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Abstr act. This paper proposes a new neural network method for classifying 
uncertain data (UNN). Uncertainty is widely spread in real-world data. 
Numerous factors lead to data uncertainty including data acquisition device 
error, approximate measurement, sampling fault, transmission latency, data 
integration error and so on. The performance and quality of data mining results 
are largely dependent on whether data uncertainty are properly modeled and 
processed. In this paper, we focus on one commonly encountered type of data 
uncertainty - the exact data value is unavailable and we only know the 
probability distribution of the data. An intuitive method of handling this type of 
uncertainty is to represent the uncertain range by its expectation value, and then 
process it as certain data. This method, although simple and straightforward, 
may cause valuable information loss. In this paper, we extend the conventional 
neural networks classifier so that it can take not only certain data but also 
uncertain probability distribution as the input. We start with designing uncertain 
perceptron in linear classification, and analyze how neurons use the new 
activation function to process data distribution as inputs. We then illustrate how 
perceptron generates classification principles upon the knowledge learned from 
uncertain training data. We also construct a multilayer neural network as a 
general classifier, and propose an optimization technique to accelerate the 
training process. Experiment shows that UNN performs well even for highly 
uncertain data and it significantly outperformed the naïve neural network 
algorithm. Furthermore, the optimization approach we proposed can greatly 
improve the training efficiency.  
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1   Introduction 

Data tends to be uncertain in many applications [1], [2], [3], [4], [5]. Uncertainty can 
originate from diverse sources such as data collection error, measurement precision 
limitation, data sampling error, obsolete source, network latency and transmission 
error. It is important to cautiously handle the uncertainty in various data mining 
applications to achieve satisfactory results. The error or uncertainty in data is 
commonly treated as a random variable with probability distribution. Thus, uncertain 
attribute value is often represented by an interval with a probability distribution 



function over the interval [6], [7]. It is important that data uncertainty models are 
integrated with data mining algorithms to achieve better performance in various data 
mining applications.  

Classification is one of the key processes in machine learning and data mining. 
Classification is the process of building a model that can describe and predict the 
class label of data based on the feature vector [8]. An intuitive way of handling 
uncertainty in classification is to represent the uncertain value by its expectation value 
and treat it as a certain data. Thus, conventional classification algorithms can be 
directly applied. However, this approach does not effectively utilize important 
information such as probability function and distribution intervals. We extend data 
mining techniques so that they can take uncertain data such as data interval and 
probability distribution as the input. In this paper, we design and develop a new 
classifier named uncertain neural network (UNN), which employs new activation 
function in neurons to handle uncertain values. We also propose a new approach to 
improve the training efficiency of UNN. We prove through experiments that the new 
algorithm has satisfactory classification performance even when the training data is 
highly uncertain. Comparing with the traditional algorithm, the classification accuracy 
of UNN is significantly higher. Furthermore, with the new optimization method, the 
training efficiency can be largely improved.  

The paper is organized as follows. In section 2, we discuss related work. Section 3 
defines the classification problem for uncertain data. In section 4, we first analyze the 
principle of uncertain perceptron in linear classification, and then construct the 
multilayer uncertain neural network, and discuss the training approach. Section 5 
introduces an optimized activation function to improve the efficiency. The 
experiments results are shown in section 6, and section 7 makes a conclusion for the 
paper.   

2   Related Works 

There has been a growing interest in uncertain data mining.  A number of data 
mining algorithms have been extended to process uncertain dataset. For example, UK-
Means [9], uncertain support vector machine [10], and uncertain decision tree 
[11].Artificial neural network has been used in model-based clustering with a 
probability gained from expectation-maximization algorithm for classification-
likelihood learning [12]. We adopt the concept to estimate the probability of 
membership when the uncertain data are covered by multiples classes. However, 
probability estimation presented here is unprecedented.  

In fuzzy neural network models for classification, either attributes or class labels can 
be fuzzy and are presented in fuzzy terms [13]. Given a fuzzy attribute of a data tuple, 
a degree (called membership) is assigned to each possible class, showing the extent to 
which the tuple belongs to a particular class. Our work differs from previous work in 
that we revise the activation functions to compute the membership based on uncertain 
data distribution information, instead of using Fuzzy logic for tuning neural network 
training parameters. Our approach can work on both certain and uncertain data. 



3   Problem Definition 

In our model, a dataset D consists of d training tuples, {t1,t2,…,td}, and k numerical 
attributes, A1,…, Ak. Each tuple ti is associated with a feature vector Vi = (fi,1, fi,2, …, 
fi,k), and a class label ci ∈ C. Here, each fi,j is a pdf modeling the uncertain value of 
attribute Aj in tuple ti. Table. 1 shows an example of an uncertain dataset. The first 
attribute is uncertain. The exact value of this attribute is unavailable, and we only 
know the expectation and variance of each data tuple. This type of data uncertainty 
widely exists in practice [1], [2], [5], [6], [7].  

