, the new proposed scheme can
easily implement the integration of various application
systems. Most importantly, the new scheme is immune from
various attacks, including external hackers and internal
malicious members, and even their collusion.

The rest of the paper is organized as follows. Section II
presents the Access Control Polynomial (ACP) based key
management scheme, its application to four fundamental
security functions, and analysis of its security and
performance. Section III discusses its support for anonymity
and other access models and the improved ACP mechanism

to reduce its complexity from O(n) to O(log(n)). Section IV
presents some concluding remarks.

Abbreviations:

ACP: Access Control Polynomial

CC: Collaborative Computing

CKM: Conference Key Management

DIF-AC: Differential Access Control

GKM: Group Key Management

HAC: Hierarchical Access Control

SDC: Security Dynamic Conferencing

SGC: Secure Group Communication

TCC: Trusted Collaborative Computing

Notations:

)(xA : The Access control polynomial in the form

 of ∏
∈

−=
ψi

i zSIDfxxA)),(()(

Fq: The finite field

f : A public cryptographic hash function. It is used in

 the form of),(yxf , e.g.)||(yxf

iCID :Secret Class/Group Identifier, a positive integer

)(xP : The public polynomial sent to users for key

 distribution, KxA xP +=)()(

q: A large prime, as a predefined system parameter

SIDi: Personal Permanent Portable Secret, a positive

integer

iU : A group member in a certain group

jc : A certain vertex (i.e. class) in the hierarchy

z : A random integer which is changed and made

 public every time.

II. AN INNOVATIVE KEY MANAGEMENT SCHEME

First, we introduce our innovative construction of an
Access Control Polynomial (ACP) through which secret
information can be distributed so that only the intended
recipients (i.e. their IDs are included as a term

)),((zIDfx − in the polynomial) can derive that secret
information. Then we show its application to four

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1212

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

fundamental functions we outlined previously. Finally, the
ACP security and complexity are analyzed.

 The following assumptions are made in the paper:

1) q is a large prime from which a finite field Fq is
formed. 2) f : q}1,0{}1,0{ * → is a cryptographic hash
function. 3) There is a trusted central server. Every valid
user, say Ui, in the system is assigned a Personal Permanent
Portable Secret, called P3-Secret and denoted as SIDi (a
random positive integer <q). This secret is only known to
the user and the central server. Since users are generally
required to register to the system, the assignment of an SID
to a user can be performed during the registration procedure.

A. Access Control Polynomial and Secret Information
Distribution

An access control polynomial (ACP) is a polynomial
over Fq [x] and defined as follows.

∏
∈

−=
ψi

i zSIDfxxA)),(()((1)

where ψ denotes the user group under consideration and

iSID are the P3-Secrets of group members in ψ . z is a

random integer from pF and is made public. In addition, z is
changed every time A(x) is computed. It is evident that

)(xA is equated to 0 when x is substituted with

),(zSIDf i by a valid user with iSID in ψ ; otherwise,

)(xA is a random value.

In order to broadcast a secret value such as K to the users
in ψ , the following polynomial is computed (by the trusted
server): KxA xP +=)()((2)

Then,))(,(xPz is publicized (broadcast) and K is
hidden, mixed with the constant of)(xA . From))(,(xPz ,

any group member iU with SIDi can obtain K by:

)=),((zSIDf PK i (3)

B. Application to Various Security Functions

Based on ACP, the key management problem for a large
range of security functions and applications can be solved
effectively. This subsection describes how it can be used to
provide an effective and efficient key management
mechanism for SGC, SDC, DIF-AC and HAC.

Group key management for Secure Group
Communication (SGC)

SGC refers to a setting in which a group of members can
communicate (or share the information) among themselves,
in a way that outsiders are unable to understand the
communication (or the information) even when they are able
to intercept the communication (or steal the information).
The confidentiality of the SGC communication is provided
by encrypting the communication with a group key which is
distributed to the group (and only group) members.

The server computes A(x) by Eq. (1), P(x) by Eq. (2), and
multicasts (z,P(x)). Then every user in the group can
compute the key via Eq. (3). After all group members obtain
the same key, they can conduct group communication
securely.

Let us consider dynamics. Users can join, leave or be
revoked from the system. From the construction of A(x), it
can be seen that regardless of whether we deal with single
join, single leave, multiple joins, multiple leaves, or multiple
joins and leaves simultaneously, dynamics can be
implemented with great elegance: the above steps (1), (2),
and (3) are executed but in the formation of A(x), just the
joining users’ SIDs (in fact,),(zSIDf i) are included and
the leaving users’ SIDs are excluded. Note that z and K in
these steps are new random numbers. Once the key is
changed, the encryption with the new key will prevent the
leaving (or joining) users from accessing the future (or the
past) information.

