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1Abstract—Trusted Collaborative Computing (TCC) is a new 
research and application paradigm. Two important challenges 
in such a context are represented by secure information 
transmission among the collaborating parties and selective 
differentiated access to data among members of collaborating 
groups. Addressing such challenges requires, among other 
things, developing techniques for Secure Group 
Communication (SGC), Secure Dynamic Conferencing (SDC), 
Differential Access Control (DIF-AC), and Hierarchical Access 
Control (HAC). Cryptography and key management have been 
intensively investigated and widely applied in order to secure 
information. However, there is a lack of key management 
mechanisms which are general and flexible enough to address 
all requirements arising from information transmission and 
data access. This paper proposes the first holistic group key 
management scheme which can directly support all these 
functions yet retain efficiency. The proposed scheme is based 
on the innovative concept of Access Control Polynomial (ACP) 
that can efficiently and effectively support full dynamics, 
flexible access control with fine-tuned granularity, and 
anonymity. The new scheme is immune from various attacks 
from both external and internal malicious parties. 

Keywords-Information security, Trusted Collaborative 
Computing (TCC), Key management, Cryptography, Secure 
Group Communication, Access control. 

I.  INTRODUCTION 
Information and communication technologies along with 

society's drive for collaboration in the modern world make 
“collaborative computing” (CC) and its applications possible 
and necessary. Typical CC applications include, but not 
limited to, multi-party military actions, tele-conferencing, 
tele-medicine, interactive and collaborative decision making, 
grid-computing, information distribution, and pay per view 
services. Trust in such environment can eventually determine 
its success and popularity due to people’s desire for 
confidentiality, privacy and integrity of their personal and/or 
corporate information. The current Internet by design does 
not provide high assurance security for data transmission [1, 
2]. Compared to the two-party interaction model (such as the 
client-server service model), CC environments are group-
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oriented, involve a large number of entities and shared 
resources, are complex, dynamic, distributed, and 
heterogeneous and may possibly include hostile elements. 
Systems experience failures due to intrusions and attacks 
from hostile entities [3, 4]. In addition, there is the problem 
of insider threats, by which attacks are from malicious 
parties inside the organizations or members of CC groups. 
Consequently, building a trusted collaborative computing 
(TCC) environment is very difficult and requires a long term 
persevering endeavor.   

TCC environments are characterized by collaborative 
tasks which require multiple entities to work together and 
share their resources. The first key issue in this environment 
is that multiple participating entities must communicate 
securely among one another via secure communication 
channels. IP multicast provides efficient transmission of 
messages to a group of users; however, the open nature of IP 
multicast makes it unable to provide strong confidentiality. 
Thus, secure group-oriented communication is the first 
fundamental function for TCC.  Another key requirement is 
related to resource sharing and data exchange. Access to 
shared resources/data must be finely controlled; otherwise 
attackers and malicious users can access resources to which 
they are not entitled to access, abuse, tamper, and even 
damage the resources. Thus selective data sharing, at 
different granularity levels, along with access control 
becomes another fundamental function. These two classes of 
fundamental functions should be sufficiently flexible in 
supporting various possible forms of interactive access 
relations between the parties and the resources in the system. 
We can thus identify four security requirements that are 
relevant for TCC: hierarchical access control (HAC), secure 
group communication (SGC), secure dynamic conferencing 
(SDC), and differential access control (DIF-AC). 
Cryptography is a powerful tool to support all these four 
functions. As well known, key management is the most 
important yet difficult issue in such context. How to 
generate, distribute, update, and revoke keys in large and 
dynamic environments is an important challenge.  
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Group key management (GKM) has been investigated in 
the specific context of all these function classes. In the SGC 
field, different group key management  protocols have been 
proposed including centralized group key distribution [5,  6, 
7, 8, 9, 10, 11], decentralized group key management with 
relaying [12], (distributed) contributory group key agreement  
[13, 14, 15, 16, 17, 18, 19], and distributed group key 
distribution [20]. With respect to conference key 
management (CKM) for SDC, there are the naive solution 
[21],  the secure lock SDC scheme [22], the Key Tree & 
interval based SDC scheme [23], and the polynomial based 
scheme [2, 24]. The cryptographic solution for DIF-AC is 
also called broadcast encryption and the key management 
schemes for DIF-AC include the ones in [25, 26, 27]. With 
respect to hierarchical key management for HAC, the first 
scheme was proposed by Akl and Taylor in 1983 [28, 29], 
followed by many others [30, 31, 32].   