Table. 1. An example of uncertain dataset  

ID Class Type Attribute #1  
(expectation, standard variance) 

1 Yes (105, 5) 
2 NO (110,10) 
3 No (70,10) 
4 Yes (120,18) 
5 No (105,10) 
6 No (60,20) 
7 Yes (210,20) 
8 No (90,10) 
9 No (85,5) 
10 No (120,15) 

 
The classification problem is to construct a relationship M that maps each feature 

vector (fx,1, fx,2, …, fx,k) to the membership Px on class label  C, so that given a test 
tuple t0=(f0,1, f0,2, …, f0,k), M(f0,1, f0,2, …, f0,k) predict the membership to each class. If 
the test instance has positive probability to be in different classes, then it will be 
predicted to be in the class which has the highest probability.  The work in this paper 
is to build a neural network when only uncertain training data tuples are available, and 
the goal is to find the model with the highest accuracy despite of the uncertainty.  

 

4   Algor ithm 

4.1   Uncer tain Perceptron 

We start with perceptron, which is a simple type of artificial neural network. 
Perceptron is a classical model which constructs linear classifier as: 
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Where x = (x1,…,xn) is the input vector, ω = (ω1,…,ωn) is the weight vector, F is the 
activation function, and y is the perceptron’s output.  

For data sets with uncertain attributes, we need revise the functions and develop an 
uncertain perceptron for linear classification. We will illustrate our approach through 
a simple 2-dimensional dataset. Assume dataset has two attributes X = (x1, x2) and one 
class type y, and assume each uncertain attribute has a distribution as xi ~N (μi, σi), 
and the class type can be +1 or -1, Fig. 1 is a geometric representation of linear 
classification for a 2-dimensional uncertain dataset. In this figure, each data instance 
is represented by an area instead of a single point because each dimension/attribute is 
an uncertain distribution, not an accurate value.  
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Fig. 1. Geometric representation of uncertain Perceptron 

 
The straight line L in Fig 1 represents the equation: 

 
                     1 1 2 2 0 .x xω ω θ+ + =                     (4.2) 

 
where x1, x2 are uncertain attributes. We define a parameter t as 

 
                     1 1 2 2  .t x xω ω θ= + +                      (4.3) 

 



As mentioned earlier, attributes (x1, x2) follow the distribution xi~ N (μi, σi
2). Since 

these attributes are independent, t will have a distribution as: 
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Let s = P(t>0) represent the probability of t larger than 0. If P(t>0) = 1, t is definitely 

larger than 0, which means this tuple is in class +1,  and locates above the line L in 
Fig. 1, for example, like Point P. If P(t>0) = 0, t is less than or equal to 0, which 
means this tuple is in class -1, and it is below line L such as Point R. For uncertain 
data, it is possible that the uncertain range of a data instance may cover the linear 
classification line L, for example, Point Q is one such instance. In this case, Q has 
positive probability to belong to both classes, and the membership of class will be 
determined by which class has a high probability. Therefore, we construct an 
activation function as equation (4.5). 
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Where, s = P(t>0). Fig. 2 is structure of the uncertain perceptron model. In Fig.2, (μi, 
σi) is the expectation and standard deviation of uncertain attributes, as inputs. When 
the distribution is Gaussian, s can be calculated as: 
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Fig. 2. uncertain perceptron structure 

Based on the single uncertain neurons, we can develop a multilayer neural network.  

4.2   Uncer tain neural network 

An uncertain multilayer feed-forward neural network is constructed by adding a 
hidden layer which contains the uncertain neurons between input and output layers. 



We call this algorithm as UNN (for uncertain neural network). Fig. 3 is an instance of 
the layer structure of neural network. Here, the hidden layer has a transfer function as  
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 P(t>0) will be computed based on uncertain data distribution function, For example, 
if the data follows Gaussian distribution, then  
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The output layer can have an activation function as Sigmoid, since the output 

values fall in the range (0,1), to represent the membership of every class.  
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Fig. 3. Multilayer neural network structure 

4.3   Algor ithm Analysis 

A straight-forward way to deal with the uncertain information is to replace the 
probability distribution function with its expected value. Then the uncertain data can 
be treated as certain data and the traditional neural network can be used for  
classification. We call this approach AVG (for Averaging). This approach, as 
mentioned earlier, does not utilize valuable uncertain information and may result in 
loss of accuracy.  We illustrate the reason with the following example. Fig. 4 is an 



example of classifying an uncertain dataset. Line L1 and L2 reflect the training result 
of the hidden layers of a neural network. Suppose P is a test data instance and we 
need predict the class type of P. Because the expectation of P locates in area II, it will 
be assigned to class II if using AVG algorithm. However, from Fig. 4, it is obvious 
that if we consider the distribution of P, it has a larger probability to be in area I than 
in area II. Therefore, it should be classified to class I. UNN will perform the 
classification correctly since it computes the probability of P belonging to both 
classes I and II according to the probability distribution information and predicts it to 
be in the class which has a larger probability. In this sense, the uncertain neural 
network can achieve higher classification accuracy. 
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Fig. 4. classifying a test tuple P 

4.4   Network training 

We adopt a Levenberg-Marquardt back propagation algorithm [14], to train this 
supervised feed-forward neural network. It requires all the activation function has a 
derivative.  Suppose Equation (4.7) is the hidden layer activation function of the 
uncertain neural network, then its derivative is like: 
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Therefore, by substituting Equation (4.8) (4.9) into Equation (4.10), we can get 

the activation function’s derivatives.  
 