Conference key management for Secure Dynamic
Conferencing (SDC)

SDC refers to a scenario where any random subset of the
given user population can form a secure communication
(sub)group. As evident, SDC is closely related to SGC: as
an extension of SGC or equivalently, SGC as a specific case
of it. Suppose the size of the universe under consideration is
n, there will be 2n-n-1 possible conferences. Pre-generating
all these 2n-n-1 conferences is a bad strategy because many
conferences may never need to be activated. In addition,
most conferences may not occur at the same time. However,
the existing schemes try to generate all the keys (or
information from which to derive all the keys) for all the
conferences at the very beginning, thus resulting in
exponential running time and/or storage cost.

One specific feature of the ACP scheme is that it is an
“on-the-fly” mechanism, which means that whenever there is
a need to distribute a secret to a specific user group, just the
above steps (1) (2) and (3) have to be executed. This feature
is particularly useful for supporting SDC. Whenever there
will be a conference of any subset of users, the server just
performs the three steps where A(x) includes SIDs of the
conference members. If a user participates in multiple
conferences at the same time, the user’s SID can be included
in multiple corresponding A(x)s and the user then can get the
keys for all these conferences. Whenever users want to join
or leave a conference, the above three steps are executed

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1213

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

with A(x) just including the intended users. Thus, the
dynamics can be efficiently processed in SDC.

Resource key management for Differential Access
Control (DIF-AC)

Access control is used for checking whether a user has
the right to access a certain resource and for granting or
denying access as required. It is a fundamental security issue
for many computing systems in which users and resources
are involved.

 There are three typical policy models for specifying
access control policies [33, 34]: Discretionary access control,
Mandatory access control and Role-based access control
(RBAC). Traditionally, access control has been implemented
using non-cryptographic mechanisms such as access control
lists, capability lists, and access control matrix. Recently, a
new class of access control mechanisms, called
cryptographic access control, has been proposed [28]. The
idea is that every resource is assigned a cryptographic key
and the resource is encrypted with the key. This key is
distributed to the users who are supposed to access the
resource (e.g. users that have already paid for the resource).
Only if the key provided by a user matches the resource key,
the resource grants the user's access, otherwise, denies the
access. There are two typical access control models in TCC:
differential access control (DIF-AC) and hierarchical access
control (HAC).

In DIF-AC, a user can (and only can) access certain
resources and a resource can (and only can) be accessed by
certain users (i.e. many-to-many relation, determined by, for
example, subscription and payment). The typical
applications requiring DIF-AC include, but are not limited
to, e-newspapers, pay-per-view broadcast TV, multiple
streaming services.

Like the above SDC scheme, every resource Rk is
associated with a dynamic key Kk and the users who can
access Rk are treated as a conference. The server computes
Ak(x) and Pk(x), and publicizes))(,(xPz k . Thus, the user,
who can access Rk, can derive key Kk and is granted access to
resource Rk. If a user can access multiple resources, the
user's SIDi will be included in the Ak(x)s of all these
resources. Thus, the user can access all these resources.
Similarly, dynamics can be implemented by inclusion and
exclusion of users’ SIDs in the formation of new Ak(x)s.

Hierarchical key management for Hierarchical Access
Control (HAC).

HAC occurs when resources (and users) have some
hierarchical relation: resources are assigned levels and a user
who has the access right to a resource at one level is
automatically granted access to the resources which are the
resource's children or descendants at lower levels. However
the reverse is not allowed. The most generic format of HAC

can be represented as a Directed Acyclic Group (DAG)
(Figure 1). A node in the hierarchy can represent a user, a
resource, a set of users, a set of resources, or both users and
resources.