The existing GKM schemes are good at supporting 
individual functions. However, there is a lack of a group key 
management scheme which is general and flexible enough to 
address various security requirements by TCC applications 
with a single and holistic manner. An existing GKM scheme 
for one class of functions cannot be directly and easily used 
for another. On the other hand, all these functions usually co-
exist in TCC applications, are somehow related, and need to 
be efficiently supported. Combining multiple different GKM 
protocols from different classes to support all functions is 
possible but inefficient because it would require multiple sets 
of modules, storage systems, configurations, coordination, 
coherence, and conversion among these protocols.  In this 
paper, we propose a generic GKM scheme for TCC as the 
first holistic GKM scheme that can uniformly support all the 
above functions, and moreover possesses good performance 
and flexibility. The proposed scheme is based on the 
innovative concept, or to say, construction, of an Access 
Control Polynomial (ACP) over the finite field. Such 
construction is very efficient in supporting highly dynamic 
environments (e.g., users join/leave, addition/deletion of 
resources/data/messages, addition and removal of 
user/resource relations), random user/data structures/formats 
according to fine-tuned granularity (e.g., in the levels of 
users, user groups, data sets, data records, record fields), and 
anonymity (i.e. group membership and size can be hidden 
from outsiders and insiders). Due to its uniform support for 
different security functions, the new proposed scheme can 
easily implement the integration of various application 
systems. Most importantly, the new scheme is immune from 
various attacks, including external hackers and internal 
malicious members, and even their collusion. 

The rest of the paper is organized as follows. Section II 
presents the Access Control Polynomial (ACP) based key 
management scheme, its application to four fundamental 
security functions, and analysis of its security and 
performance. Section III discusses its support for anonymity 
and other access models and the improved ACP mechanism 

to reduce its complexity from O(n) to O(log(n)). Section IV 
presents some concluding remarks.   

Abbreviations: 

ACP: Access Control Polynomial  

CC: Collaborative Computing 

CKM:      Conference Key Management  

DIF-AC:  Differential Access Control 

GKM:      Group Key Management   

HAC:  Hierarchical Access Control 

SDC: Security Dynamic Conferencing  

SGC:  Secure Group Communication 

TCC: Trusted Collaborative Computing 

 
Notations: 

)(xA :   The Access control polynomial in the form  

          of ∏
∈

−=
ψi

i zSIDfxxA )),(()(  

Fq:   The finite field 

f :    A public cryptographic hash function. It is used in  

 the form of ),( yxf , e.g. )||( yxf  

iCID :Secret Class/Group Identifier, a positive integer 

)(xP : The public polynomial sent to users for key  

             distribution, KxA xP += )()(  

q:       A large prime, as a predefined system parameter 

SIDi:      Personal Permanent Portable Secret, a positive  

integer 

iU :     A group member in a certain group  

jc  :     A certain vertex (i.e. class) in the hierarchy   

z :       A random integer which is changed and made  

   public every time. 

 

II. AN INNOVATIVE KEY MANAGEMENT SCHEME  

First, we introduce our innovative construction of an 
Access Control Polynomial (ACP) through which secret 
information can be distributed so that only the intended 
recipients (i.e. their IDs are included as a term 

)),(( zIDfx − in the polynomial) can derive that secret 
information. Then we show its application to four 
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fundamental functions we outlined previously. Finally, the 
ACP security and complexity are analyzed.  

    The following assumptions are made in the paper:  

1) q is a large prime from which a finite field Fq is 
formed. 2) f : q}1,0{}1,0{ * →  is a cryptographic hash 
function. 3) There is a trusted central server. Every valid 
user, say Ui, in the system is assigned a Personal Permanent 
Portable Secret, called P3-Secret and denoted as SIDi (a 
random positive integer <q).  This secret is only known to 
the user and the central server. Since users are generally 
required to register to the system, the assignment of an SID 
to a user can be performed during the registration procedure.  

A. Access Control Polynomial and Secret Information 
Distribution 

An access control polynomial (ACP) is a polynomial 
over Fq [x] and defined as follows.  

∏
∈

−=
ψi

i zSIDfxxA )),(()(    (1) 

where ψ  denotes the user group under consideration and 

iSID  are the P3-Secrets of group members in ψ . z is a 

random integer from pF  and is made public. In addition, z is 
changed every time A(x) is computed. It is evident that 

)(xA  is equated to 0 when x  is substituted with 

),( zSIDf i  by a valid user with iSID  in ψ ; otherwise, 

)(xA  is a random value.  

