
System Programming

• Design and Implementation of system software.
• System Software: a variety of programs supporting

the operation of a computer.
• Typical system programs: OS, Complier, Assembler

(Linker, Loader, Macro Processors), Text Editor,
Debugger, …,
– Their functions and relations among them?

• Why specific and important:
– rely on hardware (computer architecture)
– need related low level languages such as assembly

language
– Free users from knowing the detail of machines.

Relations?

• Programming Languages:
– Machine Language (ML) Assembly Language (AL)

High-Level Programming Language (HL)
• ML: machine code, i.e, binary code, e.g., 01100110
• AL: mnemonic instructions, e.g., STO (Store)
• HL: statements, e.g. if … Then … else …

– Programs in HL  Object Code (in AL or ML)
• (Compiler)

– Programs in AL  Object Code (in ML)
• (Assembler)

• Four typical systems
– Operating System, Compiling System, Database

(Administration) System, Network System

4 Level Programming languages

• 4th generation language
– Specify just what?

• High level language (HL):
– Statements

– Specify what and how?

• Assembly language (AL):
– Mnemonic instructions

• Machine language (ML):
– 0/1 instructions

Translate
-- Assembling

Translate
Compiling or Interpreting or Hybrid

(Executable)

C code, AL code, and ML code of the same program

The machine is:

Dell PowerEdge R430 Server

The CPU is:

Intel Xeon E5-2640 v3 2.6GHz

A real commercial system
written in Intel 80286 CPU Assembly language

TicketSellingSystem/ZJXYV3.ASM

Relations?

• Type and modify a program in HL or AL (by an editor)

• Translate it into object code in ML (by a compiler or
assembler)

• Load it into memory for execution (by a linker and/or
loader)

• Execute it on CPU (by an OS)

• Detect errors in the code (by a debugger)

• All the processes and programs are executed under and
controlled by an OS such as Windows or Linux.

• IDE (Integrated Development Environment)

Program stored on disk

Loaded into memory

Your program stored on disk is loaded into memory for execution
by OS (or loader particularly)

Each instruction is fetched one by one into CPU for execution
by decoder/control unit/interpretation

There are many registers within CPU: PC, linkage register, index register, state word
working registers

Load data from memory into CPU

Store data (of a register) back into memory

Topics

• Assembly language and its programming

• Structure (architecture) of machines.

• Assembler

• Linker, Loader, Macro Processor

• Compiler

• Others (OS, Editor, DB, network, SE, if time
allowed)

System software and Machine Architecture

• One main characteristic in which system software
differs from application software: machine
dependence.
– Assembler: instruction format, addressing modes

– Compiler: registers (number, type), machine instructions

– OS: all of the resources of a computing system.

• Of course, some aspects of system software are
machine-independent.
– General design and logic of a assembler

– Code optimization in a compiler

– Linking of independently assembled subprograms.

Dilemma? And SIC

• Since for system software which is machine
dependent, there is a need for real machine

• However, most real machines have certain
characteristics which are unusual or unique.

• Very difficult to distinguish the features which
are fundamental and those which are
idiosyncrasies of a particular machines.

• In addition, so many machines

• So SIC: Simplified Instructional Computer

Sections of major chapters

• Fundamental functions
• Features depending on machine
• Features which are common and machine-independent
• Major design principles and options

– Such as single pass or multiple passes.

• Examples of actual implementations on real machines
– SIC, SIC/XE (Extra equipment, upward compatible)
– CISC (Complex Instruction Set Computers) : VAX, Pentium

Pro
– RISC (Reduced Instruction Set Computers): UltraSPARC,

PowerPC, Cray T3E

SIC architecture

• Memory:
– 8-bit bytes, total 32,768 (215) bytes.
– Word: any 3 consecutive bytes
– Addressing:

• any byte
• Word: the lowest byte

• Registers:
– Five, A, X, L, PC, SW, (0,1,2,8,9) , 24 bits each
– A: accumulator for arithmetic operations, X: index, for address, L: Linkage, store the return address when JSUB jumps to a subroutine
– PC:: program counter, the address of next instruction for fetch and execution, SW: Status Word, including condition code (CC)

• Data Formats:
– Integers: 24 bits, 2’s complement for negative numbers
– Chars: 8-bit ASCII codes.
– No floating-point numbers.