For every node/class Ck in the hierarchy, the server
selects a unique CIDk and securely distributes CIDk to Ck’s
users },,,{ 21 nUUU using the same scheme as that in
SGC, i.e. the server computes

)),(()),(()(21 zSIDfxzSIDfxxP −⋅−=

kn CIDzSIDfx +−)),(((4)

and multicasts (z, P(x)) to Ck’s users. The server also selects
a dynamic key Kk for every Ck. Now, the server constructs
Ak(x) using this node’s CIDk as well as CIDs of all its
ancestors:

∏
∈

−−=
ψi

ikk zCIDfxzCIDfxxA)),(()),(()((5)

where the first term is Ck itself and the next terms are
associated with all the ancestors Ci of Ck (ψ is the set of
ancestors of Ck). Then, the server constructs Pk(x) = Ak(x) +
Kk and publicizes (z, Pk(x)). The node Ck (i.e., the users in
Ck) can compute the key Kk as)),((zCIDfPK kkk = .
Furthermore, any ancestor (i.e. the users in) Ci of Ck can also
derive the key Kk as)),((zCIDfPK ikk = . However, Ck
cannot reversely get Ci ’s key. Thus, the hierarchical access
control is correctly and securely enforced.

C C

CCC

CC

C

C

1 2

3 4 5

6 7 8 9

Figure 1: A typical access control hierarchy.

In this ACP based HAC scheme, the key derivation by
the node’s ancestors is performed in the identical way as the
key computation by a node. Moreover, nodes do not need to
know the exact hierarchy. The nodes that are ancestors of a
node will obtain the correct key of the node when
substituting their CID into P(x) but others will not. This is an
important advantage of our approach compared with other
cryptographic HAC approaches.

There are two level dynamics in HAC: node level and
user level. Node level dynamics includes adding a node,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1214

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

deleting a node, moving a node from one place to another,
adding one link between two nodes, and deleting a link
between two nodes. User level dynamics indicates addition
and deletion of a user from a node group and movement of a
user from one node group to another. Based on ACP, both
level dynamics can be accomplished efficiently.

Let us consider the operation of deleting a node, since
revocation/deletion is generally more difficult to deal with
than join/addition. There are two cases to consider: a leaf
node and an internal node. If the deleted node is a leaf node,
nothing needs to be done except just discarding the
information/values related to this node. If the deleted node is
an internal node, a policy needs to be adopted in order to
relocate the node’s children. However, the policies used for
such purpose do not matter here. Since the deleted node
knew the keys of all its descendants, these keys need to be
changed, which is easy. For each of the descendant nodes of
the deleted node, the server computes A(x) which includes
the CIDs of all new ancestors of the node but excludes the
CID of the deleted node and multicasts (z, P(x)=A(x)+K).

Consider the second level dynamics. For example, if one
member (with SIDl) leaves group Ck and attends another
group Cj, the following two steps complete the update.

(1) The new node CID of Ck is updated by the above
polynomial excluding the term))',((zSIDfx l− .

(2) The new node CID of Cj is updated with the above
polynomial including the term))'',((zSIDfx l− .

(Note: new 'z and ''z are used).

It is clear that the ACP mechanism can address the HAC
problem in the same manner and the same efficiency of
SGC/SDC. Typical applications involving HAC include
digital libraries and medical information systems.

C. Security and Complexity Analysis

We now analyze the security and performance of the
above ACP scheme. By the security analysis, we show that
the proposed ACP mechanism is very robust and secure not
only against outside attackers which do not know the shared
key but also against the insiders which know the shared key.
By the performance analysis, we show that the ACP
mechanism is efficient. In particular, the improvement based
on hierarchical grouping (See Section III.C) can make the
ACP mechanism reach O(log(n)) complexity.

Security of the ACP scheme

We discuss the security of the scheme in terms of
external attackers, internal attackers, and collusion of
attackers. First, let us consider the key space and the
guessing or brute-force attack. K is randomly and uniformly
selected from 0 to q-1. In addition, K can be coincident with

any of iSID and),(zSIDfv ii = , for ni ,,1= since
this coincidence will not affect the correctness of the ACP
mechanism. Thus, the introduction of the access control
polynomial (no matter how high its degree is) will not reduce
the size of the key space. As for the brute-force attack, an
external attacker can either guess K directly or guess one of

iv and then compute K, or guess one of iSID and compute

iv and then K. The probability that a random guess hits K is

1/q whereas it is qn / to hit any of iv and another qn / to

hit any of iSID . Thus, the overall probability for a random

trial to succeed is qn /)12(+ . This means that the access
control polynomial increases the success chance of the brute-
force attack by a factor of 2n. The more users are included in
the polynomial, the higher the probability of success by the
brute-force attack. However, due to the efficiency of the
ACP mechanism (as discussed below), q can be selected to
be reasonably large (e.g. 128 bits), thus, making the brute-
force attack infeasible. Next, let us consider the attacks in
which an external attacker tries to obtain the group key K or
group users’ SIDs from)(xP . The K is hidden in the

publicized constant term of P(x), i.e. qVKc)%(0 +=

where nvvvV 21 ⋅= and),(zSIDfv ii = ,

for ni ,,1= . Since there are many other pairs of 'K and

'V such that ''0 VKc += , the attacker cannot uniquely
determine K from c0. As for trying to determine all of

nvvvK ,,,, 21 from (the coefficients of) P(x) at the same
time, the attacker will fail because only n equations can be
formed for n+1 unknown nvvvK ,,,, 21 . As for trying to

determine SIDi, the only relevant value is),(zSIDfv ii =

which is difficult to be obtained from)(xP as discussed
above. Even if the attacker was able to determine