In order to broadcast a secret value such as K to the users 
in ψ , the following polynomial is computed (by the trusted 
server):          KxA xP += )()(                    (2) 

Then, ))(,( xPz  is publicized (broadcast) and K is 
hidden, mixed with the constant of )(xA .  From ))(,( xPz , 

any group member iU  with SIDi can obtain K by: 

   )= ),(( zSIDf PK i                    (3) 

B.  Application to Various Security Functions  

Based on ACP, the key management problem for a large 
range of security functions and applications can be solved 
effectively. This subsection describes how it can be used to 
provide an effective and efficient key management 
mechanism for SGC, SDC, DIF-AC and HAC. 

Group key management for Secure Group 
Communication (SGC)   

SGC refers to a setting in which a group of members can 
communicate (or share the information) among themselves, 
in a way that outsiders are unable to understand the 
communication (or the information) even when they are able 
to intercept the communication (or steal the information). 
The confidentiality of the SGC communication is provided 
by encrypting the communication with a group key which is 
distributed to the group (and only group) members.  

The server computes A(x) by Eq. (1), P(x) by Eq. (2), and 
multicasts (z,P(x)). Then every user in the group can 
compute the key via Eq. (3). After all group members obtain 
the same key, they can conduct group communication 
securely.   

Let us consider dynamics. Users can join, leave or be 
revoked from the system. From the construction of A(x), it 
can be seen that regardless of whether we deal with single 
join, single leave, multiple joins, multiple leaves, or multiple 
joins and leaves simultaneously, dynamics can be 
implemented with great elegance: the above steps (1), (2), 
and (3) are executed but in the formation of A(x), just the 
joining users’ SIDs (in fact, ),( zSIDf i ) are included and 
the leaving users’ SIDs are excluded. Note that z and K in 
these steps are new random numbers.  Once the key is 
changed, the encryption with the new key will prevent the 
leaving (or joining) users from accessing the future (or the 
past) information. 

Conference key management for Secure Dynamic 
Conferencing (SDC)  

SDC refers to a scenario where any random subset of the 
given user population can form a secure communication 
(sub)group.  As evident, SDC is closely related to SGC: as 
an extension of SGC or equivalently, SGC as a specific case 
of it. Suppose the size of the universe under consideration is 
n, there will be 2n-n-1 possible conferences. Pre-generating 
all these 2n-n-1 conferences is a bad strategy because many 
conferences may never need to be activated. In addition, 
most conferences may not occur at the same time. However, 
the existing schemes try to generate all the keys (or 
information from which to derive all the keys) for all the 
conferences at the very beginning, thus resulting in 
exponential running time and/or storage cost. 

One specific feature of the ACP scheme is that it is an 
“on-the-fly” mechanism, which means that whenever there is 
a need to distribute a secret to a specific user group, just the 
above steps (1) (2) and (3) have to be executed. This feature 
is particularly useful for supporting SDC. Whenever there 
will be a conference of any subset of users, the server just 
performs the three steps where A(x) includes SIDs of the 
conference members. If a user participates in multiple 
conferences at the same time, the user’s SID can be included 
in multiple corresponding A(x)s and the user then can get the 
keys for all these conferences. Whenever users want to join 
or leave a conference, the above three steps are executed 
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with A(x) just including the intended users.  Thus, the 
dynamics can be efficiently processed in SDC.  

Resource key management for Differential Access 
Control (DIF-AC)   

Access control is used for checking whether a user has 
the right to access a certain resource and for granting or 
denying access as required. It is a fundamental security issue 
for many computing systems in which users and resources 
are involved.   

 There are three typical policy models for specifying 
access control policies [33, 34]: Discretionary access control, 
Mandatory access control and Role-based access control 
(RBAC). Traditionally, access control has been implemented 
using non-cryptographic mechanisms such as access control 
lists, capability lists, and access control matrix. Recently, a 
new class of access control mechanisms, called 
cryptographic access control, has been proposed [28]. The 
idea is that every resource is assigned a cryptographic key 
and the resource is encrypted with the key. This key is 
distributed to the users who are supposed to access the 
resource (e.g. users that have already paid for the resource). 
Only if the key provided by a user matches the resource key, 
the resource grants the user's access, otherwise, denies the 
access. There are two typical access control models in TCC: 
differential access control (DIF-AC) and hierarchical access 
control (HAC). 

In DIF-AC, a user can (and only can) access certain 
resources and a resource can (and only can) be accessed by 
certain users (i.e. many-to-many relation, determined by, for 
example, subscription and payment). The typical 
applications requiring DIF-AC include, but are not limited 
to, e-newspapers, pay-per-view broadcast TV, multiple 
streaming services.  

