' Exercises

does not continue to the second pass. In this case, the assembly listing contains
only errors that could be detected during Pass 1.

If no errors are detected during the first pass, the assembler proceeds to
Pass 2. The second pass reads the source program again, instead of using an
intermediate file as we discussed for SIC. This means that location counter val-
ues must be recalculated during Pass 2. It also means that any warning mes-
sages that were generated during Pass 1 (but were not serious enough to
terminate the assembly) are lost. The assembly listing will contain only errors
and warnings that are generated during Pass 2.

Assembled control sections are placed into the object program according to
their storage mapping class. Executable instructions, read-only data, and vari-
ous kinds of debugging tables are assigned to an object program section
named .TEXT. Read/write data and TOC entries are assigned to an object pro-
gram section named .DATA. Uninitialized data is assigned to a section named
.BSS. When the object program is generated, the assembler first writes all of
the .TEXT control sections, followed by all of the .DATA control sections ex-
cept for the TOC. The TOC is written after the other .DATA control sections.
Relocation and linking operations are specified by entries in a relocation table,
similar to the Modification records we discussed for SIC.

EXERCISES
Section 2.1

1. Apply the algorithm described in Fig. 2.4 to assemble the source pro-
gram in Fig. 2.1. Your results should be the same as those shown in
Figs. 2.2 and 2.3.

2. Apply the algorithm described in Fig. 2.4 to assemble the following
SIC source program:

SUM START 4000

FIRST LDX ZERO
1DA ZERO

LOOP ADD TABLE, X
TIX COUNT
JLT LOOP
STA TOTAL
RSUB

TABLE RESW 2000

COUNT RESW 1

ZERO WORD 0

TOTAL RESW 1

END FIRST

111

112

Chapter 2. Assemblers

. As mentioned in the text, a number of operations in the algorithm of

Fig. 2.4 are not explicitly spelled out. (One example would be scan-
ning the instruction operand field for the modifier “,X".) List as
many of these implied operations as you can, and think about how
they might be implemented.

. Suppose that you are to write a “disassembler”—that is, a system

program that takes an ordinary object program as input and pro-
duces a listing of the source version of the program. What tables and
data structures would be required, and how would they be used?
How many passes would be needed? What problems would arise in
recreating the source program?

. Many assemblers use free-format input. Labels must start in Column

1 of the source statement, but other fields (opcode, operands, com-
ments) may begin in any column. The various fields are separated by
blanks. How could our assembler logic be modified to allow this?

. The algorithm in Fig. 2.4 provides for the detection of some assembly

errors; however, there are many more such errors that might occur.
List error conditions that might arise during the assembly of a SIC
program. When and how would each type of error be detected, and
what action should the assembler take for each?

. Suppose that the SIC assembler language is changed to include a

new form of the RESB statement, such as

RESB n’c’

which reserves n bytes of memory and initializes all of these bytes to
the character ‘c’. For example, line 105 in Fig. 2.5 could be changed to

BUFFER RESB 4096°

This feature could be implemented by simply generating the re-
quired number of bytes in Text records. However, this could lead to a
large increase in the size of the object program—for example, the ob-
ject program in Fig. 2.8 would be about 40 times its previous size.
Propose a way to implement this new form of RESB without such a
large increase in object program size.

. Suppose that you have a two-pass assembler that is written accord-

ing to the algorithm in Fig. 2.4. In the case of a duplicate symbol,

Exercises 113

this assembler would give an error message only for the second (i.e.,
duplicate) definition. For example, it would give an error message
only for line 5 of the program below.

1 P3 START 1000

2 LDA ALPHA
3 STA ALPHA
4 ALPHA RESW 1

5 ALPHA WORD 0

6 END

Suppose that you want to change the assembler to give error mes-
sages for all definitions of a doubly defined symbol (e.g., lines 4 and
5), and also for all references to a doubly defined symbol (e.g., lines 2
and 3). Describe the changes you would make to accomplish this. In
making this modification, you should change the existing assembler
as little as possible.

. Suppose that you have a two-pass assembler that is written accord-
ing to the algorithm in Fig. 2.4. You want to change this assembler so
that it gives a warning message for labels that are not referenced in
the program, as illustrated by the following example.