• Instruction Formats
– Opcode (8) + x(1) + address (15), x: addressing mode

• Addressing modes:
– Direct addressing, x=0, Target Address (TA) =address
– Indexed addressing: x=1, TA=address+(X), address in the instruction plus Index Register

• Instruction Set:
– Load and Store Registers: LDA, LDX, STA, STX, etc.
– Integer Arithmetic: ADD, SUB, MUL, DIV, all these operation involve register A and a word in memory, and the result is in A.
– COMP: compare A with a word, and set the result (<, =, >) in Condition Code (CC) in SW.
– Conditional jump instructions: JLT, JEQ, JGT, test CC and jump accordingly
– Subroutine linkage instruction: JSUB and RSUB. JSUB jumps to the subroutine and places the return address in L, RSUB returns by jumping to address in L.

• Input/Output:
– IO devices: each is assigned a unique 8-bit code.
– All input/outputs are between the rightmost 8 bits of A and a device.
– Three instructions (with device code as operand, i.e., in the address of the instruction)

• TD (Test Device) : whether the device is ready, condition code is set: 1: ready, 0: not ready
• RD (Read Data) and WD (Write Data): a program must wait until a device is ready to transfer data

SIC/XE architecture

• Memory:
– Total 1M (220) bytes. So need change the instruction formats and addressing modes.

• Registers:
– Four more: B, S, T, F (3,4,5,6).
– B: Base register, for addressing, S: general working register, T: general working register, F: floating-point accumulator (48 bits)

• Data Formats:
– In addition, 48-bit floating-point numbers: s(1)+exponent(11)+fraction(36), the absolute value will be f*2(e-1024)

• Instruction Formats
– Mode 1 (1 byte): op (8), Mode 2 (2 bytes): op(8)+r1(4)+r2(4)
– Mode 3(3 bytes): op(6)+n(1)i(1)x(1)b(1)p(1)e(1)+disp(12)
– Mode 4(4 bytes): op(6)+n(1)i(1)x(1)b(1)p(1)e(1)+address(20), e=0: mode 3 and e=1: mode 4.

• Addressing modes (two new relative addressing):
– Base relative: b=1,p=0, TA=(B)+disp (0 ≤ disp ≤ 4095)
– Program –counter relative: b=0, p=1, TA=(PC)+disp (-2048 ≤ disp ≤ 2047)
– b=0, p=0: TA=disp. Called direct addressing, wrt. Relative addressing.
– In Mode 4, usually b=0 and p=0, and TA =address. Also called direct addressing., wrt. Relative addressing.
– x=1, then (X) is added. Called indexed addressing.
– i=1, and n=0: TA is an operand, no memory reference. So called immediate addressing.
– i=0 and n=1: the operand is the value in the address which is the value in the address indicated by TA., called indirect addressing.
– i=0 and n=0 or i=1 and n=1: the TA is the address of the operand. Called simple addressing.
– Distinguish different addressing modes:
– Indexed addressing cannot be used with immediate or indirect addressing modes.
– i=1 and n=1: for SIC/XE with non immediate or indirect addressing,
– i=0 and n=0: for SIC, which will keep upward compatibility. In this case, b,p,e bits will be treated as part of 15 bit address (rather than as addressing flags).

• Instruction Set (additional):
– Load and Store to new registers, e.g., LDB, STB, etc.
– Floating-point arithmetic: ADDF, SUBF, MULF, DIVF
– Operations among registers: ADDR, SUBR, MULR, DIVR
– SVC (Supervisor call): generates an interrupt that can be used for communication with OS.

• Input/Output:
– SIO, TIO, HIO: start, test, and halt IO. These allows the parallel of IO and computing.