),(zSIDfv ii = somehow, the attacker still would not be
able to get SIDi since this would require inversion of the
cryptographic hash function f. Finally, multiple external
attackers may collude to determine K or SIDi, but their
collusion provides no more information than the information
that would be obtained by a single attacker; collusion is thus
useless. As a result, ACP is resistant to external attacks.

We now consider the case of internal malicious users.
Obviously, an internal user can obtain K from its own SIDi.
Thus the purpose of an internal malicious user is to obtain
the SIDs of some other users so that he can get the secret
information, reserved to other users, to which he is not
authorized to access. He can obtain the exact polynomial
A(x) as A(x)=P(x)-K and then set A(x)=0 to determine the
roots of A(x). He may find),(zSIDfv ii = by some root-
finding algorithm. However, it is computationally infeasible
to get SIDi from),(zSIDfv ii = due to the one-way

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1215

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

feature of f. Getting iv of another user does not help the

attacker. First, iv will result in K to be disclosed, but this
does not help at all because he had been allowed to get K
from his own SID. Additionally, this),(zSIDfv ii = can
be only used for getting this K and cannot help in
determining any other keys from other P(x)s because z is
updated every time and two iv s in two P(x)s will be
different even though SIDi is the same. As a result, the
internal malicious user cannot compromise the scheme.
Furthermore, it is useless for multiple internal users to
collude because their collusion cannot help to make the
inverse of the cryptographic hash function easier, thus,
making it impossible to get SIDi from iv . The collusion of
internal malicious users and external attackers is also useless
in getting other users’ SIDs (Note: the collusion here does
not include the case of an internal user giving his SID or the
key to an outsider so that the outsider can access the
information. If this case is considered as collusion, then it is
inherent in all cryptosystems and there is no solution to it).

The attackers may hope to glean multiple P(x)s and try to
get useful information from them; however, this attempt
would also be useless due to the changing P(x)s. There are
different forms of collusions in the hierarchy such as two
siblings trying to figure out their parent’s key, a node and its
nephew trying to figure out its parent key. However, these
cases of attacks can be reduced to the collusion of external
attackers, or internal malicious members or internal/external
users depending on whether (and how many) their SIDs are
included in P(x). As discussed above, our ACP scheme is
able to perfectly defend against any such collusion.

We note that the system is secure against repeated join
and leaving attacks. However, if a previous z is re-used later,
a user Ui belonging to the current group is able to obtain
another user Uj‘s),(zSIDfv jj = and thus get the key of
the previous group which had the same value z and to which
Uj belonged to. So the trusted server should check and make
sure that a fresh random z is used every time.

Complexity of the ACP scheme

The storage complexity (at both user end and server end),
computation complexity (at both the user end and server
end), and communication complexity are analyzed here.

The user-end storage cost is O(1) since a user just needs
to store its P3-Secret SID (plus its node CID if in the HAC
hierarchy). The server storage cost is O(n+m) since the
server needs to store all n users’ SIDs (plus m nodes IDs if in
the HAC hierarchy). Suppose there are n terms involved in
the generation of P(x). There are two parts to consider. The
first part is related to computing).,(zSIDf The running
time of the cryptographic hash function totally depends on
itself but is independent from the number of terms n.
Suppose its running time is O(B), then computing n

),(zSIDf s has a cost in O(nB). The other part is to
multiply n terms (x-v)s. The main operations are
multiplication (with modulo) and addition (with modulo).
There are in total)(2nO such operations. The computation

complexity for multiplying n terms (x-v)s is in)(2nO .
Thus, the total computation complexity for generating P(x) is
in)()(22 nOnnBO =+ . This polynomial computation
complexity is efficient for the server. We now consider the
computation complexity for computing the key from a
polynomial P(x) of degree n when replacing x with the
computed value),(zSIDfv = . The main operations are:

(1) the computation of qvqvv n %,,%, 2 which requires
n multiplications (with modulo); (2) the multiplication of
each of these values with its corresponding coefficient,
which requires another n multiplications; and (3) the addition
of the results, which requires n additions. In total, the
complexity of computing the key from P(x) is in)(nO .
With respect to the communication complexity, broadcasting

01
1

1)(axaxaxaxP n
n

n
n ++++= −

− requires to

broadcast the coefficients 011 ,,,, aaaa nn − . Thus, the
communication complexity is in O(n).