P3 START 1000
LDA DELTA
ADD BETA
LOOP STA DELTA
Warning: label is never referenced
RSUB
ALPHA RESW 1
Warning: label is never referenced
BETA RESW 1
DELTA RESW 1
END

The warning messages should appear in the assembly listing directly
below the line that contains the unreferenced label, as shown above.
Describe the changes you would make in the assembler to add this

114 Chapter 2 Assemblers

new diagnostic feature. In making this modification, you should
change the existing assembler as little as possible.

Section 2.2

1. Could the assembler decide for itself which instructions need to be
assembled using extended format? (This would avoid the necessity
for the programmer to code + in such instructions.)

2. As we have described it, the BASE statement simply gives informa-
tion to the assembler. The programmer must also write an instruction
like LDB to load the correct value into the base register. Could the as-
sembler automatically generate the LDB instruction from the BASE
statement? If so, what would be the advantages and disadvantages

of doing this?
3. Generate the object code for each statement in the following SIC/XE
program:
SUM START 0
FIRST LDX #0
LDA #0
+LDB #TABLE2
BASE TABLE2
LOOP ADD TABLE, X
ADD TABLE2, X
TIX COUNT
JLT LOOP
+STA TOTAL
RSUB
COUNT RESW 1
TABLE RESW 2000
TABLE2 RESW 2000
TOTAL RESW 1
END FIRST

4. Generate the complete object program for the source program given
in Exercise 3.

5. Modify the algorithm described in Fig. 2.4 to handle all of the
SIC/XE addressing modes discussed. How would these modifica-
tions be reflected in the assembler designs discussed in Chapter 8?

6. Modify the algorithm described in Fig. 2.4 to handle relocatable pro-

10.

grams. How would these modifications be reflected in the assembler
designs discussed in Chapter 8?

Suppose that you are writing a disassembler for SIC/XE (see Exercise
2.1.4.) How would your disassembler deal with the various address-
ing modes and instruction formats?

Our discussion of SIC/XE Format 4 instructions specified that the
20-bit “address” field should contain the actual target address, and
that addressing mode bits b and p should be set to 0. (That is, the in-
struction should contain a direct address—it should not use base rel-
ative or program-counter relative addressing.)

However, it would be possible to use program-counter relative ad-
dressing with Format 4. In that case, the “address” field would actu-
ally contain a displacement, and bit p would be set to 1. For example,
the instruction on line 15 in Fig. 2.6 could be assembled as

0006 CLOOP +JSUB RDREC 4B30102C

(using program-counter relative addressing with displacement
102C).

What would be the advantages (if any) of assembling Format 4
instructions in this way? What would be the disadvantages (if any)?
Are there any situations in which it would not be possible to assem-
ble a Format 4 instruction using program-counter relative address-
ing?

Our Modification record format is well suited for SIC/XE programs
because all address fields in instructions and data words fall neatly
into half-bytes. What sort of Modification record could we use if this
were not the case (that is, if address fields could begin anywhere
within a byte and could be of any length)?

Suppose that we made the program in Fig. 2.1 a relocatable program.
This program is written for the standard version of SIC, so all operand
addresses are actual addresses, and there is only one instruction for-
mat. Nearly every instruction in the object program would need to
have its operand address modified at load time. This would mean a
large number of Modification records (more than doubling the size of
the object program). How could we include the required relocation
information without this large increase in object program size?

Exercises

115

116

Chapter 2 Assemblers

11.

12.

Suppose that you are writing an assembler for a machine that has
only program-counter relative addressing. (That is, there are no di-
rect-addressing instruction formats and no base relative addressing.)
Suppose that you wish to assemble an instruction whose operand is
an absolute address in memory—for example,

LbaA 100

to load register A from address (hexadecimal) 100 in memory. How
might such an instruction be assembled in a relocatable program?
What relocation operations would be required?

Suppose that you are writing an assembler for a machine on which
the length of an assembled instruction depends upon the type of the
operand. Consider, for example, the following three fragments of
code:

a. ADD ALPHA

ALPHA IDC I(3)

b. ADD ALPHA

ALPHA DC F(3.1)

C. ADD ALPHA

ALPHA DC D(3.14159)

In case (a), ALPHA is an integer operand; the ADD instruction gener-
ates 2 bytes of object code. In case (b), ALPHA is a single-precision
floating-point operand; the ADD instruction generates 3 bytes of ob-
ject code. In case (c), ALPHA is a double-precision floating-point
operand; the ADD instruction generates 4 bytes of object code.