                     .
i i i

dF F d F d
d d d

µ σ
ω µ ω σ ω

∂ ∂
= +
∂ ∂

                (4.10) 

 
When we have the derivatives of these activation functions, it is intuitive to train the 

network based on traditional method such as gradient decent.  After training, we can 
then use the model for prediction for uncertain data.  

5   Improve on activate function 

The hidden layer’s activate function, in Equation (4.7), has an output ranging between 
0 and 1. When we consider two different data instances that are absolutely in the same 
class, their function output will both be 1. This may cause the network training to be 
time consuming in some scenarios. In order to improve the training efficiency, we can 
design new hidden layer activate functions. For example, when the uncertainty is 
represent by Gaussian distribution, we devise a new hidden layer activate function, as 
Equation (5.1) to accelerate the training process.  
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Here F2 (μ, σ) is continuous at ut = 0, since  
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F2 (μ, σ) also has a derivative: 
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   Thus, substitute Equation (5.2) (5.3) (5.4) into Equation (5.5), we get the 
derivative of F2. 
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Equation (5.5) then can be used in Levenberg-Marquardt back propagation training 
algorithm.  

6   Exper iments  

6.1   Exper iment on accuracy  

We have implemented  the UNN approach using Matlab6.5[15], and applied them to 
5 real data sets taken from the UCI Machine Learning Repository [16]. The results are 
shown in Table. 2. For the datasets except “Japanese Vowel”, the data uncertainty is 
modeled with a Gaussian distribution with a controllable parameter ω, which is a 
percentage of the standard deviation to the value of expectation. In our experiments, 
we vary the ω value to be 0.1, 0.3 and 0.5. For “Japanese Vowel” data set, we use the 
uncertainty given by the original data to estimate its Gaussian distribution. 

Table 2.  Accuracy experiment results 

Japanese Vowel Uncertainty Train Test 
UNN Distribution based raw data 98.50% 94.95% 
AVG  99.17% 94.31% 

 
Iris  Uncertainty Train Test 
UNN ω=0.1 98.05% 99.93% 
 ω=0.2 98.33% 99.93% 
 ω=0.5 97.78% 99.38% 
AVG  99.17% 98.89% 

 
Ionosphere Uncertainty Train Test 
UNN ω=0.1 92.75% 93.71% 
 ω=0.2 94.50% 90.73% 
 ω=0.5 99.13% 92.05% 
AVG  97.17% 87.86% 

 
Magic Telescope Uncertainty Train Test 



UNN ω=0.1 96.93% 80.01% 
 ω=0.2 97.50% 76.58% 
 ω=0.5 97.50% 80.56% 
AVG  99.67% 73.17% 

 
Glass Uncertainty Train Test 
UNN ω=0.1 77.05% 65.75% 
 ω=0.2 76.00% 69.59% 
 ω=0.5 79.02% 65.57% 
AVG  74.02% 65.22% 
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Fig. 5. Accuracy Comparison of UNN and AVG 

 
In our experiments, we compare UNN with the AVG (Averaging) approach, which 

process uncertain data by simply using the expected value. The results are shown in 
Fig 5.  From the figure, we can see that UNN outperforms AVG in accuracy almost 
all the time. For some datasets, for example, Ionosphere and Magic Telescope 
datasets, UNN improves the classification accuracy by over 6% to 7%. The reason is 
that UNN utilizes the uncertain data distribution information and computes the 
probability of data being in all different classes. Therefore, the classification and 
prediction process is more sophisticated and comprehensive than AVG, and has the 
potential to achieve higher accuracy.  

6.2   Exper iment on efficiency 

In section 5, we have discussed an alternative activate function for improving the 
efficiency of network training process. Here, we present an experiment which 
compares the efficiency of two networks with different hidden layer activate functions. 
In this experiment, we name the network using the original function (Equation 4.7) as 
UNN-O, and the network using activate function (5.1) as UNN-M. 

The training time of UNN-O and UNN-M is shown in Fig. 6 (a) and the training 
epochs of UNN-O and UNN-M is shown in Fig 6. (b). Because of the more complex 
calculations in handling uncertainty, UNNs generally require more training time and 
epochs than AVG. However, the figures also indicate that efficiency of UNN-M is 



highly improved, compared with UNN-O. The training of UNN-M requires much 
fewer epochs than UNN-O, and is significantly faster.  
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Fig. 6. Performance comparison 

6 Conclusion 

In this paper, we propose a new neural network (UNN) model for classifying and 
predicting uncertain data. We employ the probability distribution which represent the 
uncertain data attribute, and redesign the neural network functions so that they can 
directly work on uncertain data distributions. . Experiments show that UNN has 
higher classification accuracy than the traditional approach. The usage of probability 
distribution can increases the computational  complexity, and we propose new 
activation function for improved efficiency. We plan to  explore more classification 
approaches for various uncertainty models and find more efficient training algorithms 
in the future. 
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