Like the above SDC scheme, every resource Rk is 
associated with a dynamic key Kk and the users who can 
access Rk are treated as a conference. The server computes 
Ak(x) and Pk(x), and publicizes ))(,( xPz k . Thus, the user, 
who can access Rk, can derive key Kk and is granted access to 
resource Rk.  If a user can access multiple resources, the 
user's SIDi will be included in the Ak(x)s of all these 
resources. Thus, the user can access all these resources. 
Similarly, dynamics can be implemented by inclusion and 
exclusion of users’ SIDs in the formation of new Ak(x)s. 

Hierarchical key management for Hierarchical Access 
Control (HAC).  

HAC occurs when resources (and users) have some 
hierarchical relation: resources are assigned levels and a user 
who has the access right to a resource at one level is 
automatically granted access to the resources which are the 
resource's children or descendants at lower levels. However 
the reverse is not allowed. The most generic format of HAC 

can be represented as a Directed Acyclic Group (DAG) 
(Figure 1). A node in the hierarchy can represent a user, a 
resource, a set of users, a set of resources, or both users and 
resources. 

For every node/class Ck in the hierarchy, the server 
selects a unique CIDk and securely distributes CIDk to Ck’s 
users },,,{ 21 nUUU  using the same scheme as that in 
SGC, i.e. the server computes 

)),(()),(()( 21 zSIDfxzSIDfxxP −⋅−=  

kn CIDzSIDfx +− )),((                                   (4) 

and multicasts (z, P(x)) to Ck’s users.  The server also selects 
a dynamic key Kk for every Ck.  Now, the server constructs 
Ak(x) using this node’s CIDk  as well as CIDs of all its 
ancestors: 

∏
∈

−−=
ψi

ikk zCIDfxzCIDfxxA )),(()),(()(  (5) 

where the first term is Ck itself  and the next terms are 
associated with all the ancestors Ci of Ck  (ψ  is the set of 
ancestors of Ck). Then, the server constructs Pk(x) = Ak(x) + 
Kk and publicizes (z, Pk(x)). The node Ck  (i.e., the users in 
Ck) can compute the key Kk as )),(( zCIDfPK kkk = . 
Furthermore, any ancestor (i.e. the users in) Ci of Ck can also 
derive the key Kk as )),(( zCIDfPK ikk = .  However, Ck 
cannot reversely get Ci ’s key.  Thus, the hierarchical access 
control is correctly and securely enforced.  

C C

CCC

CC

C

C

1 2

3 4 5

6 7 8 9

 

Figure 1: A typical access control hierarchy. 

In this ACP based HAC scheme, the key derivation by 
the node’s ancestors is performed in the identical way as the 
key computation by a node. Moreover, nodes do not need to 
know the exact hierarchy. The nodes that are ancestors of a 
node will obtain the correct key of the node when 
substituting their CID into P(x) but others will not. This is an 
important advantage of our approach compared with other 
cryptographic HAC approaches. 

There are two level dynamics in HAC: node level and 
user level. Node level dynamics includes adding a node, 
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deleting a node, moving a node from one place to another, 
adding one link between two nodes, and deleting a link 
between two nodes.  User level dynamics indicates addition 
and deletion of a user from a node group and movement of a 
user from one node group to another.  Based on ACP, both 
level dynamics can be accomplished efficiently.  

Let us consider the operation of deleting a node, since 
revocation/deletion is generally more difficult to deal with 
than join/addition.  There are two cases to consider: a leaf 
node and an internal node. If the deleted node is a leaf node, 
nothing needs to be done except just discarding the 
information/values related to this node. If the deleted node is 
an internal node, a policy needs to be adopted in order to 
relocate the node’s children. However, the policies used for 
such purpose do not matter here. Since the deleted node 
knew the keys of all its descendants, these keys need to be 
changed, which is easy. For each of the descendant nodes of 
the deleted node, the server computes A(x) which includes 
the CIDs of all new ancestors of the node but excludes the 
CID of the deleted node and multicasts (z, P(x)=A(x)+K).  

Consider the second level dynamics. For example, if one 
member (with SIDl) leaves group Ck and attends another 
group Cj, the following two steps complete the update.  

(1) The new node CID of Ck is updated by the above 
polynomial excluding the term ))',(( zSIDfx l− .  

(2) The new node CID of Cj is updated with the above 
polynomial including the term ))'',(( zSIDfx l− . 

(Note: new 'z and ''z  are used). 