What special problems does such a machine present for an assem-
bler? Briefly describe how you would solve these problems—that is,
how your assembler for this machine would be different from the
assembiler structure described in Section 2.1.

’ Exercises 117

Section 2.3

1. Modify the algogithm described in Fig. 2.4 to handle literals.

2. In the program of Fig. 2.9, could we have used literals on lines 135
and 145? Why might we prefer not to use a literal here?

3. With a minor extension to our literal notation, we could write the in-
struction on line 55 of Fig. 2.9 as

LDA =W’'3

specifying as the literal operand a word with the value 3. Would this
be a good idea?

4. Immediate operands and literals are both ways of specifying an
operand value in a source statement. What are the advantages and
disadvantages of each? When might each be preferable to the other?

5. Suppose that you have a two-pass SIC/XE assembler that does not
support literals. Now you want to modify the assembler to handle
literals. However, you want to place the literal pool at the beginning
of the assembled program, not at the end as is commonly done. (You
do not have to worry about LTORG statements—your assembler
should always place all literals in a pool at the beginning of the pro-
gram.) Describe how you could accomplish this. If possible, you
should do so without adding another pass to the assembler. Be sure
to describe any data structures that you may need, and explain how
they are used in the assembler.

6. Suppose we made the following changes to the program in Fig. 2.9:
a. Delete the LTORG statement on line 93.
b. Change the statement on line 45 to +LDA....

c. Change the operands on lines 135 and 145 to use literals (and
delete line 185).

Show the resulting object code for lines 45, 135, 145, 215, and 230.
Also show the literal pool with addresses and data values. Note: you
do not need to retranslate the entire program to do this.

7. Assume that the symbols ALPHA and BETA are labels in a source
program. What is the difference between the following two
sequences of statements?

118

Chapter 2 Assemblers

8.

10.

11.

12.

13.

14.

LDA ALPHA-BETA

b. LDA ALPHA
SUB BETA

What is the difference between the following sequences of state-
ments?

a. LDA #3
b. THREE EQU 3

LDA #THREE
c. THREE EQU 3

LDA THREE

Modify the algorithm described in Fig. 2.4 to handle multiple pro-
gram blocks.

Modify the algorithm described in Fig. 2.4 to handle multiple control
sections.

Suppose all the features we described in Section 2.3 were to be im-
plemented in an assembler. How would the symbol table required be
different from the one discussed in Section 2.1?

Which of the features described in Section 2.3 would create addi-
tional problems in the writing of a disassembler (see Exercise 2.1.4)?
Describe these problems, and discuss possible solutions.

When different control sections are assembled together, some refer-
ences between them could be handled by the assembler (instead of
being passed on to the loader). In the program of Fig. 2.15, for exam-
ple, the expression on line 190 could be evaluated directly by the as-
sembler because its symbol table contains all of the required
information. What would be the advantages and disadvantages of
doing this?

In the program of Fig. 2.11, suppose we used only two program
blocks: the default block and CBLKS. Assume that the data items in
CDATA are to be included in the default block. What changes in the
source program would accomplish this? Show the object program
(corresponding to Fig. 2.13) that would result.

15.

16.

17.

‘ Exercises

Suppose that for some reason it is desirable to separate the parts of
an assembler language program that require initialization (e.g., in-
structions and data items defined with WORD or BYTE) from the
parts that do not require initialization (e.g., storage reserved with
RESW or RESB). Thus, when the program is loaded for execution it
should look like

Instructions and
initialized data items

Reserved storage
(uninitialized data items)

Suppose that it is considered too restrictive to require the program-
mer to perform this separation. Instead, the assembler should take
the source program statements in whatever order they are written,
and automatically perform the rearrangement as described above.

Describe a way in which this separation of the program could be ac-
complished by a two-pass assembler.