These complexities are summarized in Table 1. Note: key
derivation is same as key computation.

Table 1 Complexities of the ACP based key management.

Terms Comp. Terms Comp.

User end
storage

O(1)

 Key
computation

 O(n)

 Key derivation O(n)

Server end
storage

O(n+m)

P(x) generation O(n2)

 Communication O(n)

III. DISCUSSIONS

In this section, we first discuss the anonymity issue and
ACP’s application to other access control models and then
discuss improvement to the ACP scheme. Before going into
the details, we briefly compare it with the well known
Shamir’s secret sharing scheme [35]. Both are based on
polynomials and hide the secret/key in the polynomials.
However, they are essential different. The polynomial in
Shamir’s scheme is kept secret but it is public in ACP. The
purpose of Shamir’s scheme is to prevent any single user
from obtaining the secret. In contrast, ACP is intended for
any of the group members to be able to obtain the secret

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1216

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

himself. In Shamir’s scheme, the secret is obtained by
recovering the polynomial using polynomial interpolation
which requires the number of participants be larger than the
polynomial degree. In contrast, ACP just plugs a user’s SID
in the polynomial and recovers the secret key.

A. Randomized ACP and Hiding of Groups and Group
Membership

One specific advantage of the ACP scheme over many
existing schemes is that it can hide the group membership
from outsiders (even insiders) and does not require member
serialization. In many existing schemes2, when the key(s)
(after being masked) is multicast to a group of users, the
information identifying these users needs to be included in
the multicast packet. In addition, the users need to be ordered
according to some strategy (referred to as serialization), so
that each user knows which portion of the protected key
material belongs to him and is thus able to extract the group
key from that portion. These requirements not only result in
more computation work (e.g., a user needs to search for his
portion) and need synchronization due to the serialization but
also unintentionally result in disclosures concerning the
group membership information. Keeping group membership
information private to outsiders may be important in some
applications. Furthermore, it may be desirable or even
necessary to hide the group membership from the group
users themselves in some mission-critical applications, that
is, a user knows that he is in the group but does not have
knowledge about who are the other members of the group.
Finally, it may even be necessary to hide the size of the
group. Again, because of its properties, the ACP mechanism
provides an efficient and elegant solution to address such
requirements: the polynomial hides the group users and does
not need to sort the group members. A valid user does not
need to know (in fact, he cannot know if the server does not
want to tell him) the membership and the order of members
but he can get the group key easily by just plugging his SID
into the polynomial. As for hiding the group size, the ACP
scheme can be easily extended for this purpose by simply
including some random pseudo terms in the polynomial such

as: ∏∏
=∈

−−=
dj

j
i

i VIDxzSIDfxxA
1

)()),(()(
ψ

(6)

where dVIDVID ,,1 are random numbers in Fq, called
pseudo terms, and d is a random positive integer. As a result,
the degree of P(x) does not indicate the number of members
involved in the computation. These pseudo terms make P(x)
even more randomized.

It is clear that adding random terms will increase the
degree of P(x), thus, impacting the efficiency of the ACP
scheme. However, using the hierarchical grouping and tree-

2 One such scheme is: numbering users sequentially, treating

users’ SIDis as their secret keys and encrypting the group
key K by SIDis of the users in ψ respectively in sequence.

based key distribution extension discussed below, the
efficiency will not be affected too much. In addition, whether
to add or how many random terms to be added is a trade-off
between security and efficiency and should be determined
based on the requirements of concrete applications.

B. HAC with “Transfer Down” and “Depth-Limited
Transfer” Model

The common hierarchical access model discussed above
is called “transfer up” [30], that is, the access permission of a
node is transferred up to its ancestors. Some other models
were proposed [30, 36], two of which are: (1) “transfer
down”-- the access permission of a node is transferred down
to its descendants and (2) “depth-limited transfer”-- the
access permission of a node is transferred either up or down
but only to a certain depth. Both new models can be easily
implemented by the ACP scheme. For the “transfer down”
model, the A(x) of a node is constructed to include the CIDs
of its descendants. For the “depth-limited transfer” model,
the A(x) of a node is constructed to include the CIDs of both
its ancestors and descendants which are within the limited
depth from the node.