It is clear that the ACP mechanism can address the HAC 
problem in the same manner and the same efficiency of 
SGC/SDC. Typical applications involving HAC include 
digital libraries and medical information systems.  

C. Security and Complexity Analysis 

We now analyze the security and performance of the 
above ACP scheme. By the security analysis, we show that 
the proposed ACP mechanism is very robust and secure not 
only against outside attackers which do not know the shared 
key but also against the insiders which know the shared key.  
By the performance analysis, we show that the ACP 
mechanism is efficient. In particular, the improvement based 
on hierarchical grouping (See Section III.C) can make the 
ACP mechanism reach O(log(n)) complexity.  

Security of the ACP scheme 

We discuss the security of the scheme in terms of 
external attackers, internal attackers, and collusion of 
attackers. First, let us consider the key space and the 
guessing or brute-force attack. K is randomly and uniformly 
selected from 0 to q-1. In addition, K can be coincident with 

any of iSID and ),( zSIDfv ii = , for ni ,,1=  since 
this coincidence will not affect the correctness of the ACP 
mechanism.   Thus, the introduction of the access control 
polynomial (no matter how high its degree is) will not reduce 
the size of the key space. As for the brute-force attack, an 
external attacker can either guess K directly or guess one of 

iv and then compute K, or guess one of iSID and compute 

iv and then K. The probability that a random guess hits K is 

1/q whereas it is qn /  to hit  any of iv  and another qn /  to 

hit  any of iSID . Thus, the overall probability for a random 

trial to succeed is qn /)12( + . This means that the access 
control polynomial increases the success chance of the brute-
force attack by a factor of 2n. The more users are included in 
the polynomial, the higher the probability of success by the 
brute-force attack. However, due to the efficiency of the 
ACP mechanism (as discussed below), q can be selected to 
be reasonably large (e.g. 128 bits), thus, making the brute-
force attack infeasible. Next, let us consider the attacks in 
which an external attacker tries to obtain the group key K or 
group users’ SIDs from )(xP . The K is hidden in the 

publicized constant term of P(x), i.e. qVKc )%(0 +=  

where nvvvV 21 ⋅=  and ),( zSIDfv ii = , 

for ni ,,1= . Since there are many other pairs of 'K  and 

'V  such that ''0 VKc += , the attacker cannot uniquely 
determine K from c0.  As for trying to determine all of 

nvvvK ,,,, 21 from (the coefficients of) P(x) at the same 
time, the attacker will fail because only n equations can be 
formed for n+1 unknown nvvvK ,,,, 21 . As for trying to 

determine SIDi, the only relevant value is ),( zSIDfv ii =  

which is difficult to be obtained from )(xP  as discussed 
above. Even if the attacker was able to determine 

),( zSIDfv ii =  somehow, the attacker still would not be 
able to get SIDi since this would require inversion of the 
cryptographic hash function f.  Finally, multiple external 
attackers may collude to determine K or SIDi, but their 
collusion provides no more information than the information 
that would be obtained by a single attacker; collusion is thus 
useless. As a result, ACP is resistant to external attacks.   

We now consider the case of internal malicious users. 
Obviously, an internal user can obtain K from its own SIDi. 
Thus the purpose of an internal malicious user is to obtain 
the SIDs of some other users so that he can get the secret 
information, reserved to other users, to which he is not 
authorized to access.  He can obtain the exact polynomial 
A(x) as A(x)=P(x)-K and then set A(x)=0 to determine the 
roots of A(x). He may find ),( zSIDfv ii = by some root-
finding algorithm. However, it is computationally infeasible 
to get SIDi from ),( zSIDfv ii =  due to the one-way 
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feature of f. Getting iv  of another user does not help the 

attacker. First, iv  will result in K to be disclosed, but this 
does not help at all because he had been allowed to get K 
from his own SID.  Additionally, this ),( zSIDfv ii =  can 
be only used for getting this K and cannot help in 
determining any other keys from other P(x)s because z is 
updated every time and two iv s in two P(x)s will be 
different even though SIDi is the same. As a result, the 
internal malicious user cannot compromise the scheme. 
Furthermore, it is useless for multiple internal users to 
collude because their collusion cannot help to make the 
inverse of the cryptographic hash function easier, thus, 
making it impossible to get SIDi from iv . The collusion of 
internal malicious users and external attackers is also useless 
in getting other users’ SIDs (Note: the collusion here does 
not include the case of an internal user giving his SID or the 
key to an outsider so that the outsider can access the 
information.  If this case is considered as collusion, then it is 
inherent in all cryptosystems and there is no solution to it).  