Suppose LENGTH is defined as in the program of Fig. 2.9. What
would be the difference between the following sequences of state-
ments?

a. LDA LENGTH
SUB #1
b. LDA LENGTH-1

Referring to the definitions of symbols in Fig. 2.10, give the value,
type, and intuitive meaning (if any) of each of the following expres-
sions:

a. BUFFER-FIRST

b. BUFFER+4095

¢. MAXLEN-1

d. BUFFER+MAXLEN-1
e. BUFFER-MAXLEN
f. 2*LENGTH

119

120

Chapter 2 Assemblers

18.

19.

20.

21.

23.

g 2*MAXLEN-1
h. MAXLEN-BUFFER
i. FIRST+BUFFER

j. FIRST-BUFFER+BUFEND

In the program of Fig. 2.9, what is the advantage of writing (on line
107)

MAXLEN EQU BUFEND-BUFFER
instead of

MAXLEN EQU 4096 ?

In the program of Fig. 2.15, could we change line 190 to
MAXLEN EQU BUFEND-BUFFER

and line 133 to

+LDT #MAXLEN

as we did in Fig. 2.9?

The assembler could simply assume that any reference to a symbol
not defined within a control section is an external reference. This
change would eliminate the need for the EXTREF statement. Would
this be a good idea?

How could an assembler that allows external references avoid the
need for an EXTDEF statement? What would be the advantages and
disadvantages of doing this?

The assembler could automatically use extended format for instruc-
tions whose operands involve external references. This would elimi-
nate the need for the programmer to code + in such statements. What
would be the advantages and disadvantages of doing this?

On some systems, control sections can be composed of several differ-
ent parts, just as program blocks can. What problems does this pose
for the assembler? How might these problems be solved?

Exercises 121

24. Assume that the symbols RDREC and COPY are defined as in Fig.
2.15. According to our rules, the expression

RDREC-COPY

would be illegal (that is, the assembler and/or the loader would re-
ject it). Suppose that for some reason the program really needs the
value of this expression. How could such a thing be accomplished
without changing the rules for expressions?

25. We discussed a large number of assembler directives, and many
more could be implemented in an actual assembler. Checking for
them one at a time using comparisons might be quite inefficient.
How could we use a table, perhaps similar to OPTAB, to speed
recognition and handling of assembler directives? (Hint: the answer
to this problem may depend upon the language in which the assem-
bler itself is written.)

26. Other than the listing of the source program with generated object
code, what assembler outputs might be useful to the programmer?
Suggest some optional listings that might be generated and discuss
any data structures or algorithms involved in producing them.

Section 2.4

1. The process of fixing up a few forward references should involve
less overhead than making a complete second pass of the source
program. Why don’t all assemblers use the one-pass technique for
efficiency?

2. Suppose we wanted our assembler to produce a cross-reference list-
ing for all symbols used in the program. For the program of Fig. 2.5,
such a listing might look like

Symbol Defined on line Used on lines
COPY 5

FIRST 10 255

CLOOP 15 40

ENDFIL 45 30

EOF 80 45

RETADR 95 10,70

LENGTH 100 12,13,20,60,175,212

122

Chapter 2 Assemblers

10.

How might this be done by the assembler? Indicate changes to the
logic and tables discussed in Section 2.1 that would be required.

Could a one-pass assembler produce a relocatable object program
and handle external references? Describe the processing logic that
would be involved and identify any potential difficulties.

How could literals be implemented in a one-pass assembler?

We discussed one-pass assemblers as though instruction operands
could only be single symbols. How could a one-pass assembler han-
dle an instruction like

JEQ ENDFIL+3

where ENDFIL has not yet been defined?
Outline the logic flow for a simple one-pass load-and-go assembler.

Using the methods outlined in Chapter 8, develop a modular design
for a one-pass assembler that produces object code in memory.

Suppose that an instruction involving a forward reference is to be as-
sembled using program-counter relative addressing. How might this
be handled by a one-pass assembler?

The process of fixing up forward references in a one-pass assembler
that produces an object program is very similar to the linking process
described in Section 2.3.5. Why didn’t we just use Modification
records to fix up the forward references?

How could we extend the methods of Section 2.4.2 to handle forward
references in ORG statements?

Section 2.5

1.

2.

Consider the description of the VAX architecture in Section 1.4.1.
What characteristics would you expect to find in a VAX assembler?

Consider the description of the T3E architecture in Section 1.5.3.
What characteristics would you expect to find in a T3E assembler?