 In fact, the ACP mechanism is powerful enough to
adapt to random forms of interactive/access relations among
users and/or resources with the great flexibility. These
relations include, but are not limited to, equivalent
users/resources, one-to-many, many-to-one, many-to-many,
hierarchy, multiple levels, etc. For example, if a node Ci’s
access permission needs to be transferred to a random other
node Cj , regardless of the relation and distance between the
two nodes in the hierarchy, just include Cj’s CIDj in the
construction of Ai(x). This power enables ACP to implement
integration across domains: suppose Ci is in one domain and
Ci' is in another, if Ci wants (and is allowed) to access the
resources in Ci', simply put Ci’s CIDi in the formation of
Ai '(x), i.e. adding the access relation from Ci to Ci'.

C. Improvement and Extension

From the above complexity analysis, it is clear that all
complexities are proportional to n, the number of current
users in the group. If n is large but just a single user or few
users join or leave the group,)(nO is not efficient. We
discuss several ways to improve its efficiency. (1) As for
join, the server can just generate a new key and encrypt the
new key with the old group key and send it to the group.
The server also encrypts the new key with the SID of the
joining user and sends it to the joining user. (2) To improve
the efficiency of computing P(x), we can store and save A(x)
in advance. If one or a few users kUU ,,1 leave, we can
get the new A(x) by directly dividing A(x) by

)),(()),((1 zSIDfxzSIDfx k−⋅⋅− , thus, the
complexity for generating P(x) will reduce to O(n). (3). For
improving the efficiency of key computation and derivation,
we can divide the n users into k=n/l separate groups of l users

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1217

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

each. The server forms k polynomials of degree l each. Every
user can obtain the key by replacing its own SID to its
corresponding polynomial. Thus, the complexity for key
computation/derivation will reduce to)(lO . Next, we
describe a mechanism which can improve the efficiency
greatly: tree based multiple level and hierarchical grouping.

Suppose n is the number of all users and m is the size of a
small group which can be managed easily and efficiently, for
example, m=16. Then every m users form a first level group,
so a total n/m such groups mnGG /,11,1 ,, are formed.
Next, every m first level groups form a second level group,
thus, a total 2/ mn such groups 2/,21,2 ,, mnGG are

formed. By continuing with this strategy, finally a highest
level group is formed

1,log n
m

G . All these groups can be

treated as nodes in an m-ary tree of height n
mlog . Every

group jiG , is associated with a group key jiK , and the

1,log n
m

K will be the group key for all users. The group keys

are distributed using the ACP scheme itself. For example,

jK ,1 is distributed to group jG ,1 by forming the ACP
polynomial using the SIDs of the users in its group,
i.e. jij KzSIDfxxP ,1,1)),(()(+−= ∏ where

ji GU ,1∈ . The second level key jK ,2 is distributed to all

users belonging to group jG ,2 by forming the ACP
polynomial using the group keys of its first level groups, i.e.

jijjj KzKfxKxAxP ,2,1,2,2,2)),(()()(+−=+= ∏
 where ji GG ,2,1 ∈ . Finally, the highest level key will be
distributed by
forming

1,log,1log1,log
)),((n

m
n

m
n

m
KzKfxP

i∏ +−=
−

.

Let us consider the case of a single user leaving his group.
The group keys along the path from the leaf group of the
leaving user to the root group need to be changed. Total

n
mlog polynomials of degree m need to be computed and

broadcast. Thus, the total polynomial generation time will be

)log(2 n
mmO , the communication complexity is

)log(n
mmO , and the key computation and derivation are

also in)log(n
mmO . For example, suppose m=16,

642=n , then the polynomial generation time, key
computation time, and communication complexity are in
2048 units of time, 256 units of times, and 256 units of
numbers for transmission.

It is worthy to mention that there is a simple scheme:
the key K is encrypted with SIDi s respectively and sent to
the group (see footnote 2 in the previous page). However

such a scheme has some limitations compared with the ACP
mechanism, such as (1) good for SGC but inflexible for
HAC; (2) unable to hide group size and membership; (3)
difficult to improve its efficiency, and (4) requiring for
member serialization.