The attackers may hope to glean multiple P(x)s and try to 
get useful information from them; however, this attempt 
would also be useless due to the changing P(x)s. There are 
different forms of collusions in the hierarchy such as two 
siblings trying to figure out their parent’s key, a node and its 
nephew trying to figure out its parent key. However, these 
cases of attacks can be reduced to the collusion of external 
attackers, or internal malicious members or internal/external 
users depending on whether (and how many) their SIDs are 
included in P(x). As discussed above, our ACP scheme is 
able to perfectly defend against any such collusion.  

We note that the system is secure against repeated join 
and leaving attacks. However, if a previous z is re-used  later, 
a user Ui belonging to the current group is able to obtain 
another user Uj‘s  ),( zSIDfv jj = and thus get the key of 
the previous group which had the same value z and to which 
Uj belonged to.  So the trusted server should check and make 
sure that a fresh random z is used every time. 

Complexity of the ACP scheme 

The storage complexity (at both user end and server end), 
computation complexity (at both the user end and server 
end), and communication complexity are analyzed here.  

The user-end storage cost is O(1) since a user just needs 
to store its P3-Secret SID (plus its node CID if in the HAC 
hierarchy). The server storage cost is O(n+m) since the 
server needs to store all n users’ SIDs (plus m nodes IDs if in 
the HAC hierarchy). Suppose there are n terms involved in 
the generation of P(x). There are two parts to consider. The 
first part is related to computing ).,( zSIDf  The running 
time of the cryptographic hash function totally depends on 
itself but is independent from the number of terms n.  
Suppose its running time is O(B), then computing n 

),( zSIDf s has a cost in O(nB). The other part is to 
multiply n terms (x-v)s. The main operations are 
multiplication (with modulo) and addition (with modulo). 
There are in total )( 2nO   such operations. The computation 

complexity for multiplying n terms (x-v)s is in )( 2nO .  
Thus, the total computation complexity for generating P(x) is 
in )()( 22 nOnnBO =+ . This polynomial computation 
complexity is efficient for the server.  We now consider the 
computation complexity for computing the key from a 
polynomial P(x) of degree n when replacing x with the 
computed value ),( zSIDfv = . The main operations are:  

(1) the computation of qvqvv n %,,%, 2  which requires 
n multiplications (with modulo); (2) the multiplication of 
each of these values with its corresponding coefficient, 
which requires another n multiplications; and (3) the addition 
of the results, which requires n additions. In total, the 
complexity of computing the key from P(x) is in )(nO . 
With respect to the communication complexity, broadcasting 

01
1

1)( axaxaxaxP n
n

n
n ++++= −

−  requires to 

broadcast the coefficients 011 ,,,, aaaa nn − . Thus, the 
communication complexity is in O(n).   

These complexities are summarized in Table 1. Note: key 
derivation is same as key computation. 

Table 1 Complexities of the ACP based key management. 

Terms  Comp. Terms  Comp. 

User end 
storage 

        
O(1) 

 Key 
computation       

 O(n)      

   Key derivation O(n) 

Server end 
storage 

        
O(n+m) 

P(x) generation O(n2) 

  Communication   O(n)      

 

III. DISCUSSIONS 

In this section, we first discuss the anonymity issue and 
ACP’s application to other access control models and then 
discuss improvement to the ACP scheme.  Before going into 
the details, we briefly compare it with the well known  
Shamir’s secret sharing scheme [35]. Both are based on 
polynomials and hide the secret/key in the polynomials.   
However, they are essential different. The polynomial in 
Shamir’s scheme is kept secret but it is public in ACP. The 
purpose of Shamir’s scheme is to prevent any single user 
from obtaining the secret. In contrast, ACP is intended for 
any of the group members to be able to obtain the secret 
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himself.   In Shamir’s scheme, the secret is obtained by 
recovering the polynomial using polynomial interpolation 
which requires the number of participants be larger than the 
polynomial degree. In contrast, ACP just plugs a user’s SID 
in the polynomial and recovers the secret key.   