Machine language, Assembly Language and AL programming

• Example of SIC/XE instructions and addressing modes
– Machine language, binary codes
– Different addressing modes
– Most basic operations and direct memory locations
– Machine structure
– Code and data both are binary.
– (note: the five instruction 003600 is SIC one)

• Simple data movement operations for (a) SIC and (b) SIC/XE (Fig1.2-
Page13)
• Symbol (mnemonic) instruction
• Data (its location) is referred by label.
• Direct mapping between mnemonic instruction and machine code.
• Later, Macro functions and subroutines.
• Codes areas and data areas.

Figures/Fig1.1-Page11.pdf
Figures/Fig1.2-Page13.pdf

SIC Assembly Language Programs

• assembler directives
– START, END, BYTE, WORD, RESB, RESW, BASE, …

• Simple arithmetic operations for (a) SIC and (b) SIC/XE
– What is the function of the program?

• Simple looping and indexing operations for (a) SIC and
(b) SIC/XE

• Another Simple looping and indexing operations for (a)
SIC and (b) SIC/XE

• Simple Input and Output operations for SIC
• Simple subroutine call and record input operations for

(a) SIC and (b) SIC/XE

Figures/Fig1.3-Page15.pdf
Figures/Fig1.4(a)-Page16.pdf
Figures/Fig1.4(b)-Page16.pdf
Figures/Fig1.5-Page17.pdf
Figures/Fig1.6-Page19.pdf
Figures/Fig1.7-Page20.pdf

Traditional (CISC) machines

• Large and complicate instruction set, many different
instruction formats and lengths, many addressing
modes.

• VAX (DEC):
– Word, longword, quadword, octword,

– Word alignment

– Virtual address space—system space and process space

– Stacks

– Many registers, data formats, variable-length instruction
formats, many addressing modes

– I/O space is part of physical address space

CISC—Pentium Pro architecture (Intel)

• Intel x86 family
• Segments: so address is: segment:offset
• Stacks: SP:offset
• Pages
• Eight general purpose registers, several special-purpose registers,

and FPU (floating-point unit) with eight 80-bit registers
• Little-endian: least significant part of a value is stored at the lowest

numbered address.
• Single, double, and extended precision.
• Eight addressing modes:

– TA=(base register) + (index register)*scale + displacement

• Over 400 instructions, including memory-to-memory
• EAX register I/O port (byte, word, double word, repetition for

string)

RISC

• Number of machine instructions, instruction
formats, and addressing modes are small
(standardized, fixed, single-cycle execution)

• Memory access are done by just load and
store instructions

• All other instructions are register-to-register

• Large number of general registers.

RISC—UltraSPARC (Sun Microsystems)

• Virtual address space, pages
• Over 100 general purpose registers
• Any procedure can access only 32 registers.
• Support both big-endian and little-endian
• Three basic instruction formats with 32 bits long.
• Immediate mode, register mode, PC-relative, Register indirect with

displacement, Register indirect indexed
• Less than 100 instructions
• Pipelined execution of instructions
• “atomic” instructions that can execute without allowing other

memory accesses to intervene.
• No special I/O instructions, I/O port and registers are port of

memory.

RISC—PowerPC (IBM)

• Virtual address space 264. Segments of fix length 256M each, pages
of fix length 4096 bytes.

• 32 general purpose registers.
• Seven instruction formats with 32 bit length
• Two modes: immediate and register.
• All memory access is via load, store operation and branch

instructions with three addressing modes.
• 200 instructions, some are more complicated than typical RISC such

as “multiply and add” with 3 operands.
• Two I/O access modes:

– Direct-store access: I/O port and registers as part of physical address
– Virtual memory access: performed by normal virtual memory

management hardware and software.

RISC—Cray T3E (Cray Research Inc.)

• Parallel processing
• A three dimension network of processing elements

(PE)
• Each PE consists of a DEC Alpha EV5 RISC

microprocessor, local memory and performance-
accelerating control logic.

• Local memories form a large distributed share memory.
• Registers, Data Formats, Instruction formats,

addressing modes, instruction set are as normal as
RISC

• I/O: via multiple ports organized into channels. Each
channel is accessible by all PEs.