IV. CONCLUSIONS

In this paper, we presented an innovative concept of
Access Control Polynomials. We showed how this uniform
technique can accommodate various key management
schemes for most security needs in various application
domains. The paper has also analyzed its security and
performance. From both theoretical and practical points of
view, the ACP scheme is generic, flexible, efficient,
dynamic, practical, invulnerable and easy to implement. Due
to the space limitation, we omitted the comparison with
existing schemes and illustrative examples. This could be
combined with the future work in implementing and
simulating the ACP technology. We are employing ACP
based security functions in a real TCC application: Secure
and Scalable Medical Information System for the
Department of Veterans Affairs.

In summary, the main features of the new proposed ACP
scheme include:

1. It is elegant, simple, easy to understand and implement.

2. It is flexible and easy to adapt to (any) different kinds of
key management and (any) different kinds of access
control relations.

3. It is able to enforce access control and secure group
communication in any scale and any granularity.

4. It is able to implement seamless integration of
heterogeneous data sources and systems without much
modification of the existing components.

5. It is able to protect against any kind of attacks, not only
external attacks, but also internal attacks, even when
attackers and/or malicious users collude.

6. It supports highly dynamic environments; in particular,
the revocation of members/resources is simple and
efficient. It also supports temporary suspension of
membership.

7. It does not require member serialization or
synchronization and does not disclose membership.

8. Users only need to store a secret value. Furthermore, the
key computation and key derivation are executed by the
same efficient procedure. This makes the scheme
applicable to various devices including those with low
computing powers such as PDAs, sensors.

9. It is able to offer the capability of hiding the entities in
groups and even group size.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1218

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

10. It is able to implement flexible key management “on the
fly”.

In short, this novel scheme provides a holistic and
seamless key management solution to foster Trusted
Collaborative Computing.

 ACKNOWLEDGMENT

We thank the U.S. Department of Veterans Affairs, in
particular, Dr. Bradley Doebbeling and Mr. John Burke, for
the support and effort with this work.

REFERENCES

[1] C. P. Pfleeger, and S. L. Pfleeger, “Security in Computing,” 3rd
Edition, Prentice Hall, 2003, ISBN: 0-13-035548-8.

[2] X. Zou, B. Ramamurthy, and S. Magliveras, “Secure Group
Communication over Data Networks,” Springer, 2004, ISBN: 0-387-
22970-1.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1,
pp. 11 – 33, 2004.

[4] G. Badishi, I. Keidar, and A. Sasson, “Exposing and eliminating
vulnerabilities to denial of service attacks in secure gossip-based
multicast,” IEEE Transactions on Dependable and Secure Computing,
vol. 3, no. 1, pp. 45 – 61, 2006.

[5] G. Caronni, K. Waldvogel, D. Sun, and B. Plattner, “Efficient
security for large and dynamic multicast groups,” Proceedings of the
Seventh IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 376–383, 1998.

[6] X. S. Li, Y. R. Yang, M. Gouda, and S. Lam, “Batch Rekeying for
Secure Group Communications,” Proc. 10th Int'l WWW Conf., pp.
525—534, 2001.

[7] D. Liu, P. Ning, and K. Sun, “Efficient self-healing group key
distribution with revocation capability,” ACM CCS, pp. 231—240,
2003.

[8] W. H. D. Ng, M. Howarth, Z. Sun, and H. Cruickshank, “Dynamic
Balanced Key Tree Management for Secure Multicast
Communications,” IEEE Transactions on Computers, 56(5), pp.
577—589, 2007.

[9] G. Noubir, F. Zhu, and A. H. Chan, “Key Management for
Simultaneous Join/Leave in Secure Multicast,” IEEE International
Symposium on Information Theory, pp. 325—330, 2002.

[10] A. Perrig and J. D. Tygar, “Secure Broadcast Communication in
Wired and Wireless Networks,” Kluwer Academic Publishers, 2002,
pages 240, ISBN: 0-7923-7650-1.

[11] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group
communications using key graphs,” IEEE/ACM Transactions on
Networks, 8(1):16–30, 2000.

[12] S. Mittra, “Iolus: A framework for scalable secure multicasting,” J. of
Computer Communication Reviews, 27(4):277—288, 1997.

[13] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz, J. Stanton, and G.
Tsudik, “Secure Group Communication Using Robust Contributory
Key Agreement,” IEEE Transactions on Parallel Distrib. Syst., 15(5),
pp. 468—480, 2004.

[14] H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan, “On the
distribution and revocation of cryptographic keys in sensor
networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 2, no. 3, pp. 233 – 247, 2005.