A. Randomized ACP and Hiding of Groups and Group 
Membership 

One specific advantage of the ACP scheme over many 
existing schemes is that it can hide the group membership 
from outsiders (even insiders) and does not require member 
serialization. In many existing schemes2, when the key(s) 
(after being masked) is multicast to a group of users, the 
information identifying these users needs to be included in 
the multicast packet. In addition, the users need to be ordered 
according to some strategy (referred to as serialization), so 
that each user knows which portion of the protected key 
material belongs to him and is thus able to extract the group 
key from that portion. These requirements not only result in 
more computation work (e.g., a user needs to search for his 
portion) and need synchronization due to the serialization but 
also unintentionally result in disclosures concerning the 
group membership information. Keeping group membership 
information private to outsiders may be important in some 
applications.  Furthermore, it may be desirable or even 
necessary to hide the group membership from the group 
users themselves in some mission-critical applications, that 
is, a user knows that he is in the group but does not have  
knowledge about who are the other members of the group. 
Finally, it may even be necessary to hide the size of the 
group. Again, because of its properties, the ACP mechanism 
provides an efficient and elegant solution to address such 
requirements: the polynomial hides the group users and does 
not need to sort the group members. A valid user does not 
need to know (in fact, he cannot know if the server does not 
want to tell him) the membership and the order of members 
but he can get the group key easily by just plugging his SID 
into the polynomial. As for hiding the group size, the ACP 
scheme can be easily extended for this purpose by simply 
including some random pseudo terms in the polynomial such 

as:  ∏∏
=∈

−−=
dj

j
i

i VIDxzSIDfxxA
1

)()),(()(
ψ

(6) 

where dVIDVID ,,1  are random numbers in Fq, called 
pseudo terms, and d is a random positive integer. As a result, 
the degree of P(x) does not indicate the number of members 
involved in the computation. These pseudo terms make P(x) 
even more randomized.  

It is clear that adding random terms will increase the 
degree of P(x), thus, impacting the efficiency of the ACP 
scheme. However, using the hierarchical grouping and tree-

                                                        
2 One such scheme is: numbering users sequentially, treating 

users’ SIDis as their secret keys and encrypting the group 
key K by SIDis of the users in ψ respectively in sequence.   

based key distribution extension discussed below, the 
efficiency will not be affected too much. In addition, whether 
to add or how many random terms to be added is a trade-off 
between security and efficiency and should be determined 
based on the requirements of concrete applications.   

B. HAC with “Transfer Down” and “Depth-Limited 
Transfer” Model 

The common hierarchical access model discussed above 
is called “transfer up” [30], that is, the access permission of a 
node is transferred up to its ancestors. Some other models 
were proposed [30, 36], two of which are: (1) “transfer 
down”-- the access permission of a node is transferred down 
to its descendants and (2) “depth-limited transfer”-- the 
access permission of a node is transferred either up or down 
but only to a certain depth. Both new models can be easily 
implemented by the ACP scheme. For the “transfer down” 
model, the A(x) of a node is constructed to include the CIDs 
of its descendants. For the “depth-limited transfer” model, 
the A(x) of a node is constructed to include the CIDs of both 
its ancestors and descendants which are within the limited 
depth from the node.  

       In fact, the ACP mechanism is powerful enough to 
adapt to random forms of interactive/access relations among 
users and/or resources with the great flexibility. These 
relations include, but are not limited to, equivalent 
users/resources, one-to-many, many-to-one, many-to-many, 
hierarchy, multiple levels, etc. For example, if a node Ci’s 
access permission needs to be transferred to a random other 
node Cj , regardless of the relation and distance between the 
two nodes in the hierarchy, just include Cj’s CIDj in the 
construction of Ai(x). This power enables ACP to implement 
integration across domains: suppose Ci is in one domain and 
Ci' is in another, if Ci wants (and is allowed) to access the 
resources in Ci', simply put Ci’s CIDi in the formation of 
Ai '(x), i.e. adding the access relation from Ci to Ci'. 

C. Improvement and Extension  

From the above complexity analysis, it is clear that all 
complexities are proportional to n, the number of current 
users in the group. If n is large but just a single user or few 
users join or leave the group, )(nO  is not efficient.  We 
discuss several ways to improve its efficiency. (1) As for 
join, the server can just generate a new key and encrypt the 
new key with the old group key and send it to the group.  
The server also encrypts the new key with the SID of the 
joining user and sends it to the joining user. (2) To improve 
the efficiency of computing P(x), we can store and save A(x) 
in advance. If one or a few users kUU ,,1 leave, we can 
get the new A(x) by directly dividing A(x) by 

)),(()),(( 1 zSIDfxzSIDfx k−⋅⋅− , thus, the 
complexity for generating P(x) will reduce to O(n). (3). For 
improving the efficiency of key computation and derivation, 
we can divide the n users into k=n/l separate groups of l users 
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each. The server forms k polynomials of degree l each. Every 
user can obtain the key by replacing its own SID to its 
corresponding polynomial. Thus, the complexity for key 
computation/derivation will reduce to )(lO . Next, we 
describe a mechanism which can improve the efficiency 
greatly: tree based multiple level and hierarchical grouping.   

Suppose n is the number of all users and m is the size of a 
small group which can be managed easily and efficiently, for 
example, m=16.  Then every m users form a first level group, 
so a total n/m such groups mnGG /,11,1 ,,  are formed. 
Next, every m first level groups form a second level group, 
thus, a total 2/ mn  such groups 2/,21,2 ,, mnGG  are 

formed. By continuing with this strategy, finally a highest 
level group is formed 

1,log n
m

G .  All these groups can be 

treated as nodes in an m-ary tree of height n
mlog . Every 

group jiG ,  is associated with a group key jiK ,  and the 

1,log n
m

K  will be the group key for all users.  The group keys 

are distributed using the ACP scheme itself.  For example, 

jK ,1  is distributed to group jG ,1  by forming the ACP 
polynomial using the SIDs of the users in its group, 
i.e. jij KzSIDfxxP ,1,1 )),(()( +−= ∏ where 

ji GU ,1∈ .  The second level key jK ,2  is distributed to all 

users belonging to group jG ,2  by forming the ACP 
polynomial using the group keys of its first level groups, i.e. 

jijjj KzKfxKxAxP ,2,1,2,2,2 )),(()()( +−=+= ∏
 where ji GG ,2,1 ∈ .  Finally, the highest level key will be 
distributed by 
forming

1,log,1log1,log
)),(( n

m
n

m
n

m
KzKfxP

i∏ +−=
−

.  

Let us consider the case of a single user leaving his group. 
The group keys along the path from the leaf group of the 
leaving user to the root group need to be changed. Total 

n
mlog polynomials of degree m need to be computed and 

broadcast. Thus, the total polynomial generation time will be 

)log( 2 n
mmO , the communication complexity is 

)log( n
mmO , and the key computation and derivation are 

also in )log( n
mmO . For example, suppose m=16, 

642=n , then the polynomial generation time, key 
computation time, and communication complexity are in 
2048 units of time, 256 units of times, and 256 units of 
numbers for transmission. 

It is worthy to mention that there is a simple scheme:   
the key K is encrypted with SIDi s respectively and sent to 
the group (see footnote 2 in the previous page). However 

such a scheme has some limitations compared with the ACP 
mechanism, such as (1) good for  SGC but inflexible for 
HAC; (2) unable to hide group size and membership; (3) 
difficult to improve its efficiency, and (4) requiring for 
member serialization.  

IV. CONCLUSIONS 

In this paper, we presented an innovative concept of 
Access Control Polynomials. We showed how this uniform 
technique can accommodate various key management 
schemes for most security needs in various application 
domains. The paper has also analyzed its security and 
performance. From both theoretical and practical points of 
view, the ACP scheme is generic, flexible, efficient, 
dynamic, practical, invulnerable and easy to implement.  Due 
to the space limitation, we omitted the comparison with 
existing schemes and illustrative examples. This could be 
combined with the future work in implementing and 
simulating the ACP technology. We are employing ACP 
based security functions in a real TCC application: Secure 
and Scalable Medical Information System for the 
Department of Veterans Affairs.  

In summary, the main features of the new proposed ACP 
scheme include:   

1. It is elegant, simple, easy to understand and implement. 

2. It is flexible and easy to adapt to (any) different kinds of 
key management and (any) different kinds of access 
control relations.  

3. It is able to enforce access control and secure group 
communication in any scale and any granularity. 

4. It is able to implement seamless integration of 
heterogeneous data sources and systems without much 
modification of the existing components.  

5. It is able to protect against any kind of attacks, not only 
external attacks, but also internal attacks, even when 
attackers and/or malicious users collude.  

6. It supports highly dynamic environments; in particular, 
the revocation of members/resources is simple and 
efficient. It also supports temporary suspension of 
membership. 

7. It does not require member serialization or 
synchronization and does not disclose membership. 

8. Users only need to store a secret value. Furthermore, the 
key computation and key derivation are executed by the 
same efficient procedure. This makes the scheme 
applicable to various devices including those with low 
computing powers such as PDAs, sensors. 

9. It is able to offer the capability of hiding the entities in 
groups and even group size.    
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10. It is able to implement flexible key management “on the 
fly”.  

In short, this novel scheme provides a holistic and 
seamless key management solution to foster Trusted 
Collaborative Computing.  
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