[15] D. R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: a distributed
framework for scalable secure many-to-many communication,” In
Proceedings of fifth IEEE Symposium on Computers and
Communications (ISCC 2000), pp. 693-698, 2000.

[16] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key
agreement,” ACM Transactions on Information and Systems
Security, 7(1):60—96, 2004.

[17] M. Ramkumar, and N. Memon, “An Efficient Key Pre-Distribution
Scheme for Ad-Hoc Network Security,” IEEE Journal on Selected
Areas in Communication., 23(3):611-621, 2005.

[18] M. Steiner, G. Tsudik, and M.Waidner, “Diffie-Hellman key
distribution extended to group communication,” ACM Conference on
Computer and Communications Security (CCS), pp. 31—37, 1996.

[19] B. Sun, W. Trappe, Y. Sun, and K. J. R. Liu, “A time-efficient
contributory key agreement scheme for secure group
communications,” Proceedings of IEEE International Conference on
Communications, vol. 2, pp. 1159--1163, 2002.

[20] P. Adusumilli, X. Zou, and B. Ramamurthy, “DGKD: Distributed
Group Key Distribution with Authentication Capability,” Proceedings
of the IEEE Workshop on Information Assurance and Security, pp.
476—481, 2005.

[21] Y. Desmedt, and V. Viswanathan, “Unconditionally secure dynamic
conference key distribution,” Proceedings of the IEEE International
Symposium on Information Theory, pp. 383—383, 1998.

[22] G. H. Chiou, and W. T. Chen, “Secure broadcasting using the Secure
Lock,” IEEE Transactions on Software Engineering, 15(8):929—934,
1989.

[23] M. G. Gouda, C.-T. Huang, and E. N. Elnozahy, “Key trees and the
security of interval multicast,” Proceedings of the 22nd International
Conference on Distributed Computing Systems, pp. 467—468, 2002.

[24] C. Blundo, L. A. F. Mattos, and D. R. Stinson, “Generalied beimel-
chor scheme for broadcast encryption and interactive key
distribution,” Theoretical Computer Science, vol. 200, pp. 313-334,
1998.

[25] M. Abdalla, Y. Shavitt, and A. Wool., “Key management for
restricted multicast using broadcast encryption,” IEEE/ACM
Transactions on Networking, 8(4):443–454, 2000.

[26] N. Kogan, Y. Shavitt, and A. Wool, “A practical revocation scheme
for broadcast encryption using smart cards,” Proceedings of the IEEE
Symposium on Security and Privacy (SP03), pp. 225–235, 2003.

[27] A. Wool, “Key management for encrypted broadcast,” ACM Trans.
on Information and System Security, 3(2):107–134, 2000.

[28] S. G. Akl, and P. D. Taylor, “A cryptographic solution to the
problem of access control in a hierarchy,” ACM Transactions on
Computer Systems, pp. 239-248, 1983.

[29] S. T. Mackinnon, P. D. Taylor, H. Meijer, and S. G. Akl, “An optimal
algorithm for assigning cryptographic keys to control access in a
hierarchy,” IEEE Transactions on Computers, vol. 34, no. 9, pp. 797-
802, 1985.

[30] M. J. Atallah, K. B. Frikken, and M. Blanton, “Dynamic and efficient
key management for access hierarchies,” Proceedings of the tenth
ACM Conference on Computer and Communication Security (CCS’
05), pp. 190-202, 2005.

[31] G. C. Chick, and S. E. Tavares, “Flexible access control with master
keys,” Advances in Cryptology: CRYPTO’89 LNCS, vol. 435, pp.
316-322, 1990.

[32] M. L. Das, A. Saxena, V. P. Gulati, and D. B. Phatak, “Hierarchical
key management scheme using polynomial interpolation,” SIGOPS
Operating Systems Review, pp. 40—47, 2005.

[33] R. S. Sandhu, and P. Samarati, “Access control: principle and
practice,” IEEE Communications Magazine, 32(9):40—48, 1994.

[34] M. V. Tripunitara, and N. Li, “Access control: Comparing the
expressive power of access control models,” Proceedings of the 11th
ACM Conference on Computer and Communications Security
(CCS’04), pp. 62—71, 2004.

[35] A. Shamir, “How to share a secret,” Communications of the ACM,
22(11):612–613, 1979.

[36] J. Crampton, “On permissions, inheritance and role hierarchies,”
ACM CCS’03, pp. 85-92, 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1219

Authorized licensed use limited to: IUPUI. Downloaded on August 14, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

